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Abstract 
The aim of this paper was a generalization of independence property proposed by J. Kampé de Fe-
riét and B. Forte in Information Theory without probability, called general information. Therefore, 
its application to fuzzy sets has been presented. 
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1. Introduction 
Since 1967-69, J. Kampé de Ferét and B. Forte have introduced, by axiomatic way, new information measures 
without probability [1]-[3]; later, in analogous way, with P. Benvenuti we have defined information measures 
without probability or fuzzy measure [4] for fuzzy sets [5] [6]. This form of information measure is again called 
general information. 

In Information Theory an important role has played by an independence property with respect to a given 
information measures J applied to crisp sets [7]. These sets are called J-independent (i.e. independent each other 
with the respect to J) [8]. 

For this reason we will propose a generalization of J-independence property. 
The paper develops in the following way: in Section 2 we recall some preliminaires; in Section 3 the 

generalization of J-indepedence is proposed; the result is extended to fuzzy sets in Section 4. Section 5 is 
devoted to the conclusion. 

2. Preliminaires 
Let Ω  be an abstract space and   the σ-algebra of crisp sets C ⊂ Ω , such that ( ),Ω   is a measurable 
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space. We refer to [7] for all knoledge and operations among crisp sets. 
J. Kampé de Ferét and B. Forte gave the following definition [1] [2]:  
Definition 2.1 Measure of general information J for crisp sets is a mapping  

( ) [ ]: 0,J ⋅ → +∞  

such that 1 2, , ,C C C C′∀ ∈ : 

(i) ( ) ( ) ,C C J C J C′ ′⊂ ⇒ ≥  

(ii) ( ) ( ), 0;J J∅ = +∞ Ω =  

(iii) ( ) ( ) ( )1 2 1 2 1 2, if .J C C J C J C C C∩ = + ∩ = ∅/   

If the couple ( )1 2,C C  satisfies the (iii), we say that 1C  and 2C  are J-independent, i.e. independent each 
other with respect to information J. 

3. A Generalization of the J-Independence Property 
In this paragraph we are going to present a generalization of the J-independence property. 

We propose the following: 
Definition 3.1 Given a general information J, let 1C  and 2C  be two crisp sets in C such that 1 2 .C C∩ ≠ ∅  

We say that 1C  and 2C  are J-idependent each other if there exists a continuous function [ ] [ ]2: 0, 0,Φ +∞ → +∞  
such that  

( ) ( ) ( )( )1 2 1 2,J C C J C J C∩ = Φ                             (1) 

We shall characterize the function Φ , taking into account the properties of the intersection for every 
1 2 3 1, , ,C C C C′∈ :  

( ) ( ) ( )( ) ( ) ( )( )
( ) ( ) ( )( ) ( )( ) ( ) ( ) ( )( )( )

( ) ( ) ( )( ) ( )
( ) ( ) ( )( ) ( ) ( )( )

( ) ( ) ( )( ) ( ) ( )( )

1 1 2 2 1

2 1 2 3 1 2 3

1 2 3

3

4 1 1 1 2 1 2

1 2

5 1 2 1 2

, , , commutativity

, , , , ,

if associativity

, , neutral element

, , ,

if monotonicity

, , .

p J C J C J C J C

p J C J C J C J C J C J C

C C C

p J C J J C

p C C J C J C J C J C

C C

p J C J C J C J C

 Φ = Φ

 Φ = Φ

 ∩ ∩ = ∅/


Φ Ω =


′ ′⊂ ⇒ Φ ≥ Φ
 ′∩ = ∅/
 Φ ≥ v

 

Putting ( ) ( ) ( ) ( )1 2 3 1, , , ,J C x J C y J C z J C x′ ′= = = =  the properties [(p1) - (p5)] have translated in the fol- 
lowing system of functional equations and inequalities [9] [10]:  

( ) ( ) ( )
( ) ( )( ) ( )( )
( ) ( )
( ) ( ) ( )
( ) ( ) ( )

1

2

3

4

5

, ,

, , , ,

,0

, ,

, , .

