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Abstract 
We describe a scheme for universal quantum computation with Majorana fermions. We investi- 
gate two possible dissipative couplings of Majorana fermions to external systems, including me- 
tallic leads and local phonons. While the dissipation when coupling to metallic leads to uninte-
resting states for the Majorana fermions, we show that coupling the Majorana fermions to local 
phonons allows to generate arbitrary dissipations and therefore universal quantum operations on 
a single QuBit that can be enhanced by additional two-QuBit operations. 
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1. Introduction 
Majorana fermions in superconducting heterostructures provide one of the most challenging but also interesting 
candidates for quantum computation [1]-[4]. In a one dimensional topological superconductor, a single 
delocalized pair of Majorana bound states (MBSs) exists [5], one on the left ( Lγ ) and one on the right ( Rγ ). 
Interestingly, exchanging these positions leads to a topologically protected accumulated phase acquired by the 
MBSs [2] which makes them a possible starting point for topological quantum computation [6]. 

However, the above statement is only true as long as no coupling to an ungapped system is present [7]. If we 
do couple one of the MBSs, e.g. a metallic lead its state decoheres just as an ordinary fermionic subgap bound 
state [8]. 

In this paper, we want to demonstrate that the above feature of a MBS does not always hinder its applicability 
as a QuBit as it is previously assumed [8] but provides a new way of quantum computation on MBSs via 
dissipation [9]-[11]. We will approach dissipative quantum computing on MBSs in two steps: first, we consider 
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a simple tunnel junction and show that not every state is subjected to dissipation in order to illustrate the basis of 
dissipative quantum computing. Second, we will consider a more involved setup to demonstrate the possibility 
of universal quantum computation. 

2. Tunnel Junction 
We start by considering two MBSs coupled to a metallic lead as shown in Figure 1.  

The tunnel coupling can be described by the Hamiltonian  

( ) ( ) ( ) ( )tun .R L R L R LH i i iλ γ λ γ λ γ γ λ γ γ λ γ λ γ+ + + + += Ψ −Ψ + Ψ +Ψ = Ψ + − Ψ − = Ψ − Ψ          (1) 

Lγ  and Rγ  operate on the state of the Majorana fermion, which can either have even or odd parity and can 
be expressed using the fermion operators of the lead Ψ . Denoting their state by a four vector  
( )even ,odd ,even ,oddR R L L  the operators Lγ  and Rγ  can be written as Pauli spin matrices xσ  and xσ  
operating on either the first or the last two columns. The operator R Liγ γ γ= − . 

For a high bias voltage V and low temperature we may assume the transitions from the MBSs to the lead to be 
irreversible. In this case the quantum mechanical tunneling operations can be reduced to simple quantum jumps 
[12] as given a certain direction for the bias voltage the reversed transport can also quantum mechanically be 
neglected. Experimentally this situation can be realized using the typical temperatures far below the gap of the 
material in which the Majorana fermions reside and a bias voltage far above this gap. Consequently the γ ’s can 
then be transformed to quantum jump operators which allows to write the time-evolution by a master equation in 
Lindblad form [12]  

( ) ( )2 ,ρ ρ γργ γ γρ ργ γ+ + += = Γ − −                                 (2) 

where ( )x xiγ σ σ= +   and 2
0πρ λΓ =  with the density of states in the metal 0ρ . 

The Lindblad operator does not contain more involved tensor products of operators since we only consider 
simple tunneling processes on the left and right side so far [13]. 

Equation (4) has eigensolutions ( )* 0ρ =  which do not decohere. Indeed, solving Equation (4) leads to  
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                                 (3) 

with ijr  arbitrary numbers and *ρ  properly normalised. 
The first observation from this simple calculation is that dissipation can be engineered and certain states 

survive the dissipative evolution. However, in this simple case the states that survive are not very interesting for 
quantum computation since the off-diagonal elements which would give rise to entangled states between Lγ  
and Rγ  vanish. 

