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Abstract 
This paper is devoted to the connection between the probability distributions which produce so-
lutions of the one-dimensional, time-independent Schrödinger Equation and the Risk Measures’ 
Theory. We deduce that the Pareto, the Generalized Pareto Distributions and in general the dis-
tributions whose support is a pure subset of the positive real numbers, are adequate for the defi-
nition of the so-called Quantum Risk Measures. Thanks both to the finite values of them and the 
relation of these distributions to the Extreme Value Theory, these new Risk Measures may be use-
ful in cases where a discrimination of types of insurance contracts and the volume of contracts has 
to be known. In the case of use of the Quantum Theory, the mass of the quantum particle repre- 
sents either the volume of trading in a financial asset, or the number of insurance contracts of a 
certain type. 
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1. Introduction 
As it is mentioned in [1], the cause for the use of the use of quantum theory in risk models and finance is their 
complexity, in the sense that the return of an asset or the value of it depends on several factors. At this point we 
may quote that though there exists a broad literature in finance which relies on the notions of quantum 
mechanics, there is a lack of literature which connects quantum mechanics’ modelling and risk theory. A semi- 
nal reference in quantum finacnce is the paper under the same title [2], which refers to the basics of this subject. 
Another essential reference is [3], which is more related to asset pricing. The other book [4] by the same author 
is related to interest rates and bond pricing. We write this paper in order to contribute in the research on the 
relation between quantum finance and risk theory where there is not so much literature. A central role in the 
theory of risk models recently belongs to the risk measures. Since the main objective of this paper is the risk 
measures on Hamiltonian operators, it is useful to remind some essential notions from quantum theory, which 
are useful in the sequel (see [5]).   
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Definition 1.1. An operator A on a Hilbert space   is called symmetric if for any ( ), D Aφ ψ ∈ , where 
:A →  , the relation  

, ,A Aψ φ ψ φ=  

holds.  
Definition 1.2. An operator :A →   is self-adjoint, if *A A= .  
Definition 1.3. A Weyl sequence for the operator A and the eigenvalue λ  is a { }n n

ψ
∈

⊂  , such that  

1nψ = , ( )lim 1 0, 0w
n n nA λ ψ ψ− = → .   

Definition 1.4. The continuous spectrum of an operator A is the set of the eigenvalues λ  of A, where 
:A →  , such that there exists a Weyl sequence for A and λ . The set of these eigencalues is denoted by 
( )c Aσ .   

Definition 1.5. The point spectrum of an operator A, where :A →  , is the set of isolated eigenvalues of 
A having finite multiplicity. It is denoted by ( )p Aσ .   

Definition 1.6. (Weyl’s Theorem) If *A A= , for the spectrum ( )Aσ  of A, the following relation holds:  

( ) ( ) ( ).p cA A Aσ σ σ=   

In the case of the one-dimensional quantum models ( )2L=   and the Hamiltonian operator  
( )H V x= − + ∆ , where ∆  denotes the Laplacian, while moreover for the potential ( )V x  is a continuous 

function, such that ( ) 0,V x x→ →∞ , then H is self-adjoint and ( ) [ )0,c Hσ = ∞ . Hence, since the Hamil- 
tonian has surely positive eigenvalues, the question is whether according to the form of the distribution which 
arises from ( )xψ , the infimum of the continuous spectrum is greater than zero ( ( )xψ  denotes the time- 
independent wave-function). The fact that Hamiltonian is self-adjoint implies that  

( ) 2
d 1,x xψ =∫  

for any wave function ( )xψ  which is a solution of the time-idependent Schrödinger Equation. The paper is 
organized as follows. In the next section, we mention the relation between the main notions of the quantum 
mechanics and the risk theory and finance as well. We emphasize on the role of the wave-functions as probability- 
density producers related to the claim of some insurance contract. We also define the notion of the quantum risk 
measure, related to the time-independent Hamiltonian associated to the specific family of distributions. We 
finally provide the Pareto and the Generalized Pareto as examples of families which verify that such risk 
measures take finite values. 

