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Abstract 
A formula for the Magnus force on a rotating and translating solid cylinder in a fluid is constructed 
for two different fluid models. In both cases the flow is steady and frictionless with no formation 
or shedding of eddies behind the cylinder. However, model one is founded on the assumption of 
irrotationality whereas model two is not but rather makes explicit use of the centrifugal force act-
ing on the curving streamlines above the cylinder. Model two’s Magnus force comes out to be 15% 
larger in magnitude which is probably more than that can be accounted for by approximations 
made within the models. Observations will be needed to help decide which model comes closer to 
the truth. In the force formula the following factors are multiplied together: constant, fluid density, 
translation speed, and rotation frequency. For model one constant = 2; for model two constant = 
2.3. 
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1. Introduction 
Magnus effect, the sideways force on a translating and rotating sphere or cylinder, is discussed in several fluid 
dynamics textbooks [1]-[3], but confusion can occur when it is combined with other effects, such as friction and 
eddy forming or shedding. It is within a mixture of different effects that the concept of an “inverse” Magnus ef-
fect was introduced [4], which may or may not help with understanding what is going on with some of these 
fluid flows. Also of the three dictionaries of physics in my possession, only one [5] gives a definition, but that 
description is so vague that neither the magnitude nor the direction of the Magnus force can be calculated from it. 
If the OED (Oxford English Dictionary) is consulted [6], under Magnus effect is found: “The effect of rapid 
spinning on a cylinder moving through a fluid…” Why is the word “rapid” used? One would think that during 
either rapid spinning or rapid translation or both the extraneous effects of friction and eddy shedding would be 
relatively more important. In summary, neither have I found anywhere a formula for the “pure” (unadulterated) 
Magnus force, nor a comparison between theory and measurement. 
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These possible deficiencies in the existing literature are addressed in the following essay partly by adapting 
rotation to a new formulation of the flow past a cylinder that is not founded on the usual assumption of irrota-
tionality. What the newness of the model consists of is the explicit use of the centrifugal force [7]. As a conse-
quence the pressure and velocity fields surrounding the cylinder can both be specified (classically the fluid 
pressure distribution is usually not mentioned). Thus the sideways pressure force on the cylinder can be com-
puted algebraically. Basic assumptions are: steady inviscid flow with no eddies forming on the back side of the 
cylinder, and the acceleration of gravity has no bearing on the problem. 

2. Irrotational Magnus Force 
First, a formula for the Magnus force can be constructed from information already available. Consider uniform 
frictionless horizontal flow of magnitude U moving from left to right past a cylinder of radius 0R . The cylinder 
is not rotating on its axis. At the top and bottom of the cylinder the pressure p from Bernoulli’s equation is 

( )21const 2
2

p Uρ= −                                      (1) 

In (1) the maximum horizontal speed 2U comes from the irrotational solution for flow past a cylinder [8]. The 
acceleration of gravity does not appear in (1); it has no bearing on what follows. 

Next, let the cylinder rotate counter-clockwise with constant angular frequency𝜔𝜔. At the top of the cylinder 
the pressure Tp  (relative to the solid surface) is 

( )2
0

1const 2
2Tp U Rρ ω= − +                                  (2) 

At the bottom of the cylinder the pressure Bp  is 

( )2
0

1const 2
2Bp U Rρ ω= − −                                  (3) 

Assume for simplicity that the magnitude of 2U is greater than the magnitude of 0Rω . 
Between the top and the bottom the pressure difference is 

04T Bp p U Rρ ω− = −                                     (4) 

And the pressure gradient across the cylinder is 

0

2
2

T Bp p U
R

ρ ω
−

= −                                      (5) 

Pressure is lower on top of the cylinder; the pressure force points up. Equation (5) gives the irrotational pres-
sure force (Magnus force) on the cylinder along the vertical line passing through the cylinder’s center. In general 
the speed and the frequency in (5) are independent variables (for rolling motion they are related). 

3. New Foundation 
Begin again with a steady frictionless flow, from left to right, past a cylinder that is not rotating. Far from the 
cylinder the velocity of the fluid is constant in magnitude, U, and uniform in direction, but this time no irrota-
tional assumption is made. Normal to the mean flow and at the top of the cylinder the z-axis points up. In this 
two-dimensional problem the flow around the cylinder cross-section is in the x-z plane, and the long axis of the 
cylinder is in the y-direction. 

Bernoulli’s equation along any streamline going over the top of the cylinder is 

21const
2

p Vρ= −                                      (6) 

where p is the pressure, V is the speed of the flow and ρ  is the fluid density, taken constant. For ease of calcu-
lation the constant in (6) is assumed the same for all streamlines. 

