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Abstract 
The classification of groups of order less than 16 is reconsidered. The goal of the paper is partly 
historical and partly pedagogical and aims to achieve the classification as simply as possible in a 
way which can be easily incorporated into a first course in abstract algebra and without appealing 
to the Sylow Theorems. The paper concludes with some exercises for students. 
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1. Introduction 
This past semester I have been teaching an introductory course on abstract algebra. The question arises of how to 
reach an audience of a mixed background, for example, graduate and undergraduate students. My solution was 
to present the material in a very computational way rather than going the usual route of lots of Theorems and 
Propositions. More specifically, why not orient the course towards the problem of classifying groups of small 
order? In the present article I shall present a classification of groups of order less than 16. The ground rules are 
that we shall assume that students have covered the first four weeks of group theory. In Section 3 we present six 
“Elementary Facts” which students can treat as homework exercises. We shall also assume that we have known 
the classification of finite abelian groups. Maybe that is a lot to ask, however, it is easy to understand the 
structure of finite abelian groups: just keep in mind the groups 2 3×   and 2 2×  , the former is cyclic 
whereas the latter is not. Here p  denotes the set of integers 0,1, 2, , 1p −  that are added modulo p so that 
it is perhaps better to write 2 3⊕   rather than 2 3×  . Many authors use the notation pC  to connote a 
cyclic group of order p to which of course p  is isomorphic. In particular in the sequel it is sometimes preferable 
to think of 2  as being isomorphic to the group consisting of the integers { }1±  under multiplication. 

Probably the nicest way to obtain the structure for finite abelian groups is as Corollary to the structure 
Theorem for a finitely generated module over a principal ideal domain, which can be covered nicely in the 
second semester of the abstract algebra class: see for example [1]. Another pillar in the classification of finite 
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abelian groups is Sylow’s Theorem or Theorems depending on how they are presented [2]. Important as these 
Theorems are, the proofs probably go over the heads of first semester abstract algebra students even though the 
statements of the theorems are not difficult and numerical examples come readily to hand. In Gallian’s book [3] 
Sylow’s Theorems are relegated to a section titled “Special Topics” and appear on page 399. We recommend [3] 
for all details not covered adequately in this short article. The author still enjoys the book by Herstein [4] from 
which he originally learned the subject. Another very nice book, among many others, is written by Rotman [5]. 
So that is the program: classify groups of order less than 16 knowing the structure of finite abelian groups 
without using Sylow theory. 

In Section 3 we review some historical details about the emergence of the concept of an abstract group and 
some of the early results on the classification of groups of small order. In Section 4 we consider the action of 
conjugation of a group on itself and the class equation. In Section 5 we study properties of the dihedral group 

nD  of order n. In Section 6 we prove the main Theorem that identifies nD  in various cases. In Section 7 we 
take stock and see which values of G  have already been accounted for and then settle the remaining 4 cases. 
In Section 8 we draw a few conclusions and finally in Section 9 we present a few exercises for students. 

We shall say a few words about notation: H G<  means that H is a subgroup of G and H G  means that 
H is a normal subgroup of G. The identity element in G will be denoted by e. We shall denote the center of the 
group { }| , for allG z G xz zx x G= ∈ = ∈  by ( )Z G  and the centralizer of an element g G∈ , by ( )GC g , 
that is, ( ) { }|GC g x G gx xg= ∈ = . We shall use the word order frequently with different meanings. Thus G  
denotes the order of G, that is, the number of elements in G. We shall also use the same notation if merely 
Y G⊂ . On the other hand, ( )o g  is the order of an element g G∈ , that is to say, the smallest positive power 
is r such that rg e= . The reason for using the same word is that ( )o g  is also the order of the cyclic subgroup 
generated by g and that cyclic subgroup will be denoted by g . Another not very serious remark: I have 
consistently used numbers rather than writing numbers in words because there are a lot of them and I considered 
that to do so had a much of a more visual impact.  

