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Abstract 
Nonlinear electro-mechanical behaviors of piezoelectric materials and viscoelastic nature of po-
lymers result in the overall nonlinear and hysteretic responses of active polymeric composites. 
This study presents a hybrid-unit-cell model for obtaining the effective nonlinear and rate-de- 
pendent hysteretic electro-mechanical responses of hybrid piezocomposites. The studied hybrid 
piezocomposites consist of unidirectional piezoelectric fibers embedded in a polymeric matrix, 
which is reinforced with piezoelectric particles. The hybrid-unit-cell model is derived based on a 
unit-cell model of fiber-reinforced composites consisting of fiber and matrix subcells, in which the 
matrix subcells are comprised of a unit-cell model of particle-reinforced composites. Nonlinear 
electro-mechanical responses are considered for the piezoelectric constituents while a viscoelas-
tic solid constitutive model is used for the polymer constituent. The hybrid-unit cell model is used 
to examine the effects of different responses of the constituents, microstructural arrangements, 
and loading histories on the overall nonlinear and hysteretic electro-mechanical responses of the 
hybrid piezocomposites, which are useful in designing active polymeric composites. 
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1. Introduction 
Piezoelectric fiber-reinforced composites have widely been used in aerospace, automobiles and medical indus-
tries due to their inherently large electro-mechanical coupling effects, compliant and lightweight characteristics. 
For example, a piezoelectric fiber-reinforced composite has a relatively high electro-mechanical coupling prop-
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erty h hd g 1, as reported by [1], and large in-plane actuations as experimentally observed by [2]. Polymers are 
often used as matrix in the piezoelectric fiber-reinforced composites. However, polymers have relatively low 
mechanical and electrical properties compared to those of piezoceramic fibers, such as lead zirconate titanate 
(PZT) fibers; thus, limiting the potential applications of the piezocomposites. Significant mismatches in the 
electro-mechanical properties of the fiber and matrix can lead to high stress discontinuities at the interface be-
tween the fibers and matrix, which can cause debonding. Neat polymeric matrix is often modified by adding 
particulate fillers in order to improve the properties of the polymeric matrix, which forms a hybrid composite 
with fibers and particles embedded in polymeric matrix. There have been several experimental studies on en-
hancing the mechanical properties of fibrous composites by dispersing particulate fillers into the matrix. For 
examples, hybrid composites show significant improvements in the transverse strength ([3] and [4]), the flexural 
strength [5]-[7], the longitudinal compressive strength [8]-[12], and the bearing strength [13]. References [14] 
and [2] have shown that improvement in the overall dielectric constants of a fibrous piezocomposite can be 
achieved by adding PZT powder with a dispersing agent into the epoxy matrix. Reference [2] also shows that a 
matrix system incorporating both dielectric and conductive fillers reduces the magnitude of voltages required for 
poling the fibrous piezocomposites. Reference [15] discusses that fibrous piezocomposites, which have relative-
ly low transverse stiffness, are unable to bear large transverse loads without any additional substrates to enhance 
the structural stiffness. 

Micromechanical models have been used to determine the overall electro-mechanical properties of piezo-
composites, which focus mainly on the linear electro-mechanical responses of two-phase piezocomposites, e.g., 
[14] [16]-[19], and [21]-[23] for example. Nonlinear electro-mechanical responses of the two-phase piezocom-
posites with elastic or viscoelastic polymeric matrices are also studied using micromechanical models, which 
can be found in [23]-[26]. There have been limited micromechanical models for predicting the overall hysteretic 
polarization response, i.e., polarization switching behavior, of unidirectional piezoelectric fiber composites, e.g., 
[19]-[27]. The above studies consider rate-independent electro-mechanical response of the piezoelectric consti-
tuent. While extensive micromechanics studies have been done on understanding responses of piezoelectric fiber 
composites, only limited micromechanical models are available for predicting the overall responses of hybrid 
piezocomposites, i.e., active composites comprising of multiple types and shapes of inclusions/inhomogeneities. 
Reference [30] uses the correspondence principle in conjunction with the Mori-Tanaka model to evaluate the 
effective loss factor of a hybrid piezocomposite having shunted piezoelectric particles embedded in a conductive 
particle reinforced matrix. This model is extended by [31] to derive the effective loss factor for a hybrid piezo-
composite with orientation-dependent piezoelectric inhomogeneities and conductive inhomogeneities dispersed 
in a viscoelastic polymer.  

In many applications, hybrid piezocomposites consisting of PZT inhomogeneities and polymeric matrix are 
often exposed to various mechanical and electrical stimuli. Large electric driving fields can cause significant 
nonlinear strain responses of polarized PZTs [32], which are often a case in actuators. A polarized PZT may be 
depolarized if an electric field that is greater than the coercive field limit of the material is applied opposite to 
the current poling direction, or if a relatively high compressive load is applied along the poling axis, or if its op-
erating temperature exceeds the Curie temperature. Depending on the magnitude and duration of exposure to the 
external stimuli and boundary conditions, PZTs can exhibit time-dependent and nonlinear electro-mechanical 
coupling effects, and the polymeric matrix can experience pronounced viscoelastic behavior. Therefore, hybrid 
piezocomposites can experience overall nonlinear time-dependent and hysteretic electro-mechanical responses. 
It is then necessary to study the overall nonlinear and rate-dependent hysteretic behaviors of the hybrid piezo-
composites prior to designing and fabricating smart devices made of these piezocomposites, which is currently 
limited.  

This study presents formulations of a hybrid unit-cell model for determining the effective nonlinear and hys-
teretic responses of hybrid piezocomposites, which consist of unidirectional piezoelectric fibers embedded in a 
viscoelastic polymeric matrix reinforced with piezoelectric particle fillers, subjected to high electric fields and 
mechanical stresses. In this paper, fibers and particles are made of PZTs; however, the unit-cell model formula-
tion is general and can incorporate different piezoelectric materials for the different inhomogeneities. We con-
sider both nonlinear electro-mechanical response of polarized PZTs and polarization switching behavior of PZTs 
under large cyclic electric field inputs. This article is organized as follows: Section 2 briefly discusses the con-

 

 

1This parameter is used for measuring the efficiency of a piezoceramic for ultrasonic applications and for hydrophone devices in particular. 
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stitutive models for the constituents followed by numerical methods for solving the coupled nonlinear electro- 
mechanical constitutive models in Section 3. Section 4 presents the formulation of the hybrid-unit-cell model for 
obtaining the effective nonlinear and rate-dependent hysteretic response of composites. Numerical results on the 
effective responses of the hybrid piezocomposites are discussed in Section 5. Section 6 is dedicated to conclu-
sions. 