Fluid following a curving path anywhere above the top of the cylinder experiences an upward centrifugal 
force which attempts to tear the fluid away from the solid and away from itself. When the flow is steady, as of-
ten observed at low speeds, there must be an equal but opposite force to balance the centrifugal force every-
where. It can only be a pressure gradient in this situation. Therefore the force balance is 



K. E. Kenyon 
 

 
51 

2d
d
p V
z R

ρ
=                                        (7) 

In (7) R is the radius of curvature of the streamlines, which is the same as the radius of the cylinder at the very 
top of the cylinder. Adopting the convention that R is positive, then the RHS of (7) is positive. Thus the left 
hand side (LHS) of (7) shows that the pressure must increase with increasing height over the cylinder, or that the 
perturbed pressure (the relatively low pressure at the cylinder’s top) decreases upward. 

Now, between (6) and (7) the pressure can be eliminated quickly, starting by taking the z derivative of both 
sides of (6), substituting the pressure gradient from it into the pressure gradient in (7), to form a velocity equa-
tion for variations in the z-direction 

d
d
V V
z R
= −                                         (8) 

Equation (8) is a first order ordinary differential equation with a non-constant coefficient, since R = R(z) 
above the cylinder. Unlike either one of the two equations it came from Equation (8) is linear! However, in order 
to solve (8) completely information has to be provided about the radius of curvature of the streamlines. 

4. Discussion 
Observations (streak photographs [2]) qualitatively show that the radius of curvature of the streamlines above 
the top of a cylinder increases with increasing distance away from the cylinder until, only a few radii away, there 
is no longer any curvature left (the streamlines are straight). It is not obvious from the available data what the 
exact rate of increase is, although one might be able to say that the increase is faster than linear. Also a principle 
of physics does not occur at this time that could help determine the explicit rate of increase algebraically. What-
ever the “true” vertical structure of the radius of curvature of the streamlines turns out to be, Equation (8) can be 
solved, if not analytically, then numerically, since only a first order ODE needs to be dealt with. 

In order to make progress now, one of the simplest nonlinear functional forms of the increase of the radius of 
curvature with height above the cylinder, which makes the following calculations tractable, is selected for study 

3

0
0

1 zR R
R


+


 
 

=                                     (9) 

In (9) 0R  is the radius of curvature of the cylinder. Putting (9) into the right hand side (RHS) of (8), using 
separation of variables, integrating both sides independently, and then raising both sides to the power of the ex-
ponential, the complete solution is 

( )( )0 e 1f zV V U= − +                                  (10) 

where the constant to be determined shortly is 0V . The exponent in (10), using (9), is 

( )

2

0

1 1
2

1
f z

z
R

=
 
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 
 
 
 
 
   

                                 (11) 

More generally the exponent in Equation (10) can be expressed as 

( ) ( )0

dz zf z
R z

′
= −

′∫                                    (12) 

From which it can be seen that the solution to (10) is not sensitive to the particular path R(z) takes between 
0R  and ∞  because of the integration involved in the RHS of (12). 

5. Magnus Force 
To compute the Magnus force the constant in (10) needs to be determined. This can be done by conserving mass 
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between two vertical cross-sections: one is directly over the top of the cylinder and the other is any vertical line 
away from the influence of the cylinder on the flow, starting at the horizontal line that passes through the middle 
of the cylinder and continuing to infinity. Having done that, the result is very nearly given by 

0 2V U≈                                        (13) 

By the approximately equals sign in (13) is meant that only the first three terms in the expansion of the expo-
nential term in (10), with (11) included, were kept in the calculation of conserving mass.  

Inserting (13) into (10) and evaluating it at z = 0 to give the maximum horizontal speed at the top of the cy-
linder results in 

2.3V U=                                        (14) 
Which is 15% higher than the irrotational value (V = 2U). A question that naturally comes up is: if a different 

function than (9) had been chosen to represent the radius curvature of the streamlines, hopefully in better 
agreement with observations, would the accordingly modified Equation (14) have come closer (or not) to equal-
ing the irrotational result? Future work may provide the answer. 

With (14) as is, and the cylinder now rotating, the Magnus force will be 15% larger than obtained in (5).  
Finally, it is known that the fall-off rate for velocity with distance away from the cylinder is as the inverse 

square of the distance in the irrotational solution. Equation (14) implies, however, that in model two the fall-off 
rate is faster than that in order to conserve mass. 

6. Conclusion 
Some of the confusion in the literature concerning the properties of the Magnus effect on rotating solid cylinders 
translating through a fluid may stem from the apparent lack of a published formula for the force. Two algebraic 
formulas are constructed for the Magnus force which agree in direction but differ in magnitude by 15%. The 
first model, based on an existing irrotational solution of the problem, has the smaller force. In the second model 
irrotationality is not assumed but instead a new method is given involving the force balance between a pressure 
gradient and the centrifugal force on flow along curving streamlines above the cylinder’s top. Observations are 
needed for comparison with the two different results. Basically the formula consists of the following factors 
multiplied together: constant, fluid density, translation speed, and rotation frequency. For the classical fluid 
model constant = 2.0; for the new model constant = 2.3. 
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