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Abstract 
This paper investigates the flocking problem in multi-agent system with time-varying delay and a 
virtual leader. Each agent here is subject to nonlinear dynamics. For the system, the correspond-
ing algorithm with time-varying delay is proposed. Under the assumption that the initial network 
is connected, it is proved that the distance between agents is in the desired distance. The theore- 
tical deduction shows that the stable flocking motion is achieved. 
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1. Introduction 
Flocking is a collective behavior of large number of interacting agents with a common group objective. Exam-
ples of these agents include birds, fish, penguins, ants, bees, and crowds. Many scientists from rather diverse 
disciplines, including physics, mathematics, control engineering and biology, have been interested in flocking 
problem [1]-[8]. The first well-known flocking model was proposed by Craig Reynolds [2]. Reynolds started 
with a boid model to build a simulated flock and introduced three rules (i.e., separation, cohesion and alignment 
rules) for flocking. Based on Reynolds’ three rules, flocking problems have been investigated from various 
perspectives [9]-[15]. In [16], an artificial potential function is put forward and three algorithms are introduced. 
It provides a theoretical framework for the designing of flocking algorithms. Multi-agent flocking under topo-
logical interactions is considered, which define a notion of hierarchical structure in the interaction graph that es-
tablish conditions building upon previous work on multi-agent systems with switching communication networks 
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in [17]. Using structurally balanced signed graph theory and a specified potential function, a stable bipartite 
flock formation is achieved for both virtual leader and leaderless situations in [18]. However, there is a common 
assumption that virtual leaders guide the flocking behaviors of the group. In this paper, leader follower flocking 
problem of multi-agent system is considered. 

A flocking problem concerning multiple leaders in which followers use the position of flocking center to keep 
their connections is studied in [19]. In [20], two leader-follower adaptive flocking algorithms are proposed with 
the combination of consensus and attraction/repulsion function respectively to solve the cohesive flocking prob-
lem and the formation flocking problem. Aiming at the group of autonomous agents consisting of multiple lead-
er agents and multiple follower ones, a flocking behavior method with multiple leaders and a global trajectory 
was proposed in [21]. Yu et al., [22] give a distributed leader-follower algorithm considering the group consist-
ing of one leader. In [23], for the circumstance with a virtual leader, the agents would follow the virtual leader 
and achieve the same velocity asymptotically. 

In practice, time delay is inevitable and would damage the stability of system. Jing et al. [23] investigate 
flocking problem of multi-agent systems with time delay and discuss systems with homogeneous and inhomo-
geneous time delay. Yang et al. [24] proposed an adaptive flocking algorithm for multi-agent system with time 
delay. It is proved that the distance between agents can be larger than a constant during the motion evolution by 
using the flocking algorithm. The authors investigate the flocking problem of multi-agent systems led by one ac-
tive virtual leader with a directed topology containing time-varying coupling delays, which based only on the 
three classical assumptions for flocking systems in [25]. Because of these problems, this paper will study the 
flocking problems in the multi-agent system with a virtual leader and time-varying delay. 

The rest of this paper is organized as follows. Some basic preliminaries and flocking algorithms are presented 
in Section 2. Section 3 gives the nonlinear leader-following multi-agent models. Algorithms and main results are 
presented in Section 4. Section 5 concludes the paper and offers suggestions for future work. 

2. Preliminaries  
In this section, some related preliminary knowledge are introduced. For any vector T, the symbolx x  denotes 
its transpose and x  denotes the Euclidean norm. Let { }, ,=     be a weighted undirected graph with the 
set of nodes { }1, 2, , ,N=   and the set of agents .⊆ ×    

Graphs with self-loops will not be considered in this paper. The weight adjacency matrix ( ) ,ij N N
a

×
=  

where ( ]0,1ija ∈  if ( ), ,i j ∈  otherwise, 0.ija =  An edge denoted by the pair ( ),j i  represents a commu- 
nication link from node j to i. A path   from node i to node j is a sequence of edges,  

