
Open Journal of Statistics, 2016, 6, 37-48 
Published Online February 2016 in SciRes. http://www.scirp.org/journal/ojs 
http://dx.doi.org/10.4236/ojs.2016.61006   

How to cite this paper: Awad, R. and Banerjee, S. (2016) Some Construction Methods of Optimum Chemical Balance 
Weighing Designs III. Open Journal of Statistics, 6, 37-48. http://dx.doi.org/10.4236/ojs.2016.61006  

 
 

Some Construction Methods of Optimum 
Chemical Balance Weighing Designs III 
Rashmi Awad*, Shakti Banerjee 
School of Statistics, Devi Ahilya University, Indore, India 

 
 
Received 24 November 2015; accepted 15 February 2016; published 18 February 2016 

 
Copyright © 2016 by authors and Scientific Research Publishing Inc. 
This work is licensed under the Creative Commons Attribution International License (CC BY). 
http://creativecommons.org/licenses/by/4.0/ 

    
 

 
 

Abstract 
Methods of constructing the optimum chemical balance weighing designs from symmetric ba-
lanced incomplete block designs are proposed with illustration. As a by-product pairwise effi-
ciency and variance balanced designs are also obtained. 
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1. Introduction 
Originally Yates (see [1]) gave the concept of weighing design. Afterward his work was formulated by Hotelling 
(see [2]) and he gave the condition of attaining the lower bound by each of the variance of the estimated weights. 
Many statisticians did prominent work in obtaining optimum weighing designs (see [3]-[7]). In recent years, 
different methods of constructing the optimum chemical balance weighing designs; using the incidence matrices 
of known balanced incomplete block designs, balanced bipartite block designs, ternary balanced block designs 
and group divisible designs have been given in the literature (see [8]-[11]). 

Construction methods of obtaining optimum chemical balance weighing designs using the incidence matrices 
of symmetric balanced incomplete block designs have been given by Awad et al. [12]-[14]; some pairwise 
balanced designs are also been obtained which are efficiency as well as variance balanced. In this paper; some 
other new construction methods of obtaining optimum chemical balance weighing designs using the incidence 
matrices of known symmetric balanced incomplete block designs are propose. Some more pairwise efficiency as 
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well as variance balanced designs are also been proposed. 
Let us consider a block design in which ν  treatments arranged in b blocks and elements of the incidence  

matrix N are denoted by ijn   , for all 1, 2, ,i ν=  ; 1, 2, ,j b=  , such that the thj  block contains jk  ex-  

perimental units and the thi  treatment appears ir  times in the entire design. A balanced block design is said to 
be (a) binary when 0ijn =  or 1, 1, 2, , ; 1, 2, ,i j bν∀ = =  . Otherwise, it is said to be nonbinary (see [7]); (b) 
ternary if 0,1ijn =  or 2, 1, 2, , ; 1, 2, ,i j bν∀ = =  , and it has parameters ν , b, 1ρ , 2ρ , r, k, Λ ; where 

1ρ , 2ρ  are the number of times 1, 2 occurs in the incidence matrix, respectively (see [15]); (c) generalized 
binary if 0ijn =  or x, 1, 2, , ; 1, 2, ,i j bν∀ = =   and some positive integer ( )1x > , and it has parameters 
ν , b, r, k, Λ  (see [16]). 

A balanced incomplete block design is an arrangement of ν  symbols (treatments) into b sets (blocks) such 
that (1) each block contains ( )k ν<  distinct treatments; (2) each treatment appears in ( )r λ>  different blocks 
and; (3) every pair of distinct treatments appears together in exactly λ  blocks. Here, the parameters of 
balanced incomplete block design (ν , b, r, k, λ ) are related by the following relations 

( ) ( ) ( ), 1 1 and Fisher s Inequalityr bk r k bν λ ν ν= − = − ≥ ’  

A balanced incomplete block design is said to be symmetric if b ν=  ( consequently, r k= ). In this case, 
incidence matrix N is a square matrix i.e. N N′ = . In case of symmetric balanced incomplete block design any 
two sets have λ  symbols in common. 