2. On Quantum Risk Theory 
The elementaries of quantum finance denote that any asset is a quantum particle, whose changes in position x 
correspond to the changes of its value. The changes of its value are decomposed into the kinetic energy of the 
particle, which is the total effort of the investors to change its value. For this reason, the mass m of this particle, 
denotes the total number of investors which are involved into investements to this asset. On the other hand, the 
dynamic energy denotes the changes of the value whose cause is some exogenous factor being a function of the 
position x of the quantum particle. This is the meaning of the function of the potential ( )V x . Hence the 
one-dimensional Schrödinger Equation (S.E.)  

( ) ( ) ( ) ( )
2

,
2

x V x x E x
m
ψ ψ ψ′′− + ⋅ = ⋅



 

of the Hamiltonian’s Spectrum, denotes that the set of the possible Asset Monetary Values is the set of the 
Hamiltonian’s Spectrum (   denotes the Planck Constant). We also remind that  

( ) 2
d 1,x xψ =∫  

which denotes that any wave-function is a squarely-integrable function. By the term wave-function we mean any 
solution of the above time-independent Schrödinger Equation. Every wave-function ( )xψ  corresponds to a 
probability density ( )2 xψ , or a positive multiple of ( )2 xψ . A linear combination of Hamiltonians with 
continuous spectra, corresponds to a portfolio of assets. This portfolio may include the identity operator, which 
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denotes the riskless asset. In classical Quantum Theory, wave-functions of the Continuous Spectrum are not 
squarely integrable, because they probably do not correspond to a real quantum physical phenomenon, while we 
indicated that Hamiltonian Operators do have this property, since the time-independent Hamiltonian is self- 
adjoint. In this paper, we further investigate which is the form of the potential function, under which the S.E. is 
solvable under precific distribution functions provided by the wave-functions. We also notice that in this case, 
the Hamiltonian is self-adjoint and symmetric, since we refer to the time-independent Hamiltonian, or else we 
have that, in terms of brackets   

, , , .j i j iH H i jψ ψ ψ ψ= ≠  

In this paper we prove an essential Theorem on what it may be called Quantum Risk Theory. This Theorem 
refers to any family ( )Θ  of distributions, which is consisted by densities of the form ( ), ,f x θ θ ∈Θ , where 
Θ  is some parametric space. If the support ( ){ }| , 0x f x θ∈ >  of any density of the family ( )Θ  is for  

the form ( )x g θ≥ , and for the function ( ) ( )
1
2, ,x f xψ θ θ= ,  

( ) ( ) ( ), , , ,x a x xψ θ θ ψ θ′′ =  

then: 

1) If 
2

2
b

m
=


, then for any value 0θ θ= ∈Θ , and for the Potentital Function  

( ) ( ) ( )0 0, , , 0,V x b a x gθ θ λ λ λ+= − ⋅ + + ∈ ≠  

the wave-function ( ),E xψ θ  for the eigenvalue ( )0E g θ λ= +  is a solution of the Schrödinger Equation S.E.  
2) The Spectrum of the Hamiltonian ( ) ( )H x b V x= − +  and the values of the support of the density of the 

probability for the position of the quantum particle, if 0θ θ= , coincide.  
3) The associated Coherent Risk Measure ( ) ,supH Hψρ ψ ψ= −  takes a finite value, being equal to the 

minimum value of the support ( )0g θ .  
4) The brackets , ,j i j iH Hψ ψ ψ ψ=  are equal to zero.  