2. Constitutive Models for the Constituents 
PZTs are polarized by applying high electric field, above the coercive electric field at elevated temperature [33] 
before they are used in sensing and actuating applications. The polarized PZTs show electro-mechanical coupl-
ing response, which is quantified by piezoelectric constants. When high electric field is prescribed to the pola-
rized PZTs, which is often the case in actuator applications, they exhibit nonlinear electro-mechanical coupling 
response. In this study, we use the constitutive model proposed by [34] for modeling nonlinear responses of po-
larized PZTs subjected to large electric field but smaller than coercive electric field of the PZTs, which is within 
a range in practical applications. Another type of nonlinear electro-mechanical coupling response is hysteretic 
polarization switching response. Polarization switching can occur when high amplitude of cyclic electric field 
above the coercive electric field of the materials is considered. We adopt the constitutive model proposed by [35] 
for modeling the hysteretic polarization switching of PZTs. Finally a linear viscoelastic constitutive model is 
used for the polymer constituent.  

2.1. Polarized PZTs 
A nonlinear constitutive model proposed by [34] for polarized PZTs undergoing large electric fields and small 
strains is given as: 

1 ,
2ij ijkl kl kij k klij l ks d E f E Eε σ= + +                                (1) 

1 ,
2i ikl kl ij j ijk k jD d E E Eσ κ χ= + +                                (2) 

where ijε , ijσ , iE  and iD  are the scalar components of strain, stress, electric field and electric displacement, 
respectively. The material properties are the elastic compliances ijkls  determined at a constant electric field, the 
third- and fourth-order piezoelectric strain coefficients ijkd  and ijklf , respectively, which are determined at 
constant stresses; and the second- and third-order dielectric coefficients ijκ  and ijkχ  calibrated at constant 
stresses. The higher-order term of the electric field is introduced in order to better capture the nonlinear response 
of the polarized PZTs due to large electric driving fields.  

2.2. Hysteretic Polarization Switching of PZTs 
A rate-dependent electro-mechanical constitutive model, incorporating polarization switching response, formu-
lated by [35], is given as: 

( ) 4 ,t t t t t t t
ij ij ijkl kl nij nm mkl kl kij kt s g g g Pε ε σ κ σ≡ = + +                           (3) 

2 ,t t t t
i im mkl kl iD g Pκ σ= +                                     (4) 

where t
ijkg  is the scalar component of the third-order piezoelectric coefficient which is dependent on the cur-

rent polarization 3
tP  with the x3 direction chosen as the poling axis. The upper right superscript t indicates the 

current time. The piezoelectric constant t
ijkg  is assumed as: 

3

13 e ,

tP
t

ct r
ijk ijk

r

Pg g
P

−

=                                      (5) 

where r
ijkg  is the scalar component of the third-order piezoelectric coefficient measured at constant (remanent) 

polarization rP . It is noted that 1r r−=g κ d , where rd  is the direct piezoelectric constant measured at rema-
nent polarization. The scalar components of the polarization are 
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1 11 1 ,t tP Eκ=                                         (6) 

2 22 2.t tP Eκ=                                         (7) 

( ) ( )3 3 3, ,t tP R E t Q Eτ= +                                   (8) 

where ( )3 ,R E tτ  is the time-dependent reversible polarization at current time t with ( )0, 0R t =  while ( )3
tQ E  

is the residual (irreversible) polarization. The upper right superscript τ  denotes the previous time variable. The 
reversible polarization is written as: 

( ) ( )0 3
3 30

3

d, , d ,
d

tt ER R E t R E t
E

τ
τ

τ τ τ
τ

∂
= + −

∂∫                            (9) 

where  

( ) ( ) ( )0 0 0
3 0 3 1 3

1

, 1 exp .tR E t R E R E
τ

  
= + − −     

                         (10) 

Both ( )0 3R Eτ  and ( )1 3R Eτ  are function of 3Eτ . The characteristic time 1τ  indicates the speed of polari-
zation changes. The irreversible polarization is given as: 

3
30

3

d d .
d

tEt QQ E
E

τ
τ

τ= ∫                                     (11) 

The rate of the residual polarization during polarization switching response is: 

3 3 3 3

3
3 3 3 3

3

3
3 3 3 3

0, 0 , d 0 or 0, d 0,

d , 0, d 0 or 0 , d 0,
d

exp 1 , , d 0 or , d 0,

t t t t
m m

ntt
t t t t

c ct
c

t
t t t t

m c c m
c

E E E E E E

EQ E E E E E E
EE

E
E E E E E E E E

E

λ

µ ω



 ≤ < < − < ≤ >

= − ≤ < ≤ < ≤ ≥

      − − − ≤ < − ≤ < ≤ ≥      

       (12) 

where , , , nλ µ ω  are the material parameters that are calibrated from experiments. A similar function with 
different material parameters can be used for modeling the initial polarization, as discussed in [36]. 

The compressive stresses along the poling axis could significantly affect the hysteretic polarization switching 
response. In this study, it is assumed that the coercive electric field varies with the compressive stresses along 
the x3 direction: 

( )0
33 33

0
33

, , 0,

, 0,

t t
c c

c t
c

E E
E

E

σ σ

σ

 <= 
≥

                                (13) 

where 0
cE  is the coercive electric field in absence of mechanical stresses. In order to incorporate the effect of 

compressive stress on the polarization switching responses, it is assumed that the compressive stress that is 
higher than the coercive stress limit affects the current polarization state 3

tP  and the piezoelectric coefficient 
t
ijkg : 

2 333

13
2 33e e , 0, if ,

tt

c

cP
t

ct r t
ijk ijk c

r

Pg g c
P

σ

σ σ σ
−−

= = > −                         (14) 

where cσ  is the coercive stress limit and C2 is a material parameter. Figure 1 shows that the rate-dependent 
electro-mechanical constitutive model can capture the hysteretic polarization and butterfly strain responses of a 
stress free PZT-51 undergoing a cyclic electric field input. The experimental data of the PZT-51 are obtained 
from [37]. The material parameters used to capture the hysteretic polarization and strain responses are given in 
Tables 1-4. 
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Figure 1. (a) Hysteretic polarization and (b) butterfly strain responses for a stress free PZT-51. 

 
Table 1. Material parameters for the time-dependent polarization of PZT-51 ([35]). 

0
cE  

(MV/m) 
0κ  

(×10−9 F/m) 
1κ  

(×10−9 F/m) 
1τ  

(sec) 
λ  

(×10−6 F/m) 
n  µ  

(×10−6 F/m) 
ω  

0.67 70 225 1 0.35 3 1.6 4 

 
Table 2. Electro-mechanical coupling parameters for PZT-51 ([35]). 

333
rd  

(×10−12 m/V) 
311
rd  

(×10−12 m/V) 
11
rκ  

(×10−9 F/m) 
33
rκ  

(×10−9 F/m) 
rP  

(C/m2) 
1C  

1520 −570 38 42 0.194 0.19 

 
Table 3. Elastic constants for PZT-51 ([35]). 

