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Abstract 
 
Let X denote a discrete distribution as Poisson, binomial or negative binomial variable. The score confidence 
interval for the mean of X is obtained based on inverting the hypothesis test and the central limit theorem is 
discussed and recommended widely. But it has sharp downward spikes for small means. This paper proposes 
to move the score interval left a little (about 0.04 unit), called by moved score confidence interval. Numeri-
cal computation and Edgeworth expansion show that the moved score interval is analogous to the score in-
terval completely and behaves better for moderate means; for small means the moved interval raises the in-
fimum of the coverage probability and improves the sharp spikes significantly. Especially, it has unified ex-
plicit formulations to compute easily. 
 
Keywords: Confidence Interval, Confidence Level, Coverage Probability, Discrete Distribution, Moved 

Score Confidence Interval 

1. Introduction 
 
Forming a confidence interval (CI) for the mean of a 
discrete distribution is one of the most basic problems in 
statistics, since the discrete lattice nature and skewness 
make the problem complicated. Let X be a discrete vari-
able with the mean E(X) = μ and the variance Var(X) = 
aμ + bμ2. For X～π (λ) Poisson distribution with mean λ, 
a = 1, b = 0; for X～B(n, p) binomial distribution with 
mean np, a = 1, b = –1/n; for X～NB(r,p) negative bino-
mial distribution, mean rp/q, a = 1, b = 1/r. Where q = 1 
– p. 

It is well known that the normal distribution N(μ, aμ + 
bμ2) could be regarded as an approximation to X for large 
sample by the central limit theorem. Let  

 1 22X a b    z , where  1 1 2z     is 

the 100 1 2  th percentile of the standard normal 
distribution. We have the score confidence interval for 
the mean μ as follows 
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The score interval is an approximate interval and has 
many better properties for moderate mean μ. Those arti-
cles concern approximate confidence interval almost 
refer to the score interval. See references in this paper. 

The exact confidence interval for the mean and the 
confidence level 1 – α is obtained by solving equations 

  1P X x L x a    and   2a , P X x U x  
where α + α = α. 1 2 

In this paper, the exact confidence interval indicates 
the shortest length interval with less coverage probability 
not less than the nominal level (see [1]). Obviously, the 
exact interval has not explicit formulation and its com-
putation will be troublesome if one does not use a com-
puter. In general, an approximate interval cannot guar-
antee its coverage probabilities all not less than the 
nominal level, but its formula is simple and easily com-
puted [2-5]. 

This paper discusses a moved score interval CI(c) for 
the means of Poisson, binomial and negative binomial 
variables. CI(c) with its coverage probability is intro-
duced in section 2. From section 3 to section 4, CI(c) for 
the means of Poisson, binomial, negative binomial vari-
ables are discussed respectively. In section 5, Edgeworth 
expansion on coverage probabilities of CI(c) are investi-
gated and compared. Conclusion and recommendation 
appears in the last section. 
 
2. Moved Score Confidence Interval 
 
Let X be a variable with the mean μ and the variance 
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aμ + bμ2. A moved score confidence interval for the 
mean μ is defined as 
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Obviously, CI(c) is equivalent to moving CI(1/2) = 
CIS left 1/2 – c units. 

Theorem 1 The coverage probability of CI(c) can be 
computed as 

  
 

 
 

2 2

2

2 2
2

2 2 2
2 22

1
1 2

2

1

1 1
1 2 2 4

1 1 2

bcz c az
P CI c P X

bz

c c bzbcz z
a b a z

bz bcz




 

           



               

  


 

Proof Let 

 2 1 24 1 2 2X acz z X z bcz        
. By some 

trivial deduction, the formula is obtained easily. 
Following theorem is the specific case of theorem 1. 
Theorem 2 1) If X～π (λ), the moved score interval on 

the mean is defined as 

  2 1
π 4CI c X cz z X z    2  

and its coverage probability is equal to 
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2) If X～B(n, p), the moved score interval on the mean 
is defined as 
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and its coverage probability is equal to 
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3) If X～NB(r,p), the moved score interval on the 

Mean is defined as 
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and its coverage probability is equal to 
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3. Moved Score Interval for the Mean of a 

Poisson Variable 
 
Let X～π (λ),  1 22 22L k z z k z     4 . Set k = 1, 2, 
3, 1 – α = 0.95 and z = 1.95996, we have λL = 0.17652, 
0.54847, 1.02027 respectively. If λ take values less than 
λL a little as λ = 0.1765, 0.5484, 1.0202, small coverage 
probabilities arise. 