Balancing of design in various senses has been given in the literature (see [17] [18]). In this paper, we 
consider the balanced design of the following types: 1) variance balanced block designs; 2) efficiency balanced 
block designs and; 3) pairwise balanced block designs. 

1) A block design is said to be variance balanced if and only if its C-matrix, 1R NK N−− , satisfies 
( )1 1 1 1R NK N Iν ν νψ ν− ′− = −   , for some constant ψ  (see [19]-[22]); where ψ  is the unique nonzero eigen 

value of the matrix C with the multiplicity ( )1ν − , Iν  is the ν ν×  identity matrix. 
2) A block design is said to be efficiency balanced if ( )1 1 1 1R NK N I n rν νµ µ− − ′ ′= + −   , for some constant 

µ  (see [20]-[22]); where µ  is the unique non zero eigen value with multiplicity ( )1ν − . For the EB block  
design N, the information matrix is given as ( ) ( )( )1 1C R n r rµ ′= − − ; see [23]  

3) A block design is said to be pairwise balanced if 1
b

ij i jj n n ′=
= Λ∑  (a constant) for all i, i′ ; where i i′≠   

and , 1, 2, ,i i ν′∈  . A pairwise balanced block design is said to be binary if 0ijn =  or 1 only, for all i, j and it 
has parameters ν , b, r , k , Λ  (= λ , say) (in this case, when 1r r ν=  and 1bk k= , it is a BIB design with 
parameters ν , b, r , k , λ ). 

A design is said to form a nested structure, when there are two sources of variability and one source is nested 
within other. Preece (see [24]) introduced a class of nested BIB designs with ν  treatments, each replicated r 
times, with two systems of blocks, such that (a) the second system nested within the first, with each block from 
the first system (called super blocks) containing exactly “m” blocks from the second system (called sub-blocks). 
(b) Ignoring the sub-blocks, leaves a BIB design with parameters ν , b∗ , r, k∗ , λ∗ . (c) Ignoring the super- 
blocks, leaves a BIB design with parameters ν , b∗ , r, k∗ , λ∗ . The ν , b∗ , b∗ , r, k∗ , k∗ , λ∗ , λ∗  and m 
are called the parameters of a nested BIB design. The parameters satisfy the following conditions: 

r b k b mk b kν ∗ ∗ ∗
∗ ∗ ∗= = =  

( ) ( )1 1r k λ ν∗ ∗− = −  

( ) ( )1 1r k λ ν∗ ∗− = −  
so that 

( )( ) ( )1 1m m rν λ λ∗
∗− − = −  

The following additional notations are used [ ]1 2 bk k k k ′=   is the column vector of block sizes,  
[ ]1 2r r r rν ′=   is the column vector of treatment replication, [ ]1 2diagb b bK k k k× =  , [ ]1 2diagv vR r r rν× =  ,  

1 1
b

i ji jr k nν
= =

= =∑ ∑  is the total number of experimental units, with this 1bN r=  and 1N kν′ = , Where 1a  is  

the 1a×  vector of ones. Furthermore µ  represents the loss of information, i.e., 1 µ−  represents an effi- 
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ciency of the design, ( )1ψ  represents the variance of any normalized contrast in the intra block analysis (see 
[20] [23] [25] [26]). 

For given p objects to be weighted in groups in n weightings, a weighing designs consists of n groupings of 
the p objects and the least square estimates of the weight of the objects can be obtained by the usual methods 
when n p≥ . Using matrix notations the general linear model can be written as: 

Y Xw e= +                                          (1) 

where Y  is 1n×  column vector of the weights of the objects, w  is the 1p×  column vector of the 
unknown weights of objects and e  is 1n×  vector of error components in the different observations such that 
( ) 0nE e =  and ( ) 2

nE ee Iσ′ = . Also ( )ijX x= , ( )1,2, , ;  1, 2, ,i n j p= =   is the n p×  matrix of known 
quantities called design matrix whose entries are +1, −1 or 0. Let matrix X takes the values as: 

1 if the object is in the left pan in the weighing
1 if the object is in the right pan in the weighing

0 if the object is not in the weighing

th th

th th
ij

th th

j i
x j i

j i

+


= −



 