2. Some History 
The development of group theory is a complicated historical and epistomological question that we cannot 
possibly do justice here. We shall not supply many of the historical references as they can be found in the 
excellent book by Rose [6] which can serve effectively as a text for a more advanced course on group theory. 
The theory was a gradual coalescence of ideas distilled from the areas of polynomial equations, number theory 
and geometry. Indeed the very concept of “geometry” itself was being expanded by Gauss, Riemann, Lobach- 
evsky and Bolyai in the first part of the nineteenth century. Klein’s Erlangen Program, which associates a group 
of symmetries to a particular flavor of geometry, dates from 1872. There had been numerous contributions to the 
theory of groups made by the likes of Lagrange and Cauchy (whose theorems in finite group theory we still 
celebrate today), Euler and Gauss himself, particularly in what we refer to nowadays as abelian groups and their 
relationship to modular arithmetic. Apparently Galois in 1831 had begun to grasp the notion of an abstract group, 
as opposed to a group of permutations, as too did Cayley in the 1850’s although both men’s work was years 
ahead of its time. 

Eventually the abstract idea of a “group” emerged. A two volume book on algebra by Heinrich Weber 
“Lehrbuch der Algebra” appeared in 1895 and 1896 and the first edition of William Burnside’s book [7] was 
published as long ago as 1897. These books were enormously influential. Meanwhile the Norwegian Ludwig 
Sylow’s fundamental set of Theorems had appeared as early as 1872 [2]; it is interesting that his paper was 
written in French whereas Sophus Lie, Sylow’s equally famous compatriot, wrote in German. Notice that Sylow 
refers again to “les groupes de substitutions”, or permutation group in more modern language. Burnside [7] 
credits Sylow with laying the first real theoretical foundations of group theory. By 1870 Jordan had proved the 
Jordan-Hölder theorem for permutation groups and Hölder proved it for abstract groups in general in 1889. 
Furthermore, Hölder in 1893 was studying groups of order 3 2, ,p pq pqr  and 4p . In America in 1900 G. A. 
Miller and G. H. Ling [8] proved that there was no simple group of order between 1092 and 2001. In the 
negative direction, as late as 1908 Burnside was complaining to the London Mathematical Society about the lack 
of acceptance in Britain of group theory as a subject in its own right. 

By 1930 Miller [9] was announcing the classification of all groups of order up 100. The most difficult case, as 
Miller’s paper suggests, was 64G = . Apparently Miller’s paper contained errors that were not corrected until 
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1964 by Marshall Hall and J K Senior [10]. From the 1960’s onwards the quest for the classification of the finite 
simple groups was in full swing. Copious details may be found on the Wolfram website that do not need to be 
repeated here. We will be content simply to cite [11] [12] as more traditional references. Apparently the 
complete classification was not achieved in toto until 2004. 

3. Elementary Facts 
1) Groups of prime order are cyclic and unique up to isomorphism. 
2) Conjugate elements have the same order. 
3) If G is a group and ( )Z G  is its center then the factor group ( )G Z G  cyclic implies that G is abelian. 
4) If all elements of G except e are of order 2 then G is abelian. 
5) If p is prime the number of elements of order p is a multiple of 1p − . 
6) If a group G is generated by two normal subgroups H and K (so that every g G∈  is of the form 

1 1 2 2 1p ph k h k h k h  for some finite p) and H and K are complementary in the sense that { }H K e= , then 
G H K≈ × , the direct product. 