11 22E E=  
(GPa) 

33E  
(GPa) 

12G  
(GPa) 

31 32G G=  
(GPa) 

12v  31 32v v=  

34.48 33.00 13.19 12.37 0.307 0.334 

 
Table 4. Material parameters above the coercive stress limit for PZT-51 ([35]). 

cσ  
(MPa) 

2C  λ  
(×10−6 F/m) 

n  µ  
(×10−6 F/m) 

ω  

25 0.3 0.40 3 1.1 4 

2.3. Polymers 
The polymeric matrix is assumed as an isotropic viscoelastic solid, which is: 

( ) ( )
0 0

d d1 1 1d d ,
2 d 3 3 d

t tijt kk
ij ij

S
J t B t

τ τσε τ τ δ τ τ
τ τ

= − + −∫ ∫                       (15) 

,i ij jD Eκ=                                        (16) 

where ijδ  is the Kronecker delta. ( )J t  and ( )B t  are the time-dependent shear and bulk compliances, re-
spectively. t

ijS  and t
kkσ  are the scalar components of the deviatoric and volumetric stress tensors at time t, 

respectively. To reduce complexity in modeling the viscoelastic response of the hybrid piezocomposites, we 
shall assume that the corresponding linear elastic Poisson’s ratio v for the polymers is time-independent. The 
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shear and bulk compliance share the same time function as the extensional (uniaxial) compliance: 

( ) ( ) ( )2 1 ,J t v D t= +                                   (17) 

( ) ( ) ( )3 1 2 ,B t v D t= −                                  (18) 

where ( )D t  is the time-dependent uniaxial compliance, which is expressed as: 

( ) [ ]( )0
1

1 exp .
N

n n
n

D t D D tλ
=

= + − −∑                             (19) 

Here D0 is the instantaneous (elastic) compliance and the transient compliance is expressed in terms of a se-
ries of exponential functions, where N is the number of terms, nD  is the nth coefficient of the time-dependent 
compliance and nλ  is the nth reciprocal of retardation time.  

3. Linearized Forms of the Nonlinear Constitutive Models 
For convenience in analyzing the time-dependent and nonlinear electro-mechanical behavior, we present a li-
nearized incremental form of the constitutive relations, i.e., Equations (1), (2), (3), (4), (15) and (16). A recur-
sive time-integration algorithm presented in [38] is used to numerically evaluate the time integral forms of the 
constitutive models such as for Equations (9) and (15). The incremental independent field variables at current 
time t are: 

,t t t t−∆∆ = −σ σ σ                                    (20) 

,t t t t−∆∆ = −E E E                                    (21) 

where superscript t t− ∆  denotes the previous time and t∆  is the current incremental time.  
The linearized constitutive relation can be expressed in a single equation, which follows a conventional indi-

cial notation with lower case subscripts range from 1 to 3 while upper case subscripts range from 1 to 4: 

,t t t t t
iJ iJMn Mn iJO T −∆Ξ = ∆ + Ξ                                 (22) 

where 

, 1, 2,3,
, 4,

t
t ij
iJ t

i

J
D J
ε =Ξ = 

=
                                (23) 

, , 1, 2,3,

, 1, 2,3; 4,

, 4; 1,2,3,

, , 4,

t
ijmn

t
nijt

iJMn t
imn

t
in

s J M

d J M
O

d J M

J Mκ

 =


′ = == 
= =


=









                            (24) 

, 1, 2,3,
, 4.

t
t mn

Mn t
n

M
T

E M
σ∆ =∆ = 

∆ =
                             (25) 

The components of t
iJMnO  are represented by a 9 by 9 matrix. Vectors t

iJΞ  and t
MnT∆  are 9 by 1 column 

vectors and t t
iJ
−∆Ξ  is the history variables of the dependent field variables t

iJΞ . A factor of two for the shear 
strains is accounted for in the vector t

iJΞ . This matrix formulation of the linearized constitutive relation will be 
used in the following micromechanical analysis. After some algebraic manipulations, the resulting components 
of t

iJMnO  and t t
iJ
−∆Ξ  for each constitutive model are summarized as: 

3.1. Polarized PZTs 
From Equations (1) and (2), the resulting components of t

iJMnO  and t t
iJ
−∆Ξ  are: 
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,

1 ,
2

,
1 ,
2

1 ,
2
1 .
2

t
ijmn ijmn

t t
nij nij nlij l

t
imn imn

t t
in in ink k

t t t t t t t
ij ijkl kl kij klij l k

t t t t t t t
i ikl kl ij ijk k j

s s

d d f E

d d

E

s d f E E

D d E E

κ κ χ

ε σ

σ κ χ

−∆ −∆ −∆

−∆ −∆ −∆

=

′ = +

=

= +

 = + + 
 
 = + + 
 









                           (26) 

3.2. Hysteretic Polarization Switching Response 
From Equations (3) and (4), the resulting components of t

iJMnO  and t t
iJ
−∆Ξ  are: 

( ) ( )

4 ,

,

2 ,

,

4 ,

2 ,

t t t
ijmn ijmn kij kl lmn

t t t
nij nij kl

t t
imn ij jmn

t t
in in

t t t t t t t t t t
ij ijkl nij nm mkl kl kij k k

t t t t t t t t
i im mkl kl i i

s s g g

d g K

d g

K

s g g g P F

D g P F

κ

κ

κ

ε κ σ

κ σ

−∆ −∆ −∆

−∆ −∆ −∆

= +

′ =

=

=

= + + +

= + +









                      (27) 

where ( )0 3R Eτ  and ( )1 3R Eτ  in Equation (10) are considered as linear functions: 

( )
( )

0 3 0 3

1 3 1 3

,

,

R E E

R E E

τ τ

τ τ

κ

κ

=

=
                                    (28) 

where 0κ  is the dielectric constant of a macroscopically unpolarized PZT and 1κ  is the time-dependent part 
of the dielectric constant. In Equation (27) t

ijK  is: 

11

22

0 1

, 1,
, 2,

, 3,
0, .

t
ij t

i j
i j

K
Q i j

i j

κ
κ
κ κ

= =
 = ==  + + ∆ = =
 ≠

                              (29) 

Using the rate of residual polarization in Equation (12), the incremental residual polarization at current time t 
is approximated by: 

3
3

d .
d

t
t t

t
QQ E
E

∆ ≈ ∆                                      (30) 

Finally, t
ijF  and t

iP  are expressed as: 

( ) ( )1 3 1 33 3

1 13 3

0, 1, 2,

d d1 exp exp , 3,
d d 2

t t tt t t t
i t t

t t t

i

R E R EF E Et t tq i
t tE Eτ τ

−∆ −∆
−∆

−∆

=
  ∂ ∂ =    ∆ ∆ ∆  − − − + − =     ∂ ∂       

       (31) 