We also give specific Examples of classes ( )Θ , mainy inspired from Extreme Value Theory, since the 
additional capital requirement functionals are more sufficient in these cases. We also present the Pareto Distri- 
butions and the Generalized Pareto Distributions as Examples of applications of the previous Theorem. The 
mass of the quantum particle may be estimated from the volume of the investors to the certain asset, in the 
financial case. Of course, the historical data—which, in the financial case they take a daily form—about this 
volume have to be fitted to some distributions. For this reason, one of the well-known non-parametric tests, like 
Kolmogorov-Smirnov ([6]) or Anderson-Darling ([7]), may be used. In the sequel, random data from the fitted 
distribution may be produced and the Monte-Carlo estimator of the mean volume of investors has to be 
compared to the historical estimation of the mean volume. This model may be also interpreted as a model of 
insurance, especially in cases where there is not any other well-known mathematical model for the premium 
calculation, for example in naval insurance. This interpretation is actually a more adequate motivation, since we 
refer to heavy-tail distribution families like the Pareto and the Genaralized Pareto. In this case the mass of the 
quantum particle may denote the volume of the insurance contracts of a certain type adopted by the insurance 
company. In order to be accurate, for a specific value of the parameter 0θ , the wave functions except ( )0,xψ θ  
are not of special importance. We formally deduce orthogonality under different eigenvalues in order to fit the 
frame of Quantum Theory. The important is that Quantum Theory provides a way to calculate finite insurance 
premia for the associate risk measures ( )Hρ  in the cases where the supports are represented in the way 

( )0x g θ> . For a reference to the Mathematical Formulation of Quantum Theory, we refer to [5]. For a finite- 
dimensional model of quantum mechanics in finance, see [1]. An interesting point is that in ([8], Ch. 2), the 
power-law tails, which denote the Pareto distributions are mentioned, but without the whole analysis we made 
here. 

3. Static Quantum Risk Measures 
Under the above frame, for a Hamiltonian H associated with a continuous spectrum, or else the set of the 
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eigenvalues of H contain an open set of  , we take the following Quantum Risk Measure, associated to the 
Hamiltonian H:  

( ) ( ) ( ){ }: sup sup sup | ,H H E E E S Hψ
ψ ψ

ρ ψ ψ= − = − ⋅ ⋅ = − ∈  

where ( )S H  denotes the spectrum of the Hamiltonian H, if ψ  denotes some normalized wave-function. 
The above theorem is essential:   
Theorem 3.1. If S(H) contains an open set of R, then the quantum risk measure ( ){ }: sup |H t t S Hρ − − ∈  

is coherent.   
We remind that the Hermitian identity operator  , being defined on the real line, has the following property: 
( )S =  . This operator stands for the riskless asset. 
Proof. We verify the four properties of coherence. 
1) ( ) ( )H a H aρ ρ+ = − , because since ( ) ( ){ }sup |H a S H aρ λ λ+ = − ∈ +  , but  

( ){ } ( )sup |E a E S H H aρ− − ∈ = − , hence Translation Invariane holds.  

2) Two assets coincide with two Hamiltonians 1 2,H H , which by assumption do have continuous spectra on 
 . Subadditivity ( ) ( ) ( )1 2 1 1H H H Hρ ρ ρ+ ≤ +  arises from ( ) ( ) ( )1 2 1 2S H H S H S H+ ⊆ + .  

3) The Positive Homogeneity arises from the fact that for any specific λ +∈ ,  
( ) ( ){ } ( ){ } ( )sup | sup |H t t S H u u S H Hρ λ λ λ λρ⋅ = − ∈ ⋅ = − ⋅ ∈ = .  

4) Finally, the Monotonicity arises from the fact that if for two Hamiltonians 1 2,H H  the property 1 2t t≤   
holds for any ( ) ( )1 1 2 2,t S H t S H∈ ∈ , then ( ) ( ){ } ( ) ( ){ }2 2 2 2 1 1 1 1sup | sup |H t t S H H t t S Hρ ρ= − ∈ ≥ = − ∈ .  □ 

4. The Essential Theorem 
Theorem 4.1. Consider a family ( )Θ  of distributions, which is consisted by densities of the form 
( ), ,f x θ θ ∈Θ , where Θ  is some parametric space. If the support ( ){ }| , 0x f x θ∈ >  of any density of the  

family ( )Θ  is for the form ( )x g θ≥ , and for the function ( ) ( )
1
2, ,x f xψ θ θ= ,  