The normal equations for estimating w  are as follows: 
ˆX X w X Y′ ′=                                           (2) 

where ŵ  is the vector of the weights estimated by the least squares method. 
Singularity or non-singularity of a weighing design depends on whether the matrix X X′  is singular or non- 

singular, respectively. When X is of full rank, then it is obvious that the matrix X X′  is non-singular. Then in 
this case the least squares estimate of w  is given by 

( ) 1ŵ X X X Y−′ ′=                                        (3) 

and the variance-covariance matrix of ŵ  is 

( ) ( ) 12ˆVar w X Xσ −′=                                      (4) 

A weighing design is said to be the chemical balance weighing design if the objects are placed on two pans in 
a chemical balance. In a chemical balance weighing design, the elements of design matrix ( )ijX x=  takes the 
values as +1 if the thj  object is placed in the left pan in the thi  weighing, −1 if the thj  object is placed in the 
right pan in the thi  weighing and 0 if the thj  object is not weighted in the thi  weighing. 

Hotelling (see [2]) has shown that the precision of the estimates of the weight of the object increases further 
by placing in the other pan of the scale those objects not included in the weighing and thus using two pan 
chemical balance. He proved that if n weighing operations have been done to determine the weight of p = n 
objects, the minimum attainable variance for each of the estimated weights in this case is 2 nσ  and he also 
shown that each of the variance of the estimated weights attains the minimum if and only if ( ) pX X nI′ = . A 
design satisfying this condition is called an optimum chemical balance weighing design. 

2. Variance Limit of Estimated Weights 
Ceranka et al. (see [8]) studied the problem of estimating individual weights of objects, using a chemical 
balance weighing design under the restriction on the number of times in which each object is weighed. A lower 
bound for the variance of each of the estimated weights from this chemical balance weighing design is obtained 
and a necessary and sufficient condition for this lower bound to be attained was given. Then Ceranka et al. (see 
[8]) proved the following theorem: 

Theorem 2.1. For any n p×  matrix X, of a nonsingular chemical balance weighing design, in which maxi- 
mum number of elements equal to −1 and 1 in columns is equal to m, where 1 2max , , , pm m m m =    (where 

jm  be the number of elements equal to −1 and 1 in thj  column of matrix X). Then each of the variances of the 
estimated weights attains the minimum if and only if 

( ) pX X mI′ =                                          (5) 

Also a nonsingular chemical balance weighing design is said to be optimal for the estimating individual 
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weights of objects; if the variances of their estimators attain the lower bound given by, 

( ) 2ˆ ; 1, 2, ,Var w m j pσ= =                                 (6) 

Preece [24] introduced a class of nested BIB designs. Using this concept Banerjee; (see [27]-[29]) constructed 
the nested EB as well as VB designs, where the sub-blocks form ternary design D with parameters (ν , b, 1iρ , 

2iρ , r, k, Λ ) while the super-blocks form generalized binary design D with parameters (ν , b, r, k, Λ ); where i 
= 1, 2. 

Proposition 2.2. Existence of BIB design D with parameters ( ), , , ,b r kν λ  implies the existence of a nested 
EB as well as VB design. The sub-blocks form an EBT as well as VBT design with parameters 

1ν ν∗ = , 1 2
2

b
ν

λ∗  
=  

 
, ( )( )11 1 2r k kρ′ = − − , ( )21 1r kρ′ = − , ( )1 1r rk k∗ = − , 1k k∗ = ,  

( )( )1 1 2k kλ∗Λ = + − , ( ) ( ) ( ) ( )2 21 1 1 1 1 12 1k k kµ ν ν∗ ∗ ∗ ∗ ∗ ∗   = + − −      
, 1 1 1 1kψ ν∗ ∗ ∗ ∗ = Λ   

while the super-blocks form a generalized binary EB as well as VB design with parameters 

1ν ν∗ = , 1 2
b

ν
λ∗
 

=  
 

, ( )1 1r rk k∗ = − , 1 2k k∗ = , ( )1 2 1k kλ∗Λ = − , 

( ) ( )1 1 1 1 12 1k kµ ν ν∗ ∗ ∗ ∗ ∗= − −   , [ ]1 1 1 1kψ ν∗ ∗ ∗ ∗= Λ  

Proposition 2.3. Existence of BIB design D with parameters ( ), , , ,b r kν λ  implies the existence of a nested 
EB as well as VB design. The sub-blocks form an EBT as well as VBT design with parameters 