,t t t t
i i iP P P−∆= + ∆                                     (32) 

where the history variable related to the polarization is: 
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( ) ( )1 3 1 33 3

1 13 3

d dexp exp ,
d d 2

t t tt t t
t t t

t t t

R E R EE Et t tq q
t tE Eτ τ

−∆ −∆
−∆

−∆

 ∂ ∂   ∆ ∆ ∆ = − + + −   ∂ ∂     
              (33) 

and the incremental polarization is determined by: 

.t t t t
i ij j iP K E F∆ = ∆ +                                    (34) 

3.3. Polymers 
From Equations (15) and (16), the resulting components of t

iJMnO  and t t
iJ
−∆Ξ  are: 

( ) ( )

1 1 2 ,
3 3

0,

0,

,
12 ,
3

.

t
ijmn ij mn im jn in jm

t
nij

t
imn
t t
in in

t t t t t t t t t t t
ij ij ij ij ij ij kk kk

t t t t
i ij j

s B J J J

d

d

JS d JS d B V

D E

δ δ δ δ δ δ

κ κ

ε δ σ

κ

−∆ −∆ −∆ −∆

−∆ −∆

 = − + − 
 

′ =

=

=

 = − + − + + −  
=

   









  

                   (35) 

B


, J


, t
ijd  and t

kkV  in Equation (35) are given as: 

( ) [ ]

( ) [ ]

( ) [ ] [ ]

( ) [ ] [ ]

0
1 1

0
1 1

,
1

,

1 exp
1 2 ,

1 exp
1 ,

1 exp
1 exp ,

1 exp
1 2 exp

N N
nt

n n
n n n

N N
nt

n n
n n n

N
nt t t t t

ij n n ij n ij
n n

nt t t
kk n n kk n kk

n

t
B D D D

t

t
J D D D

t

t
d J t q S

t

t
V J t q

t

λ
ν

λ

λ
ν

λ

λ
ν λ

λ

λ
ν λ σ

λ

= =

= =

−∆ −∆

=

−∆

 − − ∆
= − + − ∆ 

 − − ∆
= + + − ∆ 

 − − ∆
= + − ∆ − ∆ 

− − ∆
= − − ∆ −

∆

∑ ∑

∑ ∑

∑





1
,

N
t t

n

−∆

=

 
 
 

∑

                  (36) 

where the history variables related to the deviatoric and volumetric strains are: 

[ ] [ ] ( )

[ ] [ ] ( )

, ,

, ,

1 exp
exp ,

1 exp
exp .

nt t t t t t
ij n n ij n ij ij

n

nt t t t t t
kk n n kk n kk kk

n

t
q t q S S

t

t
q t q

t

λ
λ

λ

λ
λ σ σ

λ

−∆ −∆

−∆ −∆

 − − ∆
= − ∆ + − ∆ 

 − − ∆
= − ∆ + − ∆ 

                    (37) 

4. Hybrid-Unit-Cell Model 
This section presents formulations of a hybrid-unit-cell model for obtaining the overall responses of hybrid pie-
zocomposites whose constituents experience nonlinear electro-mechanical and viscoelastic behaviors. The mi-
crostructures of a hybrid piezocomposite are idealized with periodically distributed fibers of square cross section 
in a matrix medium and the microstructures of the matrix are idealized with periodically distributed cubic par-
ticles in a homogeneous viscoelastic matrix. Here, we consider a unit cell as the smallest representative micro-
structures and each unit cell is divided into several subcells. Figure 2 illustrates an idealized unit-cell model of 
the hybrid piezocomposites. At the upper scale, a hybrid-unit-cell model consists of a fiber unit-cell, comprising 
of four fiber and matrix subcells, and the lower scale is a particle-unit-cell model, having eight particle and po-
lymer subcells. The particle unit-cell model is implemented at each matrix subcell in the fiber unit-cell model.  
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Figure 2. Hybrid-unit-cell model. 

 
The first subcell of the fiber unit cell is the piezoelectric fiber constituent and the rest of the subcells represent 
the matrix, whose response is determined from a homogenized active composite of the particulate unit cells. The 
first subcell of the particulate unit cell is the piezoelectric particle constituent and the remaining subcells in the 
particulate unit cell indicate the homogeneous viscoelastic matrix. The fibrous and particulate unit cells lead to 
rather simple micromechanical relations by satisfying equilibrium condition and displacement compatibility 
among all subcells. The time-integration algorithm for the rate-dependent PZT (Equation (9)) and viscoelastic 
matrix (Equation (15)) is nested to the hybrid-unit-cell model in order to obtain approximate solutions of the 
overall nonlinear and time-dependent responses of the hybrid piezocomposites. The cross section of the fiber is 
assumed to be square and the one of the particle is taken to be a cube, which is done to simplify the microme-
chanics formulation. In the previous work by one of the author ([27]) shows that this geometrical simplification 
gives very good predictions of the overall polarization switching responses of active fiber composites when 
compared to experimental data. This means that for mainly determining the overall nonlinear responses of com-
posites the effect of detailed shapes of the cross-sectional geometries of the inclusions is rather insignificant. 

For the derivation of the hybrid-unit-cell model, we start with the fibrous unit cell. Using a volume-average 
scheme, the effective field variable, denoted by an overbar, of the fibrous unit cell at current time t is written as: 

( ) ( )
IV

,

I
.tt c α α

α=
= ∑Ξ Ξ                                     (38) 

The superscript ( )α  denotes the subcell’s number of the fibrous unit cell. The fiber volume fraction is de-
fined as ( ) ( )I Ic V V=  (i.e., volume fraction of the fibers with respect to the hybrid piezocomposite) and the 
fibrous unit cell volume is given by ( )IV

IV Vα α
α
=

=
= ∑ . A linearized constitutive relation for the fibrous piezo-

composite at current time t is written as: 

,t t t t t−∆= ∆ +Ξ O T Ξ                                    (39) 

and also for the subcell ( )α  is: 
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( ) ( ) ( ) ( ), , , , .t t t t tα α α α −∆= ∆ +Ξ O T Ξ                                 (40) 

In order to relate the effective incremental independent field variables in the fibrous unit cell to the corres-
ponding incremental field variables in its subcells, a concentration matrix ( ),tαB  and a vector of history variable 

( ),tαX  at current time t are defined through the relation: 

( ) ( ) ( ), , , .t t ttα α α∆ = ∆ +T B T X                                  (41) 

Substituting ( ),tα∆T  from Equation (41) into (40) gives 

( ) ( ) ( ) ( ) ( ) ( ), , , , , , .t t t t t t ttα α α α α α −∆= ∆ + +Ξ O B T O X Ξ                           (42) 

Substituting ( ),tαΞ  from Equation (42) into (38) gives 

( ) ( ) ( ) ( ) ( ) ( ) ( )( )
IV IV

, , , , ,

I I
.t t t t t tt tc cα α α α α α α

α α

−∆

= =

= ∆ + +∑ ∑Ξ O B T O X Ξ                      (43) 