( ) ( ) ( ){ }1 1 2, , , , , , ,li k k k k j= ⊂   in which all nodes , 1, 2, ,lk l l=   are distinct. An undirected graph is 
called connected if there is a path between each pair of distinct nodes. ( )1 2diag , , , ND d d d=   is the degree 
matrix whose diagonal elements are defined by .i ijj id a

≠
= ∑  The Laplacian matrix of graph   is  

.N N
ij N N

L l D ×

×
 = = − ∈     Then it has following properties [26], 

1) The eigenvalues of L satisfy ( ) ( ) ( )1 20 .NL L Lλ λ λ= ≤ ≤ ≤  If the graph   is connected, there is 

( )
T

2 21
min 0.

nz

z LzL
z

λ
⊥

= >  

2) The Laplacian matrix L is a positive semi-definite matrix that satisfies the following sum-of-squares prop-
erty: 

( )2T

,

1 , .
2

n
ij i j

i j
z Lz a z z z R

∈

= − ∈∑


 

Lemma 1. [4] Suppose that   is an undirected graph of order N, and 1  is a graph generated by adding 
some edges into the graph  . Then ( )( ) ( )( )2 1 2 ,L Lλ λ≥   where ( )L   and ( )1L   are the symmetric 
Laplacian matrices of graphs   and 1 , respectively.  

Lemma 2. For any vectors , ,nx y R∈  the following matrix inequality holds: T T T2 .x y x x y y≤ +   

3. Problems Formulation  
Consider the multi-agent system described by  
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( ) ( )
( ) ( )( ) ( )

,
,

i

i i i

x t v t
v t f v t u t

=
 = +





                                 (1) 

where 1,2, , , ,n n
i ii N x R v R= ∈ ∈  are the position and velocity states of ith agent, respectively.  

( )( ) n
if v t R∈  is the nonlinear dynamic of agent i and n

iu R∈  is the control input. Denote  
( ), , ,ij i jx x x i j= − ∈  as the relative distance between agent i and agent j. 

For the systems with virtual leader available, the dynamics of virtual leader is described as  

( ) ( )
( ) ( )( )

,
,

r r

r r

x t v t
v t f v t

=
 =

 



                                    (2) 

where , ,m m m
r r rq R p R u R∈ ∈ ∈  represent the position, velocity and control input vector of the virtual leader. 

Assumption (A): There exists a positive constant ρ  satisfying  

( ) ( )1 2 1 2 1 2, , .nf z f z z z z z Rρ− ≤ − ∀ ∈                           (3) 

Supposed that all agents have the same sensing radius 0.R >  Then the neighboring set of agent i is denoted 
as ( ) ( ) ( ){ }( ) , , .i i jN t j x t x t R i j= − < ∈  Since the size of agent cannot be ignored usually that a minimum 
allowable distance r (collision distance) is considered in the model. 

Definition 1: Given a constant ( )0, Rε ∈ , ( )t  is called a dynamic undirected graph with a time-varying 
set of links ( ) ( ){ }, ,t i j i j= ∈   such that 

1) Initial links are generated by ( ) ( ) ( ){ }0 , 0 ;iji j r x R= < <  
2) If ( ) ( ), 0i j ∉  and ( ) ,ijx t R ε≤ −  then ( ),i j  is a new link to be added ( )t . It is called hysteresis 

effect and γ  is the hysteresis distance, which is crucial in preserving connectivity of the network; 
3) If ( ) ,ijx t R≥  then ( ) ( ),i j t∉ . 
The neighboring set of agent i is divided into four regions, named collision region, separation region, align-

ment region and attraction region, in which 2 1 .R R d d rε> − > > >  If ( )1 2 ,ijd x t d< <  agents i and j are in 
desired distance. 

Definition 2. ( )φ ⋅  is a bounded function with respect to ( ),z r R∈  between agents i and j, which satisfies 
1) ( ) 0zφ <  when ( )1, ;z r d∈  
2) ( ) 0zφ >  when ( )2 , ;z d R∈  
3) ( ) 0zφ =  otherwise. 
Definition 3. The pairwise bounded potential function ( ) ( ) ( ): 0, 0,zψ ∞ → ∞  can be defined.  

