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Abstract 
We present Bayes estimators, highest posterior density (HPD) intervals, and maximum likelihood 
estimators (MLEs), for the Maxwell failure distribution based on Type II censored data, i.e. using 
the first r lifetimes from a group of n components under test. Reliability/Hazard function esti-
mates, Bayes predictive distributions and highest posterior density prediction intervals for a fu-
ture observation are also considered. Two data examples and a Monte Carlo simulation study are 
used to illustrate the results and to compare the performances of the different methods. 
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1. Introduction 
The prediction problems of lifetime models are very important and have been studied, among others by Aitchi- 
son & Dunsmore (1975) [1], Chhikara & Guttman (1982) [2], Dunsmore (1974) [3], Evans & Nigm (1980) [4], 
Howlader(1985) [5], Lawless (1977) [6] and Likes(1974) [7]. 

Tyagi and Bhattacharya (1989a, b) [8] [9] considered the Maxwell distribution as a lifetime model and 
obtained the Bayes and the minimum variance unbiased estimators of the Maxwell parameter and its reliability 
function. Howlader and Hossain (1998) [10] also considered the Maxwell distribution and provided Bayes 
estimates for the parameter θ, its associated reliability function ( );R t θ , and highest posterior density intervals 
(HPD) for θ. 

The purpose of this paper is to derive maximum likelihood estimators (or estimators that maximize the 
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likelihood function), Bayes estimators in terms of the mean of the posterior distribution, and highest posterior 
density intervals for θ (which are intervals with a posterior probability of 1 α−  and minimum length), the 
reliability function ( );R t θ  and the hazard function ( );h t θ  based on Type II censored data. In addition, we 
present Bayes predictive estimators based on predictive means and HPD prediction intervals for a future ob- 
servation. When sampling is expensive and time consuming, the Type II censoring scheme can be used to save 
on the cost of the experiment and the data collection time. From a Bayesian perspective, estimation of lifetime 
models under censoring has been investigated by many authors (Balakrishnan (1990) [11], Bekker and Roux 
(2005) [12], Chaturvedi and Rani (1998) [13]). 

The Maxwell probability density function (pdf) and cumulative distribution function (cdf), are respectively 
given by: 
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where ( ).,.γ  is the incomplete Gamma function defined by  
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From a Bayesian perspective, in this study, we consider an asymptotically locally invariant prior, ( )p θ , 
proposed by Hartigan (1964) [14] which is derived from distributions satisfying:  
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1 2 0E l E l+ = .  

For the pdf (1), it can be shown that (Howlader and Hossain (1998) [10]) 

( ) 2

1 .Hp θ
θ

∝                                       (3) 

In addition, we consider Jeffreys prior given by 

( ) ( ).Jp Iθ θ∝  

where ( )I θ  is the expected Fisher’s information. For the pdf (1) it can can be shown that  

( ) 1 .Jp θ
θ

∝                                         (4) 

In Section 2, we describe the procedure for estimating the parameter θ, the reliability function ( );R t θ , and 
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the hazard function ( );h t θ . In Section 3, we discuss how HPD intervals for θ and ( ),R t θ  are obtained. In 
Section 4, we describe how Bayes predictive estimators and highest posterior density prediction intervals for a 
future observation are produced. Finally, Sections 5 and 6 provide results for two data examples and a simul- 
ation study. The conclusions are presented in Section 7. 

2. Estimation of θ, h(t;θ), and R(t;θ) 
We assume a group of n components have lifetimes which follow a Maxwell distribution. The failure times are 
recorded as they occur until a fixed (known) number r of components have failed. As it is quite common in life 
testing situations, (e.g., destructive tests, high cost of testing an item, etc.) only the first r lifetimes in a sample of 
n units can be obtained. Let ( )1 2, , , ,rx x x= x  where ix  is the time of the ith component to fail. Since the 
remaining ( )n r−  components have not yet failed and thus, they have lifetimes greater than [ ]rx , the maxi- 
mum of the observed sample. This is what we refer to as Type II censoring. Instead of x we work with  

( ) ( )2 2 2
1 2 1 2, , , , , ,r ry y y x x x= = y  and 2

[ ] [ ]r ry x= . Since the lifetimes in x follow a Maxwell distribution,  
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 distribution truncated to the interval ( )[ ] ,ry ∞ . 