    π0.1765 1 2 0 0.1765 0.8382P CI P X      . 
0.8382 is less than the nominal level 0.95 markedly. In 
the same way,   π0.5484 1 2 0.8948P CI  , 

  π1.0202 1 2 0.9159P CI  . 
Let the mean λ be small near 0, its lower bound of 

confidence interval should be 0. That is to say, two-sided 
confidence interval is exactly one-sided interval for the 
small means. Denote λα

*
 as the upper bound on the mean 

that two-sided confidence interval can be replaced by 
one-sided interval, and it could be estimated approxi-
mately by P{X ≥ 1 |λα

*} = α. 
Set 
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where λα,k is be the real number satisfying P{X ≥ k | λ = 
λα,k } =1 – α; k = 1,2, ··· ,Kα; Kα is the largest integer such 
that λα,k ≤ λα

*. 
Figure 1 shows that most of coverage probabilities of 

CIπ(0.45) and CIπ(0.44) are not less than the level for λ ≤ 
λα

*. But they seem to be conservative. Numerical com-
putation shows c = 0.46 is almost the best choice on 
Poisson, binomial and negative binomial variables for 
general levels 0.90, 0.95, 0.99. In the latter part of this 
paper would mainly demonstrate advantages of CI(0.46) 
(see Figure 2). 

An important criterion to judge a confidence interval  
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Figure 1. For 1 – α = 0.80,0.81,···,0.99 and 1 – α = 0.991, 
00.992,···,0.999, the left panel figures λα

* such that P{X ≥ 1 
|λα

*} = α/2, and the right panel figures the maximum 
Maxk{cα,k}, the average Mean k{cα,k}, and the minimum Min 

k{cα,k} for k ≤ Kα from top to bottom curve. 
 

 
λ                 λ                  λ 

Figure 2. Coverage probabilities of the moved intervals 
CIπ(0.45) (left panels), CIπ(0.46) (middle panels) and exact 
interval (right panels) for λ ∈ [0.01,30] on π (λ) with the 
levels 0.8, 0.90, 0.95, 0.99, 0.999 (from the top to the bottom 
panels). 
 
is the confidence coefficient, i.e. the infimum of the cov-
erage probability (ICP) of the interval [4]. If ICP < 1 – α, 
the larger is ICP the better is the interval. 

Figure 2 and Table 1 show that CIπ(0.46) and CIπ 

(0.45) greatly increase ICP and evidently improve the 
spike characteristic of CIπ(0.5) for small λ. Of course, 
CIπ(0.46) is more excellent than CIπ(0.45). 

Table 2 from [5] lists other eight approximate inter-
vals as the First Normal, with Correction, Bartlett, Mole-  

Table 1. The confidence coefficients of CIπ(0.5), CIπ(0.46), 
CIπ(0.45) on Poisson variable. 

1 – α 0.85 0.90 0.95 0.99 0.995 

CIπ(0.5) 0.7695 0.8001 0.8382 0.8896 0.9030 

CIπ(0.46) 0.7976 0.8670 0.9344 0.9853 0.9910 

CIπ(0.45) 0.7982 0.8558 0.9357 0.9877 0.9936 

 
Table 2. The confidence coefficients of some other ap-
proximate confidence intervals on Poisson variable when 1 
– α = 0.95. 