( )
( ) ( )

[ ]
( ) ( )

1

2

1

1 2

2

d , 0, ,

0, , ,

d , , ,

z

d

z

d

s s z d

z z d d

s s z d

φ

ψ

φ

 ∈

= ∈


∈ ∞

∫

∫

                             (4) 

which satisfies 
1) ( )zψ  decreases with the increase of z when ( )10,z d∈ . 
2) ( )zψ  is increasing on ( )2 ,d ∞ . Obviously, the potential function ( )zψ  reaches its minimum value 0 

when ( )1 2, .z d d∈  
According to conditions, ( )zφ  can be constructed as follows:  

( )
( )

( )
( )

( )
( )

( )

2
1

1

2
2

2

1 1 1

2 2 2

e , , ;

e , , ;

0, otherwise.

ij

ij

x d

b
ij ij

x d
ij b

ij ij

a x d x r d

x
a x d x d R

φ

−

−


 − ∈


= 
− ∈





 

where the parameters 1 1 2 2, , ,a b a b  are positive constants. There are ( ) ( )max max,r Q R Qψ ψ≥ ≥ , and  
( )( ) ( )max 0 01 2 .Q Q N N m Rψ ε= + − − −   
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4. Algorithms and Main Results  
For system (1) with virtual leader (2), the flocking algorithm can be described by  

( )
( )

( ) ( )( ) ( ) ( ) ( )( ) ( ) ( ) ( )( )

( )
( ) ( ) ( )( ) ( )( )( )

1 2

,
i

i

i i j ij i r ir i r
j N t

ij i r j r
j N t

u t x t x t n t c x t x t n t c v t v t

c a v t v t v t t v t t

φ φ

τ τ

∈

∈

= − − − − − −

− − − − + −

∑

∑
          (5) 

where 1 2, ,c c c  are positive constants. Denote ( ) ( ) ( ) ( ) ( ) ( ), ,i i r i i rt x t x t t v t v tξ ζ= − = −  respectively. Then 
the system can be described by  

( ) ( )
( ) ( ) ( ) ( )

,

.
i i

i i r i

t t

t f v f v u t

ξ ζ

ζ

 =


= − +





                               (6) 

The control input (6) can be equivalently rewritten as  

( )
( )

( ) ( )( ) ( )( ) ( ) ( )
( )

( ) ( )( )( )1 2( ) .
i i

i i j ij i ir i ij i j
j N t j N t

u t t t n t c t n t c t c a t t tφ ξ ξ φ ξ ζ ζ ζ τ
∈ ∈

= − − − − − − −∑ ∑     (7) 

Denote ( ) ( )
T TT T T T T T

1 2 1 2, , , , , , , .N Nt tξ ξ ξ ξ ζ ζ ζ ζ   = =      
Definition 4. Flocking motion with a virtual leader is said to be achieved asymptotically for systems (1) and 

(2), if for any initial state, there is ( ) ( )1 2lim ,i jt
d x t x t d

→∞
≤ − ≤  ( ) ( )1 2lim ,i rt

d x t x t d
→∞

≤ − ≤   

( ) ( )lim 0,i rt
v t v t

→∞
− =  1, 2, , .i N∀ =   

To demonstrate the validity of control protocol (7), the following positive semi-definite function is constructed  

( )( ) ( ) ( ) ( ) ( ) ( ) ( )
2

T T
1

1 1 1 1

1 1 1 d d ,
2 2 2

i

i

N N N N t
ij i i i id t t

i j N i i i
Q t t t c s s s s s

ξ

τ
ψ ξ ζ ζ φ ζ ζ

−
= ∈ = = =

= + + +∑∑ ∑ ∑ ∑∫ ∫           (8) 

where ( ) ( ) ( )ij i jt t tξ ξ ξ= − .  
Theorem 1. Consider a multi-agent system modeled by dynamics (1) and (2), driven by control protocol (5). 