 

 
Figure 1. Two Majorana fermions on the left ( Lγ ) and the right ( Rγ ) 
are tunnel coupled to a metallic lead.                                
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3. Phonon Coupling  
Therefore, we now discuss coupling of the MBSs to a phonon mode of an auxiliary contact. A phonon is a 
typical cause for dissipation and here we want to illustrate that it is also an interesting one. Coupling a phonon 
mode to a Majorana fermion γ  and an auxiliary lead (in y-direction) has the form [14]  

( ) ( )tun, ˆ 0 0 ,x xH it x y y γ+ = Ψ = −Ψ =                             (4) 

with the displacement operator x̂  that has to be expressed by the bosonic operators corresponding to the 
phonon and the lead described by fermionic operators Ψ . 

We should add that higher order tunneling terms may occur corresponding to terms tun, , , ˆn
x n x nH it x= , which  

correspond to phonon processes of higher order. In accordance with previous treatments of similar problems we 
only consider the lowest order as in Equation (6) in order to simplify the description [15]. Now, we do not want 
to couple the Majorana fermions to an outer lead [14] but rather couple them laterally as illustrated in Figure 2.  

In this case the x-dependent coupling has the form  

tun, , , ,
, 1

ˆ ,
N

x x n m n m n m
n m

H t x γ γ
=

= ∑                                  (5) 

where ( )ˆ nm nmx b b+= +  is written in terms of bosonic phonon operators that correspond to the distance n mx x− . 

In the language of dissipative quantum computing each phonon mode between two Majorana fermions 
provides an ancilla (by definition) the Majoranas are coupled to. The phonons should be coupled to an external  
bath such that they are described by a Lindblad equation with a Lindblad operator , , , ,x n m x n mL t σ−= , where 

0 1σ− =  is the jump operator for a deexcitation of a phonon. 
If the system is gapped (as it has to be for a superconducting system) the ordinary tunneling Hamiltonian 

discussed in Section 2 is not present and Equation (7) is the only remaining coupling of the Majoranas (the 
decoupled lead Hamiltonian of the superconductor can be disregarded). 

As was shown in other works [6] one can associate Pauli matrices to different combinations of the Majorana 
operators. E.g. let us assume we have a single logical QuBit consisting of four Majorana fermions [16], then the 
two states of the logical QuBit are encoded as 00  and 11 , corresponding to no excitations on both 
Majorana or both Majoranas being excited. These two states have the same (even) quasiparticle parity such that 
coherent superpositions are allowed. An arbitrary state has the form  

2 200 11 , 1,α β α βΨ = + + =                            (6) 

and the Pauli matrices are bilinear combinations of the four Majorana operators  

2 3 1 3 1 2, , .x y zi i iσ γ γ σ γ γ σ γ γ= − = = −                            (7) 

All of these can be realized by couplings as in Equation (7) so that any Liouville operator can be constructed 
[11]. Mind, that this ensures completeness only of the one-QuBit operations since we have restricted ourselves 
to the states 00  and 11 . 

 

 
Figure 2. Five Majorana fermions are present in strongly spin orbit coupled quantum wires on top of a superconductor. 
These Majorana fermions are separated in x-direction and are all coupled to another lead e.g. a carbon nanotube (black). The 
carbon nanotube is gapped due to the proximity effect from the nearby superconductor but the Majorana fermions are all 
coupled to local phonon modes of the carbon nanotube. The first four Majorana fermions form a QuBit and the fifth one 
illustrates the possibility to add more QuBits in the same structure.                                                   
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This means that if the couplings , ,x n mt  are suitably chosen any state of the chosen Majorana QuBit can be 
produced. In order to allow for universal quantum computation for we also need specific operations that work on 
more than one Majorana QuBit. This other gate we need is not easily produced by a decoherence process since 
the Majorana QuBit we just discussed is said to be topologically protected from decoherence by the environment, 
meaning that bit-flip or phase-shift errors necessarily involve the change of pairs of Majorana QuBits or 
combinations of four Majorana operators (see Equation (9)). 

The additional gate we need for universal quantum computation is the non-destructive measurement of the 
quasiparticle parity of any four MBSs [17]. In the case of Majorana particles realized in superconducting 
heterostructures this is most easily realized using a Josephson junction for charge read-out [7]. A non-demolition 
measurement can be realized using a similar setup [18] to the one shown in Figure 2 with the addition of a 
Josephson junction with a well-defined phase difference Φ (see Figure 3).  