Method ICP Method ICP 

First Normal 0.0769 with Correction 0.8798

Bartlett 0.6251 Molenaar 0.8458

Freeman and Tukey 0.9155 Anscombe 0.9101

midP 0.9165 Hald 0.5630

 
naar, Freeman and Tukey, Anscombe, midP, Hald interval, 
their ICP are equal to 0.0769, 0.8798, 0.6251, 0.8458, 
0.9155, 0.9101, 0.9165, 0.5630 respectively. They are all 
worse than the moved score interval CIπ(0.46). 

For confidence levels 1 – α, Table 3 lists ratios of the 
confidence probabilities located in intervals  1 5a a   
on CIπ(0.5), CIπ(0.46), CIπ(0.45) and the exact interval 
for λ = 0.001t (= 1,2, ··· , 30000). When 1 – α = 0.85, 
0.90, 0.95, 0.99, 0.995, intervals  1 a a  5  = [0.82, 
0.88], [0.88, 0.92], [0.94, 0.96], [0.988, 0.992], [0.994, 
0.996] respectively. The larger is the ratio, the more is 
there coverage probabilities close to the level. Table 3 
shows that errors between coverage probabilities and 
levels on the score interval and moved score intervals  
are analogous to the exact interval, although they do not 
gurantee all coverage probabilities are not less than lev-
els as the later. 
 
4. Moved Score Intervals for the Means of 

Binomial Variable and Negative Binomial 
Variable 

 
Let X～B(n,p ), when p near 0 and 1, π(np) could be as 
an approximation to B(n,p). So we pay attention to 
CIB(0.45) and CIB(0.46) also. Agresti and Coull [6], 
Agresti and Caffo [1] suggested the score interval and 
the Agresti-Coull interval; Brown et al. [3,7,8] recom-
mended the Agresti-Coull interval, the modified Wilson 
(score) interval, modified Jeffreys interval and the like-
lihood ratio interval; Vollset [9] also recommended score 
methods for its easily computation; Zhou et al. [10] rec-
ommended the score interval if there is no available in-
formation about p. We believe that the score method is 
the uppermost approximation on interval estimation of a 
binomial proportion. 

Copyright © 2011 SciRes.                                                                                  OJS 
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Table 3. Ratios of confidence probabilities of CIπ(0.5), 
CIπ(0.46), CIπ(0.45) and the exact interval on Poisson vari-
able. 

1 – α 0.85 0.90 0.95 0.99 0.995 

CIπ(0.5) 0.8402 0.8498 0.7838 0.7094 0.5915 

CIπ(0.46) 0.8336 0.8205 0.7609 0.6589 0.6440 

CIπ(0.45) 0.8316 0.8136 0.7525 0.6290 0.5937 

CIExact 0.8765 0.8018 0.8239 0.6821 0.5570 

 
Figure 3 shows that intervals CIB(0.46) and CIB(0.45) 

improves the spikes of CIB(0.5) obviously. For small p 
the Agresti-Coull interval behaves too conservative. The 
Jeffreys interval is a better interval for moderate p, but it 
has sharp spikes for small p also. Brown et al. [3] sug-
gested revising two specific limits when X = 0, 1, n – 1, 
or n. Besides, they used one-sided Poisson approxima-
tion to binomial distribution to modify CIS with X = 1,2 
for n < 50 and X = 3 for n ≥ 50. Numerical computation 
shows the modified score interval and the modified Jef-
freys interval are comparable with moved score intervals 
CIB(0.46), but the latter method and formula are more 
simple than the formers. Zhou et al. [10] proposed ZL 
interval based on logit transformation, but its coverage 
probabilities are greater than the nominal level when p is 
close to 0 or 1. 

Let X～NB(r,p), when p near 0 and r large, π (rp/q) 
could be as an approximation to NB(r, p). By numerical 
computation, we believe CINB(0.45) and CINB(0.46) im-
prove the spikes of CINB(0.5) obviously also. There is  

 

 
p              p                p 

Figure 3 Coverage probabilities of the exact interval (the 
first row panel), the score interval CIB(0.5) (the second row 
panel), the moved intervals CIB(0.46) (the third row panel) 
and CIB(0.45) (the forth row panel),the Agresti-Coull in-
terval CIAC (the fifth row panel) and the Jeffreys interval 
CIJ (the bottom panel) for B(50, p) with p = 0.001, 
0.002,···,0.500 for levels 0.90, 0.95, 0.99 (from the left to the 
right panels). 

fewer people interesting confidence interval on negative 
binomial variable than binomial variable markedly. 
 