From Equations (43) and (39), the effective electro-mechanical property and history variable of the fibrous 
unit cell are: 

( ) ( ) ( )
IV

, ,

1
.t tt c α α α

α=
= ∑O O B                                   (44) 

( ) ( ) ( ) ( )( )
IV

, , ,

1
.t t t tt t c α α α α

α

−∆−∆

=

= +∑Ξ O X Ξ                             (45) 

The linearized constitutive model for the fiber subcell I is obtained directly from Equation (22). The matrix 
subcells II, III, and IV in the fiber unit cell consist of piezoelectric fillers dispersed in the polymeric matrix. The 
electro-mechanical properties of these subcells are determined using the particle unit-cell model, comprising of 
eight subcells (Figure 2). The average field variables in the matrix subcells II, III, and IV are determined as: 

( ) ( ) ( )
8

, , , ,

1
, II, III, IV.t tcα α β α β

β
α

=

= =∑Ξ Ξ                            (46) 

The superscript ( ),α β  indicates the subcells’ numbers corresponding to the particulate unit cell ( )β  and 
fiber unit cell ( )α . The particle volume fraction is defined as ( ) ( ) ( )II,1 II,1 IIc V V=  (volume fraction of the filler 
particles in the polymeric matrix) which should be the same as ( )III,1c  and ( )IV,1c . The corresponding particulate 
unit cell volumes are given by ( ) ( )8 ,

1V Vβα α β
β
=

=
= ∑  with II, III, IVα = . The linearized constitutive relation for 

the particulate subcell ( ),α β  at current time t is: 
( ) ( ) ( ) ( ), , , , , , , , , II, III, IV, 1, 2, ,8.t t t t tα β α β α β α β α β−∆= ∆ + = = Ξ O T Ξ                 (47) 

It is also necessary to determine the concentration matrix for the particulate unit-cell ( ), ,tα βB  and the vector 
of history variable ( ), ,tα βX  at current time t, which are defined through the relation: 

( ) ( ) ( ) ( ), , , , , , , , II, III, IV, 1,2, ,8.t t t tα β α β α α β α β∆ = ∆ + = =T B T X                   (48) 

The above equation relates the incremental independent field variables of the matrix subcells II, III and IV to 
the corresponding incremental field variables of the particulate and polymer subcells. Substituting Equation (48) 
into Equation (47) and using the volume-average scheme in Equation (46), the corresponding dependent field 
variables for the matrix subcells are:  

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )( )
8 8

, , , , , , , , , , , , , ,

1 1
, II, III, IV.t t t t t t t tc cα α β α β α β α α β α β α β α β

β β
α−∆

= =

= ∆ + + =∑ ∑Ξ O B T O X Ξ        (49) 

Comparing Equation (49) to Equation (40) gives the overall electro-mechanical properties and history va-
riables of the matrix subcells: 

( ) ( ) ( ) ( )
8

, , , , , ,

1
, II, III, IV.t t tcα α β α β α β

β
α

=

= =∑O O B                         (50) 
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( ) ( ) ( ) ( ) ( )( )
8

, , , , , , , ,

1
, II, III, IV.t t t t t tcα α β α β α β α β

β
α−∆ −∆

=

= + =∑Ξ O X Ξ                   (51) 

Finally, in order to evaluate the concentration matrices and history variables ( ),tαB , ( ), ,tα βB  and ( ),tαX , 
( ), ,tα βX  in the hybrid-unit-cell model it is necessary to use the constitutive relations for the piezoelectric and 

polymer constituents together with the linearized micromechanical relations from the fibrous unit cell and the 
particulate unit cells. The linearized micromechanical relations for the fibrous and particulate unit cells can be 
found in [25]. Because of the nonlinear constitutive relations for the constituents, the linearized micromechani-
cal relations generally violate the overall nonlinear responses, which results in the following residual vector:  

{ } { } [ ]{ } { }
252 9252 252252 1 252 1 9 1 252 1

,t t t t t
s

××× × × ×

 = ∆ − ∆ + R P T Q T Y                            (52) 

where 

{ } ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ){ }I , IV , II,1 , II,8 , III,1 , III,8 , IV,1 , IV,8 ,, , , , , , , , , , , ,t t t t t t t tt
s∆ = ∆ ∆ ∆ ∆ ∆ ∆ ∆ ∆   T T T T T T T T T

T
     (53) 

and { }tY  results from the stress and electric field equilibrium conditions in the subcells, and the differences in 
the history variables from the displacement compatibility and electric displacement continuity at the interfaces 
between the adjacent subcells. t  P  matrix is a function of the electric fields, material parameters and the vo-
lume fraction of each subcell at current time t and the [ ]Q  matrix is a constant matrix from the micromechani-
cal relations. The dimension of each matrix is denoted on its bottom. A fixed-point iterative method is used to 
minimize the above residual vector at each time step. Once the residual vector has been minimized, the incre-
ment of the independent field variable in each subcell is given as: 

{ } { } { } ,t t t t
s s s ∆ = ∆ + T B T X                                (54) 

where 

[ ]1
,t t

s

−
   =   B P Q                                    (55) 

{ } { }1
.t t t

s

−
 = −  X P Y                                   (56) 

t
s  B  comprises the elements of the concentration matrices ( ),tαB  and ( ), ,tα βB , i.e., 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )I , IV , II,1 , II,8 , III,1 , III,8 , IV,1 , IV,8 ,, , , , , , , , , , , .t t t t t t t tt
s

   =      B B B B B B B B B
T

           (57) 

{ }t
sX  includes the history variables ( ),tαX  and ( ), ,tα βX , i.e., 

{ } ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ){ }I , IV , II,1 , II,8 , III,1 , III,8 , IV,1 , IV,8 ,, , , , , , , , , , , .t t t t t t t tt
s =    X X X X X X X X X

T
          (58) 

Once ( ),tαB , ( ), ,tα βB , ( ),tαX  and ( ), ,tα βX  have been determined, the effective electro-mechanical property 
tO  and the field variable tΞ  are evaluated via Equations (44), (50) and (38), (42), (50), (51), respectively. It is 

noted that different incremental independent field variables, e.g., ( ∆ε , ∆E ) can be chosen to derive the hybrid- 
unit-cell model following a similar procedure. 

5. Numerical Implementation 
This section presents numerical analyses of the hybrid-unit-cell model. We first compare the predictions of the 
effective properties of hybrid composites with existing experimental data, which is limited to linear elastic mod-
uli. We then conduct parametric studies on investigating the effects of constituent compositions, boundary con-
ditions and loading history on the overall performance of hybrid piezocomposites.  