Therefore, the likelihood function for θ in terms of y can be written as, 
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Furthermore, 
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and the log-likelihood is equal, except for a constant, to  
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The maximum likelihood estimator (MLE) of θ, MLEθ̂ , is found by numerical maximization of the log- 
likelihood. Relying on asymptotic normality properties of the MLE under Type II censoring as in Kong and Fei 
(1996) [15], an approximate ( )1 100%α− ×  confidence interval for θ can be obtained from,  
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ˆ
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2
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2
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quantile of a ( )0,1N  distribution. 
By the invariance property of MLE’s, we get that the MLE of the reliability function, ( ),R t θ  is 

( ) ( )MLE
ˆˆ , 1 , 0.R t F t tθ θ= − >                                (8) 

Also, the MLE for the failure rate or hazard function, ( ),h t θ  is  
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Bayes Estimation 
Combining the likelihood function and the prior ( )p θ , the posterior density of θ  is given by the expression, 
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A squared error loss is appropriate when decisions become gradually more damaging for larger errors. The 
Bayes estimator of θ  under this loss function is the posterior expectation of θ ,  

( ) ( )
0

 d .E pθ θ θ θ
∞

= ∫x y                                     (11) 

In general, this expected value does not have a closed form solution. We rely on MCMC calculations to 
approximate ( )E θ x . For the case of the Maxwell distribution, transformed into a Gamma model, MCMC can 
be done with the Openbugs software as in Lunn et al. (2012) [16]. If ( ) ( ) ( )1 2, , , Mθ θ θ  is a MCMC sample 
from ( )p θ y , after a burn-in period and convergence has been checked,  
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The Bayes estimates of ( ),R t θ  (reliability function) and ( ),h t θ  (failure rate function) do not have a 
closed form and so we consider numerical integration to approximate its values. The approximate Bayes esti- 
mates of ( ),R t θ  and ( ),h t θ , under a squared loss function with a MCMC sample are,  
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By graphing posterior realizations of ( ),R t θ  and ( ),h t θ  as a function of t, we an provide an uncertainty 
band for these functions in addition to the point estimates ( )*R t  and ( )*h t . 

3. Intervals for θ and R(t,θ) 

A credible interval for θ can be obtained by taking our sample (1) (2) ( ), , , Mθ θ θ  and finding the 
2
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Analogously, for the reliability function ( ),R t θ , we transform our MCMC samples for θ and obtain a  
sample for ( ),R t θ  of values ( ) ( ) ( )(1) (2) ( ), , , , , , MR t R t R tθ θ θ . The sample quantiles *

2

qα  and *

1
2

q α
−

 based  

on these values provide a ( )1 α−  interval of ( ),R t θ . In a similar way, we can produce credible intervals for 
the hazard function ( );h t θ . 

It is not automatic to compute a highest posterior density (HPD) interval from a Monte Carlo sample specially 
if the posterior is far from symmetric or multimodal. However, we use the method in Liu, Gelman and Zheng 
(2013) [17], to obtain HPD intervals from a MCMC sample based on a numerical approximation to HPD 
intervals integrated in the SPIn R-package. We use this method to compute HPD intervals for parameters or 
predictions for this paper. 

4. Bayes Predictive Estimator and Intervals 
Let z be a future observation which has already survived ( )rx . Given the data x, the conditional joint p.d.f of z 
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and θ is  

( ) ( ) ( ), , ,h z f z pθ θ θ=x x x                             (16) 

and ( ),f z θ x  takes into account censoring. To produce a Monte Carlo sample of the predictive distribution 
( )h z x , we can do it in two steps typically referred to as the Method of Composition: 
1. Sample ( )pθ θ x . 
2. Sample ( ),z f z θ x . 
3. Repeat steps (1) and (2) M times where M represent a fixed number of MCMC samples. 
This procedure provides a sample, * * *

1 2, , , Mz z z , of values that correspond to the predictive distribution. The 
Bayes estimator of z under squared error loss function can be approximated as  

( ) *
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1 .
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A ( )1 α−  predictive interval ( )* *
1 2,h h  for z can be found by making *
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2h , the 

2
α  and 1

2
α

−   

sample quantiles of * * *
1 2, , , My y y . The HPD interval can be computed with the SPIn method. In our numerical 

examples, we found that the SPIn method could provide some different results depending on how we thin the 
MCMC sample and select the M value. At this point, it is worth mentioning that Bayesian estimation and 
prediction of the two-parameter Gamma distribution has been considered in Pradhan and Kundu (2011) [18]. 
However this other paper does not explicitly address estimation and prediction under type II censoring as we 
propose here. 