( ) ( ) ( ), , , ,x a x xψ θ θ ψ θ′′ =  
then: 

1) If 
2

2
b

m
=


, then for any value 0θ θ= ∈Θ , and for the Potential Function  

( ) ( ) ( )0 0, , , 0,V x b a x gθ θ λ λ λ+= − ⋅ + + ∈ ≠  

the wave-function ( ) ( )0 0, ,E x xψ θ ψ θ=  for the eigenvalue ( )0E g θ λ= +  is a solution of the Schrödinger 
Equation S.E., where the Potential Function for ( )0x g θ≤  is equal to zero.  

2) The Spectrum of the Hamiltonian ( ) ( )H x b V x= − +  and the values of the support of the density of the 
probability for the position of the quantum particle, if 0θ θ= , coincide.  

3) The associated Coherent Risk Measure ( ) ,supH Hψρ ψ ψ= −  takes a finite value, being equal to the 
minimum value of the support ( )0g θ .  

4) The brackets , ,i j i jψ ψ ≠  are equal to zero (the ,i j  denote different eigenvalues ,i jE E  of the 
Hamiltonian).   

Proof. 1) For the function ( )0,E xψ θ , since ( ) ( ) ( )0 0 0, , ,x a x xψ θ θ ψ θ′′ = , ( ) ( )0 0, ,E EH x E xψ θ ψ θ= .  

2) ( ) ( ){ }0 , 0S H g θ λ λ= + >  in this case, which is actually the support of ( )0,f x θ .  

3) ( )Hρ  = sup{{ , |Hψ ψ ψ−  is a normalized eigenfunction of H} = -inf{E|E is an eigenvalue of H}.  
4) , , , , , , .i i j i i j i j i j i j j j i jE E H H E Eψ ψ ψ ψ ψ ψ ψ ψ ψ ψ ψ ψ= = = = =  

Hence, if i jE E≠ , , 0i jψ ψ = .                                                            □ 

Examples 
Example 4.2. The Pareto Family of Distributions  
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( ) 1, , , .
a
m

m ma

axf x a x x x
x += ≥  

( ){ }2, | 0, 0m ma x a xθΘ = = ∈ > > . The support of the density ( ), , mf x a x  is of the form ( ), m mx g a x x≥ = .  

Also if 0,mx x≥ , if we pose 0
0 0 0,

a
mt a x= , 

0,x θψ  for a specific value of the parameter ( )0 0 0,, ma xθ = . In this case  

( ) ( )( )
0.5
0

0 0 0 2

1, 1 3 .
4

ta x a a
x

θ = + + ⋅  

Example 4.3. The Generalized Pareto Family of Distributions  

( )
1
11, , , 1 , .xf x x

ξξ µ
ξ µ σ µ

σ σ

−
+− = + ≥ ⋅ 

 

( ){ }3, , | 0, 0, 0ξ µ σ ξ µ σΘ = ∈ > > > . We take the case where support of the density ( ), , ,f x ξ µ σ  is of  

the form ( ), ,x g ξ µ σ µ≥ = . If 0x µ≥ , then  

( ) ( )
2

2 0
0 0 0 02

00

1 3, 1 1 .
22

xa x µ
θ ξ ξ ξ ξ

σσ

−
 − = + + + ⋅  

  
 

5. Conclusion 
The conclusion of the paper is that the notion of risk measure may be extended in a quantum finance framework, 
as far as it may be applied on a time-independent Hamiltonian operator and specifically on its continuous spec- 
trum. The value of such a risk measure is finite and in the case of Pareto and Generalized Pareto distributions is 
negative. This risk model may be applied either in the case of reinsurance pricing, or in the case where no other 
known model is developed like naval insurance contracts. 
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