2ν ν∗ = , 2 3
2

b
ν

λ∗  
=  

 
, ( )( )12 = 1 3 4 2r k kρ′ − − , ( )22 1r kρ′ = − , ( )2 3 1 2r rk k∗ = − , 2k k∗ = ,  

( )2 23 3 4 2k kλ∗Λ = − − , ( ) ( ) ( )22 2 2 2 2 2 24 3 3 1k k kµ ν ν ν∗ ∗ ∗ ∗ ∗ ∗ ∗  = + − −    
, 2 2 2 2kψ ν∗ ∗ ∗ ∗ = Λ   

while the super-blocks form a generalized binary EB as well as VB design with parameters 

2ν ν∗ = , 2 2
b

ν
λ∗
 

=  
 

, ( )2 3 1 2r rk k∗ = −   , 2 3k k∗ = , ( )2 9 1 2k kλ∗Λ = −   ,  

( ) ( )2 2 2 2 23 1k kµ ν ν∗ ∗ ∗ ∗ ∗= − −   , [ ]2 2 2 2kψ ν∗ ∗ ∗ ∗= Λ  

3. Construction of Design Matrix: Method I 
Consider a SBIB design D with the parameters (ν , k, λ ); each pair of treatments occurs together in λ  blocks. 
Take any pair of treatments, say, (θ , φ ) from this design. Then make two blocks from the design which 
contains the pair (θ , φ ). 

1. Give the negative sign to the treatment θ  and eliminate the treatment φ  while the other (k−2) remaining 
treatments of the same block remain as it is. 

2. Give the negative sign to the treatment φ  and eliminate the treatment θ  while the other (k−2) remaining 
treatments of the same block remain as it is. 

The matrix 1N  of design 1D  is obtained. Now doing the same procedure for all possible 
2
ν 
 
 

 pairs of 

treatments, we obtain matrix iN ; 1, 2, ,
2

i
ν 

=  
 

 . Then the incidence matrix 1N∗∗  of the new design 1D∗∗  so  

formed is the matrix having the elements 1, −1 and 0; given as follows by juxtaposition 
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1 1 2
2

N N N N ν∗∗  
 
 

 
 =
  

                                (7) 

Then combining the incidence matrix N of SBIB design repeated s-times with 1N∗∗  we get the matrix X of a 
chemical balance weighing design as 

-times

1

s

X N N N∗∗

′ 
 =
  



                                   (8) 

Under the present construction scheme, we have ( )2 1
2

n sb sb
ν

λ λν ν
 

= + = − + 
 

 and p ν= . Thus the each  

column of X will contain ( )( )1 1 2r k k srδ = − − +  elements equal to 1, ( )2 1r kδ = −  elements equal to −1 
and ( )( )1 1r k kν− − +  elements equal to zero. Clearly such a design implies that each object is weighted  

( )2
1 2 1m r k srδ δ= + = − +  times in 2

2
n sb

ν
λ
 

= + 
 

 weighing operations. 

Lemma 3.4. A design given by X of the form (8) is non singular if and only if  
( ) ( ) ( )23 6 7 0k k s rλ ν λ λ − − − + + − ≠  . 

Proof. For the design matrix X given by (8), we have 

( )( ){ } ( )( ){ } ( )( )

( ) ( ){ } ( ) ( )( ){ }2

1 3 2 5 2 5

3 6 7 2 5

X X r k k sr k k s I k k s J

k k s r I k k s J

ν νν

ν νν

λ λ λ λ

λ ν λ λ λ

 ′ = − − + − − − + + − − +   
   = − − − + + − + − − +  

         (9) 

and 

( ){ } ( ) ( ){ } ( )
1

3 2 27 13 7 3 6 7X X r k k k sk k k s r
ν

λ ν λ λ
−

   ′ = − + − + − − − + + −                 (10) 

the determinant (10) is equal to zero if and only if 

( )( ) ( )( )1 3 2 5r k k sr k k sλ λ− − + = − − +  

( ) ( ) ( )23 6 7 0k k s rλ ν λ λ ⇒ − − − + + − =   

or ( )3 27 13 7 0r k k k sk − + − + =   

but ( ){ }3 27 13 7r k k k sk − + − +   is positive and then ( ) 0det X X′ =  if and only if  

( ) ( ) ( )23 6 7 0k k s rλ ν λ λ − − − + + − =  . So the lemma is proved. 