Suppose that the network is initially connected and ( ) ( )( )0 : 0 , 0Q Q ξ ζ=  is bounded.When  

( )
2 2

1 12 1
2 21

N Nc c ck c
t

k

ρ λ λ λ
τ

− − + + +
≤ − , then following statements hold, 

1) ( )G t  is connected for all 0t ≥ ; 
2) No collision occurs among agents for all 0t ≥ ; 
3) Flocking motion with a virtual leader is achieved asymptotically.  
Proof: Denote the topology switching time sequence as , .kt k ∈  Without loss of generality, assume 0 0t = . 

Taking the time derivative of the Lyapunov function Q on [ )0 1,t t t∈  gives  

( )
( )

( )( ) ( ) ( ) ( )( ) ( ) ( ) ( )

( ) ( ) ( )( ) ( )( ) ( )( )( )

( ) ( ) ( )( ) ( )( ) ( )( )( )

( ) ( ) ( )
( )

( ) ( )( ) ( ) ( )( ) ( )

( )
( )

( )

T T T
1

1 1 1

T T

1

T T

1

T
1

1

2

1

1

i

i

i

N N N

i ij ij i i ir i i
i j N t i i

N

i i i i
i
N

i i i i
i

N

i i r i j ij i ir
i j N t

i ij i j
j N t

Q t t n t c t t n t t t

t t t t t t t

t t t t t t t

t f v f v t t n t c t n t

c t c a t

ζ φ ξ ζ φ ξ ζ ζ

ζ ζ τ ζ τ ζ τ

ζ ζ τ ζ τ ζ τ

ζ φ ξ ξ φ ξ

ζ ζ ζ

= ∈ = =

=

=

= ∈

∈

= + +

+ − − − −

= − − − − −


+ − − − −



− − −

∑ ∑ ∑ ∑

∑

∑

∑ ∑

∑

 





( )( )( )

( ) ( ) ( )( ) ( )( ) ( )( )( )T T

1
1 .

N

i i i i
i

t t

t t t t t t t

τ

ζ ζ τ ζ τ ζ τ
=


− 



+ − − − −∑ 
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From Lemma 2, there is  

( ) ( ) ( ) ( ) ( ) ( )

( ) ( )( ) ( )( ) ( )( )

2 2 2 2
2 2

2 22

12
2

1 1 .
2

N

N

Q t c t c L t c L t

c L t t t t t

ρ ζ ζ λ ζ λ ζ

λ ζ τ ζ τ ζ τ

≤ − − +

+ − + − − −





 

For a positive constant k, one has ( )( ) ( )
2 2

t t k tζ τ ζ− ≤ , thus  

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )( ) ( )( )

2 2 2 2
2 2

22 2

12
2

1 1 .
2

N

N

Q t c t c L t c L t

ck L t t t t t

ρ ζ ζ λ ζ λ ζ

λ ζ ζ τ ζ τ

≤ − − +

+ + − − −





 

Assume that ( )tτ  satisfy ( )
2 2

1 12 1
2 21

N Nc c ck c
t

k

ρ λ λ λ
τ

− − + + +
≤ − , there is 

[ )0 10, ,Q t t t≤ ∀ ∈ , 

which implies that  

( ) [ )0 0 1< , , .Q t Q t t t≤ ∞ ∀ ∈  

By definition (2), one has ( ) maxR Qψ ≥ . Therefore, no edge distance will be tend to R for [ )0 1,t t t∀ ∈ , 
implying that no existing edges will be lost before time 1t . Hence, new edges must be added into the network at 

1t . For a system consists of N agents, there are at most ( )1 2N N −  edges. At the initial instant 0t , the system 
consists of 0m  edges, then  

( ) ( )( ) ( )0 0 max1 2 .kQ t Q N N m R Qψ ε≤ + − − − =  

Hence there is no edge lost. In addition, from the definite of potential function, one has ( ) maxr Qψ ≥ . 
Therefore, no collision occurs during [ )0 1,t t . 