5. Numerical Examples Using Real Data Sets 
5.1. Example 1: National Radio Astronomy Observatory Data Set 
The following data represent noise levels in cryogenic microwave receivers and were obtained from Darrell 
Hicks at the National Radio Astronomy Observatory, Socorro, NM. We arranged the observations in ascending 
order and dropped the last 11 data points to induce censoring, which leads to a situation with n = 86 and r = 75. 
After transforming the data with x2, [ ] 86.49ry = . The values of 1 2, , , ry y y  are: 1.69, 2.56, 2.89, 3.24, 4.00, 
4.00, 4.00, 4.84, 4.84, 5.29, 5.29, 5.29, 5.76, 5.76, 6.25, 6.25, 6.76, 6.76, 6.76, 7.29, 7.29, 7.84, 7.84, 8.41, 8.41, 
8.41, 8.41, 8.41, 8.41, 9.00, 9.00, 10.24, 10.89, 10.89, 11.56, 11.56, 11.56, 11.56, 11.56, 12.25, 12.25, 
12.96,12.96,13.69, 14.44, 14.44, 14.44, 14.44, 15.21, 16.00, 16.81, 17.64, 17.64, 17.64, 17.64, 17.64, 18.49, 
20.25, 21.16, 25.00, 33.64, 36.00, 36.00, 37.21, 38.44, 42.25, 42.25, 43.56, 47.61, 57.76, 62.41, 68.89, 72.25, 
81.00, 86.49. 

The MLE of θ obtained numerically with a Nelder-Mead, Quasi-Newton algorithm (in 100-th units) is MLEθ̂  
= 20.17. A graph of the MLEs, ( )MLE

ˆ;R t θ  and ( )MLE
ˆ;h t θ  is shown in Figure 1. After a burn-in of 1000 

MCMC iterations, the posterior mean estimate of θ based on 5000 additional samples results in Bayes
ˆ 20.34θ = . 

MCMC convergence is reached after only a few iterations and was checked with time series plots of the 
iterations (trace plots) and autocorrelation plots. Based on our sample and as described in Section 3, a 95% 
credible interval for θ is (16.98, 24.36). For comparison and relying on MLE asymptotic theory, we also 
computed an approximate 95% confidence interval for θ which resulted in the interval (16.51, 23.58). For this 
calculation, the expected Fisher’s information was approximated with the observed information obtained from 
the Hessian calculation (matrix of second derivatives) resulting from the Nelder-Mead, Quasi-Newton method. 

In Figure 2 (top), we show a histogram of the posterior samples of θ along with the density representation of 
its posterior distribution. Figure 3 presents the posterior mean (in solid black line) and 200 posterior samples for 
the reliability function ( );R t θ  (top) and the hazard function ( );h t θ  (bottom). From this figure we observe 
that when t approaches the value of 10, the reliability function values are close to zero. For the hazard function, 
the failure rates are monotonically increasing as a function of t. Based on the sampling scheme described in 
Section 4, Figure 2 (bottom) also shows samples of the posterior predictive for a future observation z taking into 
account censoring and its approximate density function. The predictive mean for a future observation is 10.40 
and a 95% predictive interval for a future observation is (9.63, 13.10). These values remain essentially the same 
using either Jeffrey’s prior or Hartigan’s prior on θ. The results obtained with the SPIn R-package to compute 
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Figure 1. NRAO data set: MLE estimates of R(t;θ) (top) and h(t;θ) 
(bottom).                                                         

 
HPD intervals from our MCMC samples are as follows. The HPD interval for θ is (16.78278, 24.48906) which 
is not very different compared to an interval based on the 0.25 and 0.975 sample quantiles. The HPD for the 
predictive distribution of a future z observation is (9.36, 12.82) which also remains similar to the one reported 
with 0.25, 0.975 sample quantiles. In Table 1, we report 95% HPD intervals for future observations for different 
levels of censoring. It should be noted that the width of the interval increases as the level of censoring increases. 
On the other hand, the predictive interval without censoring captures all the variability that is present in the full 
data set. 