5.1. Comparison with Experimental Data 
Available experimental data for hybrid composites were primarily focused on the overall mechanical properties. 
The presented nonlinear hybrid-unit-cell model should be capable of predicting the overall properties of the hy-
brid composites without electro-mechanical coupling effect. Reference [5] reported the effective longitudinal 
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Young’s modulus of a hybrid composite with unidirectional carbon fibers dispersed in an alumina/epoxy matrix 
with the alumina particle volume fraction of 0.1. Figure 3(a) depicts the comparisons of the longitudinal elastic 
moduli of the hybrid composites and fiber reinforced polymer (FRP) composites obtained from the hybrid 
unit-cell model and experimental data. For the FRP composite, a hybrid unit-cell with zero percent particle vo-
lume content is considered. Adding particle to the polymeric matrix slightly improves the effective longitudinal 
moduli of the hybrid composite. Slight variation between the prediction and experimental data is observed, in-
dicating that the micromechanics model give a reasonable predictions. Since [5] did not report the constituent 
properties, we calibrate the transverse and longitudinal moduli (E22 and E33) for the carbon fiber and the mod-
ulus (E) for the epoxy by using the experimental data on the FRP composite with the fiber volume fraction 0.41 
shown in Figure 3(a)2. The constituent properties used in the simulation are listed in Table 5. The experimental 
data for the effective transverse moduli shown in Figure 3(b) were obtained from [40]. Using the fiber volume 
fraction 0.4 with the alumina particle volume fraction 0.1 shown in Figure 3(a) we further determine the elastic 
modulus of the alumina, which is 416 GPa3. The calibrated material properties are then used to evaluate the ef-
fective longitudinal and transverse moduli of the hybrid composite with different fiber volume contents, as 
shown in Figure 3 (indicated by solid lines). It is seen that adding stiffer particles to the polymeric matrix can 
significantly enhance the transverse modulus. Reference [40] did not report the experimental data for the trans-
verse moduli of the hybrid composite.  

5.2. Parametric Studies 
We first examine the effect of constituent compositions on the overall nonlinear electro-mechanical responses of 
a hybrid piezocomposite subjected to large electric fields but lower than coercive electric field (the constitutive 
relations in Equations (1) and (2) are used for polarized PZT fibers and particles). The matrix of the hybrid pie-
zocomposite is first considered as elastic solid such as Araldite D while the polarized PZT-G1195 is used for the 
inhomogeneities4. The material properties of the Araldite D and polarized PZT-G1195 used for simulations re-
ported in [42] and [25], respectively. 

Figure 4 shows the effective transverse stress 11σ  and longitudinal stress 33σ  due to an applied electric 
field 3E  along the poling direction, which is the longitudinal fiber direction (x3 axis) up to 1 MV/m5 for a fully 
constrained displacement of the PZT-G1195/[PZT-G1195/Araldite D] hybrid piezocomposite with PZT-G1195 
fiber volume fraction (VF) = 0.4 and several PZT-G1195 particle VFs = 0 - 0.5. The linear response for the 
composite with zero content of PZT-G1195 fillers is also shown for comparison. Figure 4(a) shows that as the 
filler VF increases the effective transverse stress 11σ  is significantly enhanced while the effective longitudinal 
stress 33σ  is insensitive to the existence of piezoelectric fillers even for higher particle contents, as shown in 
Figure 4(b). This is due to the fact that the transverse stress 11σ  is a matrix-dominated response and high 
stiffness of the PZT-G1195 fillers increases the stiffness of the overall matrix. In contrast, the longitudinal stress 

33σ  is a fiber-dominated response and insignificant improvements in the longitudinal properties are shown with 
adding PZT-G1195 fillers. Thus, dispersing stiffer fillers into a softer matrix in a fibrous piezocomposite will be 
useful for improving the blocked stress for the 3 - 1 operating mode.  

We also consider a stress free boundary condition for a PZT-G1195/[PZT-G1195/Araldite D] hybrid piezo-
composite with PZT-G1195 fiber VF = 0.4 and PZT-G1195 particle VF varies from 0 to 0.5, subjected to an ap-
plied electric field 3E  along the poling direction up to 1 MV/m. Figure 5 depicts the effective transverse strain 

11ε  and longitudinal strain 33ε . The absolute values of the effective strains 11ε  and 33ε  both decrease as the 
PZT-G1195 fillers increase. This is because adding PZT-G1195 particles in the matrix increases the stiffness of 
the matrix and leads to a stiffer hybrid piezocomposite, which causes less actuation strains under the same elec-
tric field input. It is known that in piezoelectric materials larger blocked stresses are accompanied by smaller  

 

 

2For the calibration procedure, first we assume Poisson ratios v31 = 0.2, v12 = 0.25, longitudinal shear modulus G31 = 28 GPa for the carbon 
fiber which are referred to [39], and Poisson ration v = 0.35 for the epoxy resin which is referred to [20].  
3Experimental examination from [41] shown that the elastic modulus of the alumina is between 338 and 416 GPa. 
4The piezoelectric inhomogeneities (both fibers and parties) of a hybrid piezocomposite only can be polarized after it forms a hybrid compo-
site in order to ensure that all piezoelectric inhomogeneities are poled along the same direction (x3 direction in our study.) Electrodes are 
placed on the each end of fibers in order to generate the electric field along with the x3 direction (fiber direction). Thus, both PZT particles 
and fibers will experience the electric field along its polarized direction, which induces extension or shrink along with their polarized direc-
tion (the x3 direction.) 
5MV/m is 85% of the coercive electric field of the polarized PZT-G1195 and thus the polarized PZT-G1195 does not experience depolariza-
tion and polarization switching reported by [32]. 
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Figure 3. Comparison of the micromechanical predictions to experimental data, (a) [5] and (b) [40], for the effective longi-
tudinal elastic moduli for the hybrid (solid lines) and FRP (dotted lines) composites as a function of fiber volume fraction. 
The hybrid composite is formed by carbon fibers embedded in the epoxy matrix which is reinforced by 0.1 volume fraction 
of alumina particles. 

 

         
Figure 4. Effective (a) transverse stress 11σ  and (b) longitudinal stress 33σ  responses for the fully constrained displace-
ment of the PZT-G1195/[PZT-G1195/Araldite D] hybrid piezocomposite with a fixed PZT-G1195 fiber VF = 0.4 and vari-
ous PZT-G1195 particle VFs, 0.0, 0.1, 0.3 and 0.5, due to an applied electric field 3E  along the poling direction. 

 

         
Figure 5. Effective (a) transverse strain 11ε  and (b) longitudinal strain 33ε  responses for the stress free PZT-G1195/ 
[PZT-G1195/Araldite D] hybrid piezocomposite with a fixed PZT-G1195 fiber VF = 0.4 and various PZT-G1195 particle 
VFs, 0.0, 0.1, 0.3 and 0.5, due to an applied electric field 3E  along the poling direction. 
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free strains, and vice versa. Adding stiffer fillers, i.e., PZTs, into a relatively soft matrix, i.e., polymer, in a fiber- 
reinforced piezocomposite is done to improve the transverse blocked stress. 