Similar to the above analysis, taking the time derivative of ( )Q t  on every [ )1,k kt t− . By lemma 1, there is  

( ) ( )( ) ( )( ) ( )( ) ( )( )2 2 2 22 0 1 0 2 1
1 1 ,N Nc c L c L k c c L t c L t k

t
k k

ρ λ λ ρ λ λ
τ

− − + + − − + +
≤ − ≤ −  

one has ( ) 0Q t ≤ , which implies ( ) ( ) [ )1 1, , .k k kQ t Q t t t t− −≤ < ∞ ∀ ∈  Thus no edge distance will tend to R for 
[ )1,k kt t− , implying that no edge will be lost before time kt  and ( )kQ t  is finite. Since ( )0  is connected 
and no edge in ( )0E  is lost, ( )t  will be connected for all 0t ≥ . This completes the proof of part (1). 

Similarly, from ( ) maxr Qψ ≥ , deducing that no edge distance will tend to r, for all 0t ≥ . Thus collision is 
avoided during the whole process. This completes the proof of part (2). To proof part (3), assume that there are 

km  new edges being added to the evolving network at time kt . As no edges are lost for 0t ≥ , and 
( ) ( ) ( )01 2 1 2 2km N N m N N≤ − − ≤ − − . Therefore, the number of switching times of the system (1) is finite, 

which implies that the evolving network ( )t  eventually becomes fixed. Denote the last topology switching as 
kt . Then Q is continuous and monotonously decreasing for [ ),kt t∈ ∞ . Hence the set  

( ){ }*: , , ,NnD R Q Qξ ζ ξ ζΩ = ∈ ∈ ≤  

is positively invariant, where  

( )( ) ( )( ) ( ) ( ) [ ){ }2 1 1
max maxmin , max , , , , ,N n

ij kD R Q Q i j t t tξ ξ ψ ψ− − = ∈ ∈ ∈ ∈ ∞    

and ( )T
11 1 1, , , , , , .Nn

N N NN Rξ ξ ξ ξ ξ= ∈    
Since ( )t  is connected for all 0t ≥ , one has ( )1ij N Rξ ≤ − , for all ( ) ( ), .i j t∈  As ( ) maxQ t Q≤ , one  

has T
max2i i Qζ ζ ≤ . thus ( ) max2i t Qζ ≤ . Therefore, the set Ω is compact. It follows from LaSalle’s invariance  

principle that if the initial condition lies in Ω, then the corresponding trajectories will converge to the largest in-
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variant set inside the region  

( ){ }2
, , 0 .N n NnS R R Qξ ζ ξ ζ= ∈ ∈ =  

From (8), 0Q =  if and only if 1 N rv v v= = = , which implies that the velocities of all agents will converge to 
that of the virtual leader asymptotically. 

Since 1 N rv v v= = = , there is 0iζ =  for all 1, 2, , .i N=   From (6), one has  

( ) ( ) ( ) ( )

( )
( ) ( )( ) ( ) ( ) ( )( ) ( )1

0.
i

i i r i

i j ij i r ir
j N t

t f v f v u t

x t x t n t c x t x t n t

ζ

φ φ
∈

= − +

= − − − −

=

∑



 

Thus, unless the inital configuration of the agents is close enough to the global minimum, almost every final 
configuration locally minimizes each agent’s global potential. which implies  

[ ]
[ ]

1 2

1 2

, ;

, .
i j

i r

x x d d

x x d d

− ∈

− ∈
 

Then the flocking is achieved. This completes the proof of part (3), thus Theorem 1 hold. 
Remark 1. If ( )tτ τ=  is the constant delay, from the deduction above, Theorem 1 is also hold.  

5. Conclusion  
This paper mainly discusses the flocking problem of multi-agent system with a virtual leader and time-varying 
delay. Unlike most existing flocking algorithms, each agent here is subject to nonlinear dynamics. The corres-
ponding algorithms with the time-varying delay are proposed. Under the assumption that the initial network is 
connected, the theoretical deduction is made. The related topic over the directed network or the jointly con-
nected network will be studied in future.  
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