5. Edgeworth Expansion 
 
Brown et al. [3,7,8] suggested utilizing Edgeworth ex-
pansion to theoretically analyze the coverage probability 
of a confidence interval. In general, the intervals for 
Poisson, binomial and negative binomial variable based 
on the same method almost have the same Edgeworth 
expansion (see [8]). So, we only discuss Edgeworth ex-
pansion of the moved interval on binomial variable in 
this section. 
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, By lemma 1 in [3], we obtain 

Theorem 3 Suppose np z npq  is not an integer. 
Then the coverage probability of CIB(c) satisfies 
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WS is the coefficient of O(n–1) nonoscillating term of 
the score interval CIB(0.5). 
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Remark 1. In theorem 3, the first O(n–1) term is 
nonoscillating and would produce systematic bias with-
out it. So it is a key term. We called its coefficient by 
coefficient of O(n–1) nonoscillating term. Meanings of 
other terms in theorem 3 are explained in detail in [3,8]. 

By theorem 3, the coefficient of O(n–1) nonoscillating 
term of CI(c) is  

     2 56 1 1 2 1 2

12MS

c c p z
W c W

pq
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 S  

Coefficients of O(n–1) nonoscillating terms of the 
Agresti-Coull interval, the Jeffreys interval and the like-
lihood ratio interval list as follows (from [8]): 
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It is easily validated that  
WAC ≥ WMS(0.46) ≥ WS ≥ WJ ≥ WLR. 
See Figure 4. For moderate p, the coefficient of 

CIB(0.5) is the most close to 0. This ensures the score 
interval behaves well for moderate p. The moved intrval 
CIB(0.46) is more conservative than CIB(0.5) a little. The 
CIAC is too conservative obviously. Coefficients of CIJ 
and CILR are not larger than –z/3 and –z/2, and too small. 
Let n = 200, by computation, ratios of coverage prob-
abilities of CIJ  not larger than levels 0.90, 0.95 and 0.99 
are about 53%, 51% and 54% respectively. In the 
meanwhile, ratios of CIB(0.46) and CIAC are about 48%, 
43%, 40% and 42%, 34%, 28% respectively. Thus, the 
Jeffreys interval is more stingy than CIB(0.46). 

 

 

Figure 4. Coefficients of O(n–1) nonoscillating terms of the 
coverage probabilities of CIAC, CIB(0.46), CIB(0.5), CIJ  and 
CILR (from the top to the bottom curve) with levels 1 – α = 
0.80, 0.90, 0.95, 0.99. 

Brown et al. [5] showed the ranking expected length 
of the intervals is CILR, CIJ and CIB(0.5) from the shortest 
to the longest, provided z > 0.86. Of course their differ-
ences are less. On the other hand, the length of interval 
CIB(0.46) is equal to the score interval for moderate p. 
Therefore, the expected length of CIB(0.46) is larger than 
CILR and CIJ a little for z > 0.86. 

 
6. Conclusions and Recommendation 

 
The score interval is concerned all the time by many 
statisticians for simple formula and good natures. But it 
has sharp downward spikes for the small mean, since 
discreteness and skewness cause this problem. Moving 
the score interval left a little could improve it, though 
spike phenomena could not be overcome completely. 

We recommend the moved score intervals CIπ(0.46), 
CIB(0.46) and CINB(0.46) respectively for the means of 
Poisson variable, binomial variable and negative bino-
mial variable as follows 
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Especially for small Means CI(0.45) is analogous to 
CI(0.46), but CI(0.45) behaves more conservative than 
CI(0.46). 
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