In this case, we would realize two Majorana QuBits using eight Majorana fermions, again employing strongly 
spin-orbit coupled semiconductor nanowires with the additional possibility of tuning the position of the 
Majorana fermions in these wires by side gates. The read-out of the phase difference amounts to a measurement 
of the quasiparticle parity of the state and therefore the desired gate operation [18]. 

Since the dissipative part of this setup is the new feature, in the remainder of this paper we will describe in 
more detail how to obtain the desired states in the single Majorana QuBit by dissipative quantum computing. 

4. Realizing Specific States in the Majorana QuBit  
Let us study the actual evolution of states under dissipation. For example if we realize the Lindblad operator  

0.29878 0.32041 0.71143 0.29878
0.93333 0.36065 1.11807 0.93333

,
0.52544 0.28336 1.53610 0.52544
0.48211 0.22501 1.97634 0.48211

L

− 
 − − =
 − −
 

− 

                      (8) 

and solve the resulting Lindblad equation  

( ) ( )2 ,L L L L L Lρ ρ ρ ρ ρ+ + += = Γ − −                             (9) 

we obtain the density matrix as shown in Figure 4. We may also obtain the density matrices from the relevant 
Lindblad operators in this simple case using the Baumgartner/Narnhofer formula  

( )
( )

1

*
1

.
Tr

L L

L L
ρ

−+

−+
=

 
  

                                 (10) 

The result is the Bell state φ+ . Of course, we may also solve for any other Liouville operator and obtain the 
corresponding quantum mechanical state. 

 

 
Figure 3. Two Majorana QuBits are encoded in 8 Majorana fermions in two strongly spin-orbit coupled quantum wires 
(yellow spots). The superconducting substrate can be tunnel-coupled to Josephson-junction with a well-defined phase 
difference Φ. The position of the Majorana fermions can be tuned by additional side-gates (in grey).                        
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Figure 4. Density matrix ρ  resulting from the solution for Equation (11). 
The entries label the different components of the density matrix. The result 
corresponds exactly to the Bell state φ+ .                             

 
In a similar way we can also obtain the necessary certain Lindblad operator L as in Equation (10) for a 

predefined density matrix ρ  in Equation (11). Indeed, this was the process to arrive at Equation (10). Both 
cases represent elementary numerical calculations. 

The corresponding tunneling amplitudes are given by  

[ ]( )2
, , , , 1, 2 ,x n m x n mt L=                                 (11) 

and since the tunnel amplitudes should be tunable by the distance x of the MBSs or side gates as in Figure 3 we 
may also obtain the necessary configuration. Mind that negative , ,x n mt  may occur due to the fact that we need to 
take manifold tunnel processes into account and quantum mechanical phases between the different tunnel 
processes cannot be simply gauged away, similar to Aharanov-Bohm processes [19]. 

The process of obtaining the Lindblad operator for a specific state, calculating the necessary tunnel 
amplitudes and then changing the experimental parameters as tunnel amplitudes and distances on the sample in 
such a way as to realize the necessary tunnel amplitudes corresponds to the process of tuning the dissipation. 

However, in experiment the tunability of , ,x n mt  will be limited. Nonetheless, this scheme provides a way for 
good initialization of the Majorana fermion array as in Figure 2 since by coupling them to local phonons we 
will produce an entangled state which is well defined and can be taken as the starting point e.g. for braiding 
operations leading to different entangled states. Nonetheless, including the corresponding charge read out 
operations we also have a universal quantum computer. 

5. Conclusion 
We have considered two examples for dissipative evolutions of the state of Majorana fermions. We have shown 
that certain states are eigenstates of the dissipative process and therefore dissipation provides a possibility for 
quantum computation. While the first proposal involving only a simple tunneling term to a metallic lead has 
been shown to be insufficient for the creation of interesting states, coupling the Majorana fermions to local 
phonons provided a possibility for universal quantum computation in combination with additional two-QuBit 
operations. Even if the tunability of the couplings to the local phonons is limited, this scheme still provides a 
way for well-defined initialization of single Majorana QuBits in an entangled quantum state. 
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