Theorem 3.5. The non-singular chemical balance weighing design with matrix X given by (8) is optimal if 
and only if 

( )( )2 5 0.k k sλ − − + =                                    (11) 

Proof. From the conditions (5) and (9) it follows that a chemical balance weighing design is optimal if and 
only if the condition (11) holds. Hence the theorem. 

If the chemical balance weighing design given by matrix X of the form (8) is optimal then 

( )
( )

2

2
ˆ ; 1, 2, ,

1
jVar w j p

r k s

σ
= =

 − + 

  

Example 3.6. Consider a SBIB design with parameters 4bν = = , 3r k= = , 2λ = ; whose blocks are given 
by (1,2,3), (1,2,4), (1,3,4), (2,3,4). 
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Theorem 3.5 yields a design matrix X of optimum chemical balance weighing design as 

1 0 1 0

0 1 1 0

1 0 0 1

0 1 0 1

1 1 0 0

0 1 1 0

1 0 0 1

0 0 1 1

1 1 0 0

0 1 0 1

1 0 1 0

0 0 1 1

1 1 0 0

1 0 1 0

0 1 0 1

0 0 1 1

1 1 0 0

1 0 0 1

0 1 1 0

0 0 1 1

1 0 1 0

1 0 0 1

0 1 1 0

0 1 0 1

0 1 1 1

1 0 1 1

1 1 0 1

1 1 1 0

0 1 1 1
1 0 1 1
1 1 0 1
1 1 1 0

X

−


−

−


−


−


−

 −
 −
 −
 −
 −

−

−

−

−

−

−=
−

−

−

−

−

−

−

− − − − − − − − − − − −

− − − − − − − − − − − −
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Clearly such a design implies that each object is weighted m = 18 times in n = 32 weighing operations and 
( ) 2ˆ 18Var w σ=  for each j = 1, 2, 3, 4. 

Corollary 3.7. If the SBIB design exists with parameters (ν , k, λ ); then the design matrix X so formed in (8) 
is optimum chemical balance weighing design iff 2 5k< <  and 2s ≤ . 

Remark: In SBIB design with parameters (ν , k, λ ); if k = 0 then the design matrix given in (8) is perfectly 
optimum and s = 0 in this case. 

Corollary 3.8. If in the design 1D∗∗ ; −1 is replaced by zero then the new design 1D∗∗∗  so formed is a BIB  

design with parameters V ν= , 2
2

B
ν 

=  
 

, ( )( )1 2R r k k= − − , 2K k= − , 
2

2
2

k
λ

− 
Λ =  

 
. Then the struc- 

ture 

-times
1

1

s

N N N N∗∗
∗∗∗

 
 =
  



                                  (12) 

form a pairwise VB and EB design 1D∗∗  with parameters 
1 Vν ∗∗ = , 1b B sb∗∗ = + , 1r R sr∗∗ = + , 1

1k k λ∗∗ = − , 1
2k k∗∗ = , 1 sλ λ∗∗ = Λ + , 

( )1 1 sk
k
λ

ψ ν λ∗∗  = − − +  
 and 

( )1
11 1 sk

kr
ν λ

µ λ∗∗
∗∗
 = − − − +  

. 

4. Construction of Design Matrix: Method II 
Consider a SBIB design D with the parameters (ν , k, λ ); each pair of treatments occurs together in λ  blocks. 
Take any pair of treatments, say, (θ , φ ) from this design. Then make three blocks from the design which 
contains the pair (θ , φ ).  

1. Give the negative sign to the treatment θ  and eliminate the treatment φ  while the other (k−2) remaining 
treatments of the same block remain as it is. 

2. Give the negative sign to the treatment φ  and eliminate the treatment θ  while the other (k−2) remaining 
treatments of the same block remain as it is. 