4. Conjugation and the Class Equation 
4.1. Group Actions 
Let G be a group and X a set. Then we say G acts on X if there is a group homomorphism φ  from G to XS , 
the latter set denoting the group of permutations of X. Here are three examples of group actions where the group 
acts on itself, that is, X G= .  
• For g X G∈ =  and a G∈  let ( )aL g ag=  (left translation) 
• For g X G∈ =  and a G∈  let ( ) 1

aR g ga−=  (right translation) 
• For g X G∈ =  and a G∈  let ( ) ( ) 1

a a ag L R g agaφ −= =  (conjugation): note ( )a e eφ =  for a G∈ . 
Define ( ){ }|g x g G∈  to be the orbit ( )Orb x  of x and define a relation on X according as elements belong 

to the same orbit. It is left as exercise to show that this relation is actually an equivalence relation. Define also 
( )Stab x  or xG  to be the stabilizer subgroup of x, that is, { }|xG g G gx x= ∈ = . In the case of the first two 

actions defined above there is only one orbit for each g G∈ , that is G itself; in that case we say that the action 
is transitive. Also, for each g G∈  we have ( ) { }Stab g e= . However, in the third example of the action of 
conjugation, the orbits are precisely the conjugacy classes of G and gG  is the centralizer ( )GC g  of g, that is, 

( ) { }|GC g x G gx xg= ∈ = . It is easy to show that gG G< . Notice also that conjugation does nothing at all for 
abelian groups! In fact conjugation is a very special kind of action because G acts on itself not merely as a set 
but as a group; in other word the action maps not only to GS  but to ( )Aut G , the group of automorphisms of 
G. 

Theorem 1. There is a one to one correspondence between elements of ( )Orb x  and xG G , that is, the 
space of (left) cosets of xG  in G.  

Proof. Suppose that ( )y Orb x∈ ; then there exists g G∈  such that y gx= . We obtain a map from 
( )Orb x  to xG G  by mapping g to the left coset of xgG  in G. We leave the student to verify that this map is 

well-defined (the hardest part for students) and bijective.                                            

4.2. Example 
The group D6 or 3S  consists of the elements { }2 2, , , , ,e x x y xy x y  subject to the relations 3 2 2,x y e yx x y= = = . 
The last relation used repeatedly enables us to “twist” products of x and y to work all the x’s to the front in a 
string of x’s and y’s and all the y’s to the back. Then the other relations may be used to reduce any string to one 
of the 6 elements that constitute the group. The conjugacy classes of 6D  are { } { } { }2 2, , , , ,e x x y xy x y  so that  

( ) { }2,Orb x x x= . Now { }2, ,xG e x x=  and 1 2yxy x− =  so { } { }2 2, , , ,xG G e x x y e x x=  . Also  

( ) { }2, ,Orb y y xy x y=  and { },yG e y=  and 1 2 2 2x yx x yx x x y xy− = = =  and  
1 2 2 2xyx xyx xx yx yx x y− = = = =  so { } { } { }2, , ,yG G e y x e y x e y=   . 
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4.3. Conjugation and Centralizers 
The class equation expresses G  as a sum of the orders of the conjugacy classes. Thus the order of a conjugacy  

class is the index of the centralizer of any element x in that conjugacy class, that is, 
( )G

G
C x

. In particular the  

order of a conjugacy class divides G . Notice that ( )z Z G∈  if and only if ( ) =GC z G  if and only if z 
comprises its own conjugacy class and that ( ) 1GC x ≠  for x G∈  provided G is not the trivial group 
consisting of a single element. Hence on the right hand side of the class equation we will have as many 1’s as 
appear in ( )Z G  and sums of various proper divisors of G . 

5. The Dihedral Group 
The group 2nD  of order 2n is generated by x and y subject to the relations 2nx y e= =  and 1nyx x y−= . We 
shall now determine the class equation for 2nD . Note that 1nyxy x −=  and ( )2 12 2n nyx y x x− −= =  and likewise  

3 3 1, ,n nyx y x yx y x− −= = . If n is odd then 
1 1

1 2 2 2 2~ , ~ , , ~
n n

n nx x x x x x
− +

− −
  whereas if n is even 2

n

x  is a  
singleton and ~ signifies “is conjugate to”. 

Now 1 2n nx yx x y− −=  and 2 2 1 2 3 1 4n n n n nx yx x x yx x x y x y− − − − − −= = = . Continuing in this way we find that if n is 
odd ( ){ }1, , , ny xy x y−

  comprises a single conjugacy class, whereas if n is even ( ) ( ){ }4 22, , , ,n ny x y x y x y− −
   

and ( ) ( ){ }3 13, , , ,n nxy x y x y x y− −
  constitute distinct conjugacy classes. 