In order to study the time-dependent responses due a viscoelastic constituent in a hybrid piezocomposite, FM73 
polymer whose dielectric constants are taken as 9

11 22 33 0.039 10 F mκ κ κ −= = = ×  is used for the polymer con-
stituent and its viscoelastic properties are given in Table 6. Fully constrained PZT-G1195/[PZT-G1195/FM73 
polymer] hybrid piezocomposites with PZT-G1195 fiber VF = 0.4 and PZT-G1195 particle filler VFs = 0 and 
0.5 are subjected to a cyclic electric field, ( ) ( )3 0.5cos 2π 0.5E t ft= − +  MV/m along the poling direction with 
various frequencies f = 0.5, 1 and 10 Hz. The response of the effective transverse stress 11σ  amplitude (maxi-
mum stress) as a function of number of cycles at different loading frequencies is shown in Figure 6. As the 
number of cycles increase (longer duration of loading), the stress amplitude decreases until it reaches steady 
value, i.e., fully relaxed stress state. Higher frequency leads to more cycle needed to reach steady state, which is 
expected since slow input would give enough time for the viscoelastic polymers to experience stress relaxa-
tion. The hybrid piezocomposite (Figure 6(a)) and the fiber-reinforced piezocomposite (Figure 6(b)) expe-
rience the same trends under cyclic loading with higher effective blocked stress 11σ  in the hybrid piezocom- 
posite.  

Next, we investigate the overall hysteretic polarization switching and butterfly strain responses of a hybrid 
piezocomposite with various constituent compositions and under different loading histories. The constitutive re-
lations in Equations (3) and (4) are used for polarization switching response of PZT-51 fibers and particles. The 
matrix of the hybrid piezocomposite is considered as FM73 polymer. 

Figure 7 depicts steady state electric displacement and longitudinal strain responses of a stress free boundary 
condition for a PZT-51/[PZT-51/FM73 polymer] hybrid piezocomposite with PZT-51 fiber VF = 0.4 and 
PZT-51 particle VFs = 0.0, 0.2 and 0.4, subjected to a cyclic electric loading ( )3 1.2sin 2πE ft=  MV/m along  
 

Table 5. Mechanical properties of the carbon fiber, epoxy and alu-
mina (The material properties are determined from [5] and [40]). 

 Carbon fiber  

Longitudinal Young’s modulus, E33 (GPa) 198  

Transverse Young’s modulus, E22 (GPa) 16  

Major Poisson’s ratio, v31 0.20  

In-plane Poisson’s ratio, v12 0.25  

Longitudinal shear modulus, G31 (GPa) 28  

 Epoxy Alumina 

Young’s modulus, E (GPa) 3.4 416 

Poisson’s ratio, v 0.35 0.23 

 
Table 6. Time-dependent compliance, instantaneous time-dependent 
(elastic) compliance and Poisson’s ratio for the viscoelastic FM73 
polymer ([43]). 

na λn (sec−1) Dn (GPa−1) 

1 1 0.0210 

2 10−1 0.0216 

D0 = 0.369 (GPa−1) 

v = 0.35 

aWe only consider the first two terms of the series of exponential functions to the 
viscoelastic FM73 polymer. This simplification will not affect us to qualitatively 
understand the influence of the viscoelastic constituent to the overall responses of 
composites but it will dramatically reduce computational cost. 
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Figure 6. Effective transverse stress 11σ  amplitude vs. number of cyclers for the 
fully constrained displacement of the PZT-G1195/[PZT-G1195/FM73 polymer] hy-
brid piezocomposite with PZT-G1195 fiber VF = 0.4 and various PZT-G1195 particle 
VFs, (a) 0.0 and (b) 0.5, due to a cyclic electric field ( ) ( )3 0.5cos 2π 0.5E t ft= − +  
MV/m with various frequencies f = 0.5, 1 and 10 Hz along the poling direction (Loga-
rithmic scale on the horizontal axis). 

 
the longitudinal fiber direction (x3 direction) with the frequency f = 1 Hz. It is expected that the heights of the 
butterfly curves (Figure 7(b), Figure 7(d), Figure 7(f)) of the hybrid piezocomposite decrease as PZT-51 par-
ticles increase because PZT-51 fillers increase the overall stiffness of the matrix. In contrast, the polarization 
responses (Figure 7(a), Figure 7(c), Figure 7(e)) are only slightly influenced by the adding the active fillers 
since the response is dominated by the fibers. At the saturated (steady state) condition, the strains in the butterfly 
curves at the coercive electric field limit are slightly higher than zero, which are due to the time-dependent 
PZT-51 and FM73 polymer materials. Even though the hybrid composites are under stress-free boundary condi-
tions, the heterogeneity in the composites leads to existence of internal stresses when electric field is applied. 
Several discontinuities in the hysteretic polarization and butterfly curves are observed in Figure 7(g) and Figure 
7(h), respectively, when PZT-51 particle VF increases to 0.55. These discontinuities occur when the magnitude 
of compressive stress 33

tσ  in the PZT-51 fiber exceeds the coercive stress limit ( cσ  = 25 MPa for PZT-51) ei-
ther from 33

t
cσ σ> −  to 33

t
cσ σ≤ −  or from 33

t
cσ σ≤ −  back to 33

t
cσ σ> − . When the compressive stress 

33
tσ  in the PZT-51 fiber is greater than the coercive stress limit, polarization switching occurs, whose effect is 

incorporated in Equations (13) and (14). Changes in the material parameters, when a compressive stress is high-
er than the coercive stress limit, lead to discontinuities in the electro-mechanical responses. This issue has been 
discussed in [35] for homogeneous ferroelectric ceramics. 

Next, we examine the effect of prescribing compressive stresses on the overall nonlinear rate-dependent hys-
teretic electro-mechanical responses of a PZT-51/[PZT-51/FM73 polymer] hybrid piezocomposite with PZT-51 
fiber VF = 0.4 and PZT-51 particle VF = 0.2, subjected to a cyclic electric loading ( )3 1.2sin 2πE ft=  MV/m 
along the fiber direction with the frequency f = 1 Hz and constant compressive stresses 33σ  = 0, −15 and −30 
MPa. The coercive electric field changes with the compressive stress, which for the studied PZT-51 is described 
as: 

0
33 33

0
33

0.0041 , 0,

, 0.

t t
c

c t
c

E
E

E

σ σ
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≥

                             (59) 

Figure 8 shows the steady state electric displacement and longitudinal strain responses after 100 cycles. The 
compressive stresses limit the amount of polarization to be generated from electric field inputs, as a result 
smaller hysteretic polarization and butterfly strain curves are observed when higher compressive stress is ap-
plied.  