3. Give the negative sign to both the treatments θ  and φ  while the other remaining treatments of the same 
block remain as it is. 

The matrix 1N  of design 1D  is obtained. Now doing the same procedure for all possible 
2
ν 
 
 

 pairs of 

treatments, we obtain matrix iN ; 1, 2, ,
2

i
ν 

=  
 

 . Then the incidence matrix 2N∗∗  of the new design 2D∗∗  so  

formed is the matrix having the elements 1, −1 and 0; given as follows juxtaposition: 

2 1 2
2

N N N N ν∗∗  
 
 

 
 =
  

                              (13) 

Then combining the incidence matrix N of SBIB design repeated s-times with 2N∗∗  we get the matrix X of a 
chemical balance weighing design as: 

-times

2

s

X N N N∗∗

′ 
 =
  



                                    (14) 

Under the present construction scheme, we have 3
2

n sb
ν

λ
 

= + 
 

 and p ν= . Thus the each column of X  



R. Awad, S. Banerjee 
 

 
44 

will contain ( )( ){ }1 3 1 2 2r k k srδ  = − − +   elements equal to 1, ( )2 2 1r kδ = −  elements equal to −1 and 
1 2n δ δ− −  elements equal to zero. Clearly such a design implies that each object is weighted  

( )1 2 3 2
2
r

m k srδ δ
  

= + = − +  
  

 times in 3
2

n sb
ν

λ
 

= + 
 

 weighing operations. 

Lemma 4.9. A design given by X of the form (14) is non singular if and only if  

( ) ( )23 10 3 23 36
2 2
r

k sr k k sλ λ
    − + ≠ − + +       

. 

Proof. For the design matrix X given by (14), we have 

( )( ) ( ) ( )

( ) ( ) ( )

2 2

2 2

1 3 10
3 23 36 3 23 36

2 2 2

3 10 3 23 36 3 23 36
2 2 2

r k k
X X sr k k s I k k s J

r
k sr k k s I k k s J

ν νν

ν νν

λ λλ λ

λ λλ λ

 − −     ′ = + − − + + + − + +            

        = − + − − + + + − + +               

      (15) 

and 

( ) ( ) ( )

( ) ( )

2

1

2

3 10 1 3 23 36
2 2

3 10 3 23 36
2 2

r
X X k sr k k s

r
k sr k k s

ν

λν λ

λ λ
−

      ′ = − + + − − + +     
      

      × − + − − + +     
      

               (16) 

the determinant (16) is equal to zero if and only if  

( ) ( )23 10 3 23 36
2 2
r

k sr k k sλ
λ

 
− + = − + + 

 
 

or ( ) ( ) ( )23 10 1 3 23 36
2 2
r

k sr k k sλ
ν λ

 
− + = − − + + 

 
 

but ( ) ( ) ( )23 10 1 3 23 36
2 2
r

k sr k k sλν λ
    − + + − − + +   

   
 is positive and then ( ) 0det X X′ =  if and only if 

( ) ( )23 10 3 23 36
2 2
r

k sr k k sλ
λ

 
− + = − + + 

 
. So the lemma is proved. 

Theorem 4.10. The non-singular chemical balance weighing design with matrix X given by (14) is optimal if 
and only if  

( )23 23 36 0.
2

k k sλ
λ− + + =                               (17) 

Proof. From the conditions (5) and (15) it follows that a chemical balance weighing design is optimal if and 
only if the condition (17) holds. Hence the theorem. 

If the chemical balance weighing design given by matrix X of the form (14) is optimal then  

( )
( )

2

ˆ ; 1, 2, ,
3 2

2

jVar w j p
r

k sr

σ
= =
   − +  
   

  

Example 4.11. Consider a SBIB design with parameters 4bν = = , 3r k= = , 2λ = ; whose blocks are 
given by (1,2,3), (1,2,4), (1,3,4), (2,3,4).  
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Theorem 4.10 yields a design matrix X of optimum chemical balance weighing design as 