5.2. Example 2: Burning Velocity of Different Chemical Materials 
We now use the Kazmi et al. (2012) [19] data set that consists of 55 observations related to the burning velocity 
of different chemical materials. The burning velocity is the velocity of a laminar flame under stated conditions 
of composition, temperature, and pressure. It decreases with increasing inhibitor concentration and can be  
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Figure 2. NRAO data set: Histogram of posterior samples and posterior 
density of θ (top). Predictive samples and distribution for a future ob- 
servation (bottom).                                              

 
determined by analyzing the pressure profiles in the spherical vessel and checked by direct observation of flame 
propagation. The data related to the burning velocity (cm/sec) of different chemical materials is given below: 68, 
61, 64, 55, 51, 68, 44, 82, 60, 89, 61, 54, 166, 66, 50, 87, 48, 42, 58, 46, 67, 46, 46, 44, 48, 56, 47, 54, 47, 80, 38, 
108, 46, 40, 44, 312, 41, 31, 40, 41, 40, 56, 45, 43, 46, 46, 46, 46, 52, 58, 82, 71, 48, 39, 41. The source of the 
above explained data related to the burning velocity of different chemical materials for the year 2005 is available 
from http://www.cheresources.com/mists.pdf. In this paper, and to compute our estimates, we consider the units 
of burning velocity as m/sec. 

In Table 2, we report HPD intervals for θ corresponding to this data set under 3 different priors: Hartigan’s, 
Jeffreys’ and a Gamma(1,1) prior which is an Exponential distribution of decay parameter equal to one. The  

http://www.cheresources.com/mists.pdf
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Figure 3. NRAO data set: Posterior mean and 200 posterior samples of 
R(t;θ) (top) and h(t;θ) (bottom).                                              

 
lengths of the HPD intervals for θ under Hartigan prior are slightly shorter compared to the intervals obtained 
with Jeffreys’ and Gamma priors for both censoring times considered. 

In addition, we also computed the approximate 95% confidence interval for θ with the MLE asymptotic 
approximation to the Normal distribution as described in Section 2. For a censoring time of 64(0.64), the 
interval is (0.1706, 0.2790) and for a censoring time of 68 (0.68), the interval is (0.1681, 0.2697). Again, the 
expected Fisher’s information was approximated with the observed Fisher’s information at the MLE. In contrast 
to the NRAO data set example, the HPD intervals provide different results compared to a MLE approximation 
that relies in asymptotic normality. 
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Table 1. HPD-intervals for a future observation.                                                                      

Censoring *
sz  95% HPD Intervals 

0% 6.583 (1.959, 12.58) 

10% 10.7 (9.729, 13.12) 

13% 10.33 (9.328, 12.83) 

20% 7.735 (6.634, 10.34) 

30% 5.807 (4.637, 8.367) 

 
Table 2. HPD-Intervals for θ.                                                                                     

Priors Censoring Time = 64 (0.64) Censoring Time = 68 (0.68) 

Hartigan (0.2107, 0.3393) (0.1947, 0.3110) 

Jeffreys (0.2137, 0.3469) (0.1970, 0.3171) 

Gamma (1,1) (0.2163, 0.3485) (0.1983, 0.3171) 

6. Monte Carlo Simulation Studies 
In order to assess the performance of the estimation and prediction approaches proposed in this paper, we 
perform a Monte Carlo simulation study based on 5000 simulated data samples of sizes n = 15, 25, 35, 50 and 
100 with 10% and 30% censoring respectively. For each of our simulated data samples, we computed the Bayes 
estimates using a squared error loss function after a burn-in of 500 MCMC iterations. For different values of t 
and using the above mentioned sample sizes, we computed the average Bayes estimates, ( )*R t  and ( )*h t , as 
in Section 2. The main results are presented in Table 3 and Table 4. The true value of θ for the simulation was 
selected equal to 20.5. The “true” reliabilities for this θ value for t = 0.5, 2.5, 5.0 and 7.5, are respectively: 
0.9990, 0.8942, 0.4864 and 0.1394 and the ‘true’ hazard function values are respectively: 0.0060, 0.1253, 
0.3691 and 0.6312. We have done some other simulations using different values of θ and the pattern of the 
numerical results remain similar to those reported here. 

Furthermore, for a second simulation based on 5000 samples and for various values of θ, in Figure 4, we 
show Mean Square Error (MSE) curves for a posterior θ computed under Hartigan, Jeffreys’ prior and the MLE 
method respectively. For each data simulation and parameter, we produce an estimate through the 3 approaches 
and compute a square error difference between the true parameter value and the estimated value. An average 
was obtained across simulation and graphed as a function of θ. The results show that as θ gets larger, the MSE 
values are increasing. We also note that except for the first case, where no censoring was considered, the MSE 
curves under Hartigan’s prior are lower than those obtained with Jeffreys or MLE. Various values of n and r 
were considered in this study and defined the four panels shows in Figure 4. The top left panel refers to a case 
where there is no censoring N = 86, r = 86, the top right panel is for N = 86, r = 81. For the bottom panel, we 
have N = 86, r = 70 (right panel) and N = 86, r = 65 for the left panel. We notice that the differences between the 
curves corresponding to each prior are more marked when the censoring level increases. 