We also study the effect of frequencies on the overall hysteretic electro-mechanical responses of a hybrid 
piezocomposite. We consider a stress free PZT-51/[PZT-51/FM73 polymer] hybrid piezocomposite with 
PZT-51 fiber VF = 0.4 and PZT-51 particle VF = 0.2 subjected to cyclic electric loadings ( )3 1.2sin 2πE ft=   
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Figure 7. Effective (a), (c), (e), (g) electric displacement 3D  and (b), (d), (f), (h) longitudinal strain 33ε  responses for 
the stress free PZT-51/[PZT-51/FM73 polymer] hybrid piezocomposite with a fixed PZT-51 fiber VF = 0.4 and various 
PZT-51 particle VFs, (a), (b) 0.0; (c), (d) 0.2; (e), (f) 0.4; (g), (h) 0.55, due to a cyclic electric loading ( ) ( )3 1.2sin 2πE t ft=  
MV/m with frequency f = 1 Hz along the poling direction. 100 cycles are enough to reach steady state. 
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Figure 8. Effective (a), (c), (e) electric displacement 3D  and (b), (d), (f) longitudinal strain 33ε  responses for the 
PZT-51/[PZT-51/FM73 polymer] hybrid piezocomposite with PZT-51 fiber VF = 0.4 and PZT-51 particle VF = 0.2 sub-
jected to both a cyclic electric loading ( ) ( )3 1.2sin 2πE t ft=  MV/m with frequency f = 1 Hz along the poling direction and 
various constant mechanical stresses 33σ , (a), (b) 0; (c), (d) −15; (e), (f) −30 MPa. 100 cycles are enough to reach steady 
state. 

 
along the fiber axis with different frequencies f = 0.5, 1 and 10 Hz. Figure 9 depicts the responses of the polari-
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since slower loading allows for the materials to experience more pronounced time-dependent response. In this 
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Figure 9. Effective (a), (c), (e) electric displacement 3D  and (b), (d), (f) longitudinal strain 33ε  responses for the stress 
free PZT-51/[PZT-51/FM73 polymer] hybrid piezocomposite with PZT-51 fiber VF = 0.4 and PZT-51 particle VF = 0.2 
subjected to a cyclic electric loading ( ) ( )3 1.2sin 2πE t ft=  MV/m with various frequencies f, (a), (b) 0.5; (c), (d) 1; (e), (f) 
10 Hz, along the poling direction. First six cycles are plotted. 

 
f = 1 Hz along the poling direction is used in the analysis. Figure 10 depicts the normalized effective strain am-
plitude6 at various cycles. The initial drop in the normalized effective strain amplitude is due to time-dependent 
polarization effect in the PZT-51 fibers and then the strain amplitude increases at later cycles because of the 
creep deformation effect in the FM73 polymer constituent. For further explanation, it is seen in Figure 11(a) 
that the strain amplitude in the PZT-51 constituent under cyclic electric field decreases before reaching steady 
state, while the strain amplitude in the FM73 polymermatrix constituent (Figure 11(b)) under cyclic stress input 
increases with increasing number of cycles. The different responses in the PZT-51 and FM73 polymer leads to 
complex hysteretic responses of the hybrid composites and higher number of cycles is required to reach steady 
state. 
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6The normalized strain 33ε  amplitude is normalized with respect to the maximum strain 33ε  in the first cycle. 
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Figure 10. Normalized effective longitudinal strain 33ε  amplitude vs. number of 
cyclers for the stress free PZT-51/[PZT-51/FM73 polymer] hybrid piezocomposite 
with PZT-51 fiber VF = 0.4 and PZT-51 particle VF = 0.2 due to a cyclic electric 
loading ( ) ( )3 1.2sin 2πE t ft=  MV/m with frequency f = 1 Hz along the poling direc-
tion. (Logarithmic scale on the horizontal axis). 

 

         
Figure 11. Normalized strain amplitude vs. number of cyclers. (a) Pure PZT-51 subject to a cyclic electric loading with 
frequency f = 1 Hz along the poling direction. (b) Pure FM73 polymer subject to a cyclic mechanical loading with frequen-
cy f = 1 Hz. (Logarithmic scale on the horizontal axis). 

6. Conclusions 
We have developed a hybrid-unit-cell model for predicting the effective nonlinear and rate-dependent hysteretic 
responses of active hybrid composites. The studied hybrid piezocomposites consist of unidirectional piezoelec-
tric fibers embedded in a polymeric matrix, which is reinforced with piezoelectric particles. Nonlinear electro- 
mechanical constitutive models, including polarization switching response, are used for the active fibers and 
particles, while a viscoelastic solid-like model is used for the polymer. In order to predict the effective nonlinear 
rate-dependent electro-mechanical responses, linearized micromechanical relations are first imposed in order to 
provide trial solutions at each instant of time. An iterative scheme, i.e., fixed-point method, is then added to mi-
nimize errors from linearizing the nonlinear electro-mechanical and time-dependent responses. 

We have performed several analyses on understanding the nonlinear electro-mechanical responses of hybrid 
piezocomposites using the above hybrid-unit-cell model. The results are summarized as follow: The hybrid 
unit-cell model is capable of capturing the linear elastic response of fiber-reinforced composites and hybrid 
composites, which are tested with limited experimental data. Adding PZT fillers significantly improve the 
blocked stress in the transverse fiber direction while insignificantly affects the overall electro-mechanical per-
formance in the longitudinal fiber direction. This is because the matrix, whose properties change with adding the 
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PZT fillers and dominate the transverse response. The free strains, however, significantly decrease in both 
transverse and longitudinal fiber directions as the amount of PZT fillers increase. This is due to the fact that 
adding stiffer PZT particles in a softer epoxy matrix results in a stiffer overall matrix. Thus, adding PZT fillers is 
useful for improving the blocked stress for active composites with 3 - 1 operating mode. Responses of the hybrid 
piezocomposites under cyclic electric field, with amplitude higher than the coercive electric field limit of the 
materials, and compressive stress loadings have been studied. Adding PZT fillers slightly reduces the hysteretic 
polarization response, and significantly decreases the hysteretic strain response. As the matrix becomes stiffer, 
matrix would experience smaller deformations when an electric field input is applied, resulting in smaller resi-
dual stresses7 in both fibers and matrix. Although its effect is minimum, the residual stress would affect the 
overall hysteretic polarization in composites. As also expected compressive stresses applied along the direction 
of electric field reduce the polarization capability of the composites. We also investigate the effect of frequen-
cies on the overall electro-mechanical responses of hybrid composites. A lower frequency input allows the hy-
brid piezocomposites to undergo more pronounced time-dependent response, which in this case is shown by 
broader hysteretic responses. The hysteretic response indicates amount of energy being dissipated, which is 
converted into heat. It is noted that many applications of active materials would involve cyclic electro-mechan- 
ical loading, thus the hysteretic response can eventually lead to cyclic failures.  
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