P x y y x

P x y z x y z

P x x

P x x x y x y

P x y x y

 Φ = Φ


Φ Φ = Φ Φ


Φ =
 ′ ′≥ ⇒ Φ ≥ Φ
 Φ ≥ v

 

We can give the following  
Proposition 3.2 A class of solutions of the system [(P1) - (P5)] is  

( ) ( ) ( )( )1, ,h x y h h x h y−Φ = +                               (2) 

where h is any continuous, strictly increasing function [ ] [ ]: 0, 0,h +∞ → +∞  with ( )0 0h =  and 
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( ) .h +∞ = +∞   
Proof. The class of functions (2) satisfy the equations [(P1)-(P3)] and the inequality (P4) by appling the Ling 

Theorem about the representation of a function which is monotone, commutative, associative with neutral 
element [11]. The inequality (P5) is a consequence of the monotonicity of h.                             

So, from (2), we have  
Proposition 3.3 The generalization of the J-independence property for crisp sets is  

( ) ( )( ) ( )( )( )1
1 2 1 2 1 2 1 2, , , ,J C C h h J C h J C C C C C−∩ = + ∀ ∈ ∩ ≠ ∅              (3) 

where h is any continuous, strictly increasing function [ ] [ ]: 0, 0,h +∞ → +∞  with ( )0 0h =  and ( ) .h +∞ = +∞  
  

Remark When h is linear, the generalization (3) coincide with the property (iii). 

4. Extension to Fuzzy Setting 
In this paragraph, we are considering the extension of J-independence property at fuzzy setting. 

Let Ω  be an abstract space and   the σ-algebra of fuzzy sets such that ( ),Ω   is a measurable space [5], 
[6]. In [4] we have given the definition of measure of general information for fuzzy sets:  

Definition 4.1 Measure of general information in fuzzy setting is a mapping ( ) [ ]: 0,J F′ ⋅ → +∞  such that 

1 2, , ,F F F F′∀ ∈ : 

(i') ( ) ( ) ,F F J F J F′ ′ ′ ′⊂ ⇒ ≥  

(ii') ( ) ( ), 0,J J′ ′∅ = +∞ Ω =  

(iii') ( ) ( ) ( )1 2 1 2 1 2, if .J F F J F J F F F′ ′ ′∩ = + ∩ ≠ ∅   
If the couple ( )1 2,F F  satisfies the (iii'), we say that 1F  and 2F  are J'-independent, i.e. independent each 

other with respect to information J ′ . 
Also in fuzzy setting, we generalize the (iii'), setting  

( ) ( ) ( )( )1 2 1 2 1 2, if .J F F J F J F F F′ ′ ′∩ = Ψ ∩ ≠ ∅                        (4) 

The properties of the intersection between fuzzy sets are the similar to the [(p1) − (p4)] [5] [6]. Therefore, we 
are looking for functions (4) solutions of the system [(P1) − (P5)]. We have again the similar result:  

Proposition 4.2 A class of solution of the system [(P1) − (P5)] is  

( ) ( ) ( )( )1, ,k x y k k x k y−Ψ = +                               (5) 

where k is any continuous, strictly increasing function [ ] [ ]: 0, 0,k +∞ → +∞  with ( )0 0k =  and ( ) .k +∞ = +∞  
From (5), we get  
Proposition 4.3 A generalization of the J'-independence property between two fuzzy set is  

( ) ( )( ) ( )( )( )1
1 2 1 2 1 2 1 2, , , ,J F F k k J F k J F F F F F F−′ ′ ′∩ = + ∀ ∈ ∩ ≠ ∅               (6) 

where k is any continuous, strictly increasing function [ ] [ ]: 0, 0,k +∞ → +∞  with ( )0 0k =  and ( ) .k +∞ = +∞   
Proof. The proof is similar to that given for crisp sets.                                            
Remark. When k is linear, the generalization (6) coincide with the property (iii'). 

5. Conclusions 
In this paper we have proposed a genralization of J-independence property between crisp sets:  

( ) ( )( ) ( )( )( )1
1 2 1 2 1 2 1 2, , , ,J C C h h J C h J C C C C C C−∩ = + ∀ ∈ ∩ ≠ ∅  

where h is any continuous, strictly increasing function [ ] [ ]: 0, 0,h +∞ → +∞  with ( )0 0h =  and ( ) .h +∞ = +∞   
Therefore, we have extended the result to fuzzy setting:  

( ) ( )( ) ( )( )( )1
1 2 1 2 1 2 1 2, , , ,J F F k k J F k J F F F F F F−′ ′ ′∩ = + ∀ ∈ ∩ ≠ ∅  
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where k is any continuous, strictly increasing function [ ] [ ]: 0, 0,k +∞ → +∞  with ( )0 0k =  and ( ) .k +∞ = +∞  
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