7. Conclusions 
The main contribution of this paper is to obtain the parameter estimates for the Maxwell failure distribution 
under Type II censoring via the Gamma distribution, using Bayesian estimation under different priors and 
compared it with Maximum Likelihood Estimation (MLE). MLE can be thought as the maximum of the 
posterior distribution under an unrestricted uniform prior. We observe from Table 1 (NRAO data example) that 
the length of the 95% HPD prediction intervals for future observations increases as the percentage of censoring 
increases. The width of the HPD intervals under censoring is shorter as compared to non censored data. It can be 
noted from Table 2 (Burning velocity data example) that at censoring t = 64 and censoring t = 68, the HPD 
intervals for θ under Hartigan’s prior are slightly shorter than for both Gamma and Jeffreys priors. From Table 3 
(simulation study), it can be observed that the values of the Bayes estimates ( )*R t  are larger for all samples 
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Table 3. Estimates of ( )*R t  and ( )*h t  for 10% censoring.                                                           

Time Estimates n = 15 n = 25 n = 35 n = 50 n = 100 

t = 0.5 ( )*R t  0.9992 0.9993 0.9993 0.9993 0.9994 

 ( )*h t  0.0049 0.0043 0.0041 0.0041 0.0037 

t = 2.5 ( )*R t  0.9132 0.9215 0.9251 0.9250 0.9315 

 ( )*h t  0.1027 0.0926 0.0883 0.0884 0.0807 

t = 5.0 ( )*R t  0.5609 0.5880 0.6001 0.5986 0.6236 

 ( )*h t  0.3073 0.2807 0.2694 0.2698 0.2488 

t = 7.5 ( )*R t  0.2145 0.2365 0.2464 0.2430 0.2684 

 ( )*h t  0.5308 0.4883 0.4701 0.4710 0.4368 

 
Table 4. Estimates of ( )*R t  and ( )*h t  for 30% censoring.                                                          

Time Estimates n = 15 n = 25 n = 35 n = 50 n = 100 

t = 0.5 ( )*R t  0.9995 0.9996 0.9996 0.9996 0.9996 

 ( )*h t  0.0031 0.0026 0.0025 0.0024 0.0022 

t = 2.5 ( )*R t  0.9434 0.9506 0.9535 0.9552 0.9572 

 ( )*h t  0.0667 0.0582 0.0547 0.0527 0.0503 

t = 5.0 ( )*R t  0.6789 0.7087 0.7216 0.7294 0.7388 

 ( )*h t  0.2087 0.1850 0.1752 0.1694 0.1627 

t = 7.5 ( )*R t  0.3432 0.3780 0.3945 0.4048 0.4181 

 ( )*h t  0.3703 0.3314 0.3153 0.3057 0.2944 

 
sizes and for small values of t. When t increases the values of ( )*R t  decreases for all sample sizes. The same 
pattern is observed for Table 4 (simulation) when censoring is set equal to 30%. The values of ( )*h t  increase 
when t increases for all the sample sizes studied for both 10% and 30% censoring. For the estimation of the 
parameter θ, with Type II censoring, the MSE calculations of Figure 4 show that Hartigan’s prior has a better 
performance than Jefferys’ prior and MLE. This is true for all of the values of the parameter θ that are studied 
and all values of n and r considered but it is more noticeable for cases where there is more censoring. 

For estimating the parameter θ of the Maxwell distribution under Type II censoring, it appears to be clear 
from all our numerical results that Bayes estimation is appropriate or in some cases, superior than MLE, but 
with the MLE method as a good competitor. In the second data example for which the sample size n = 55, an 
approximate 95% confidence interval for θ provides a result that is different to HPD intervals. A limitation of 
our approach is the use of a square data transformation for the Gamma distribution which can pose challenges 
under the Type II censoring for large numerical data values. The priors considered for comparisons are obtained 
under the non-censored case, therefore, a similar study can be attempted computing Jeffreys’ and Hartigan’s 
priors numerically and where the Type II censoring is incorporated into the likelihood function. An Openbugs 
model that implements the approach described in this manuscript with the Gamma and truncated Gamma 
distributions, is available by request from the second author. 
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