X = 

1 0 1 0
0 1 1 0
1 1 1 0
1 0 0 1

0 1 0 1
1 1 0 1
1 1 0 0

0 1 1 0
1 1 1 0
1 0 0 1

0 0 1 1
1 0 1 1
1 1 0 0

0 1 0 1
1 1 0 1
1 0 1 0

0 0 1 1
1 0 1 1

1 1 0 0
1 0 1 0
1 1 1 0
0 1 0 1
0 0 1 1
0 1 1 1
1 1 0 0
1 0 0 1
1 1 0 1
0 1 1 0
0 0 1 1
0 1 1 1
1 0 1 0

−
 −
 − −
−

−
 − −
 −

−
 − −
 −
 −
− −

 −
 −
 − −
−

 −
 − −

−
−

 − −
 −

−
− −

 −
 −

− −
−

−
− −

−
1 0 0 1
1 0 1 1
0 1 1 0
0 1 0 1
0 1 1 1

0 1 1 1
1 0 1 1
1 1 0 1
1 1 1 0

0 1 1 1
1 0 1 1
1 1 0 1
1 1 1 0

0 1 1 1
1 0 1 1
1 1 0 1
1 1 1 0




































 
 
 
 
 

− 
 − −
 − 

− 
− − 

 − − − − − − − −
 
 
 
 
 
 − − − − − − − − 
 
 
 
 
 
− − − − − − − − 
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Clearly such a design implies that each object is weighted m = 30 times in n = 48 weighing operations and  
( ) 2ˆ 30Var w σ=  for each j = 1, 2, 3, 4. 

Corollary 4.12. If the SBIB design exists with parameters (ν , k, λ ); then the design matrix X of the form (14) 
is optimum chemical balance weighing design iff 5k ≤  and 4s ≤ . 

Corollary 4.13. If in the design 2D∗∗ ; −1 is replaced by zero then the new design 2D∗∗∗  so formed is a BIB  

design with parameters V ν= , 3
2

B
ν 

=  
 

, ( )( )3 1 2 2R r k k= − −   , 2K k= − , 
2

3
2

k
λ

− 
Λ =  

 
. Then the 

structure 
-times

2
2

s

N N N N∗∗
∗∗∗

 
 =
  



                               (18) 

form a pairwise VB and EB design 2D∗∗  with parameters 
2ν ν∗∗ = , 2b B sb∗∗ = + , 2r R sr∗∗ = + , 2

1 2k k∗∗ = − , 2
2k k∗∗ = , 2 sλ λ∗∗ = Λ + , 

( )2 3 3
2

k s
k

ψ νλ∗∗ − 
= + 

 
 and 

( )2
2

3 3
1

2
k s

kr
νλµ∗∗
∗∗

− 
= − + 

 
. 

5. Result and Discussion 
The following Table 1 and Table 2 provide the list of pairwise variance and efficiency balanced block designs 
for Methods I and II respectively, which can be obtained by using certain known SBIB designs. 
 
Table 1. For Method I.                                                                                      

S. No. 1ν ∗∗  1b∗∗  1r∗∗  1
1k ∗∗  1

2k ∗∗  1λ∗∗  1ψ ∗∗  1µ∗∗  Reference  
No.** 

1 5 70 32 2 4 12 22.5 0.2968 R (4) 

2 7 98 32 2 4 8 21 0.3437 R (11) 

3 13 182 32 2 4 4 19.5 0.3906 R (37), MH (3) 

 
Table 2. For Method II.                                                                                       

S. No. 2ν ∗∗  2b∗∗  2r∗∗  2
1k ∗∗  2

2k ∗∗  2λ∗∗  2ψ ∗∗  2µ∗∗  Reference  
No.** 

1 5 110 32 2 4 12 22.5 0.2968 R (4) 

2 7 84 12 1 3 2 4.667 0.6111 R (10), MH (1) 

3 7 154 32 2 4 8 21 0.3437 R (11) 

4 13 286 32 2 4 4 19.5 0.3906 R (37), MH (3) 
**The symbols R(α) and MH(α) denote the reference number α in Raghavrao [30] and Marshal Halls [31] list. 

6. Conclusion 
In this research, we have significantly shown that the obtained designs are pairwise balanced as well as effi- 
ciency balanced. The only limitation of this research is that the obtained pairwise balanced designs are all have 
large number of replications. 
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