Assuming 2n >  so that 2nD  is not abelian, as a result of the preceding calculations we see that, apart from  

{ }e , the only other singleton conjugacy class is 2
n

x
  
 
  

 in the case where n is even. Thus if n is odd ( ) { }2nZ D e=   

whereas if n is even ( ) 2
2 ,

n

nZ D e x
  =  
  

. 

A few more elementary calculations convince one that if n is odd, the class equation for 2nD  is  
2 1 2 2 2n n= + + + + +  

the number of 2’s being 1
2

n − , whereas if n is even, the class equation for 2nD  is  

2 1 1 2 2 2
2 2
n nn = + + + + + + +  

the number of 2’s being 2
2

n −  this time. 

Notice finally that if 2n r=  where r is odd then in fact 2 2n nD Z D≈ × : indeed ( ) { }2 2, n
n nZ D e x D=   and 

also { }2 4 2 2 2 4 2 2
2, , , , , , , , ,n n

ne x x x y x y x y x y D− −
    being a subgroup of index 2 that is isomorphic to nD . 

Since the normal subgroups are complementary by Fact 6, it follows that 2 2n nD Z D≈ × . 

6. Theorem 
Lemma 1. If G is a non-abelian group of order pq where p and q are distinct primes then ( ) { }Z G e= .  

Proof. Since ( )Z G G<  we must have that ( )Z G  divides G  by Lagrange’s Theorem and hence 
( )Z G  can only be one of 1, , ,p q pq . Now ( )Z G pq=  if and only if G is abelian. If ( ) { }Z G e≠  then 
( )Z G p=  or ( )Z G q= . Now ( )Z G G  and in either case the group ( )G Z G  is cyclic hence by Fact 3 

G must be abelian.                                                                           
Lemma 2. If G is a group of order mp  where p is prime then ( ) { }Z G e≠ .  
Proof. If ( ) { }Z G e=  the class equation gives 1mp = + . Each of the terms on the right hand side except 

the first must be divisors of mp  since they are indexes of centralizers and cannot be 1 otherwise ( ) { }Z G e≠ - 
contradiction and hence ( ) { }Z G e=  is impossible.                                                

Theorem 2. Suppose that G is a non-abelian group of order 2n where n is either an odd prime or 4 or 6. 
Suppose further that there exist ,x y G∈  such that 2nx y e= =  and that 2

n

y x≠ . Then 2nG D≈ .  
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Proof. Clearly { }2 1, , , , ne x x x −
  are distinct as too are { }2 1, , , , ny xy x y x y−

 . The only possibility for 
collapsing among these 2n elements is if y is a power of x and necessarily 2

n

y x= , which case we are excluding. 
Now ( )GC x x= : it certainly contains x  and if ( )GC x G=  then yx xy=  and G would be abelian. 
Hence x belongs to a conjugacy class of 2 elements. Furthermore myx x y=  for some 1 m n< < . Thus  

myxy x=  and ( ) ( ) 22 2 mmm m mx y xy yx y yxy x x= = = = = . Thus 2 1modm m≡ . 
Suppose now that n is an odd prime. Then 2 1modm n≡  has only the solution 1m n= − . 
Suppose that 4n = . Then the only solution of 2 1modm n≡  for 1 4m< <  is 3m = . 
Suppose that 6n = . Then the only solution of 2 1modm n≡  for 1 6m< <  is 5m = . 
Hence 2nG D≈  in all 3 cases covered by the Theorem.                                           
Corollary 1. Suppose that G is non-abelian and that 2G p=  where p is an odd prime. Then 2 pG D≈ .  
Proof. By 1 ( ) { }Z G e=  and the only possibility for the class equation is 2 1 2 2 2p p= + + + + + . 

Consider an element y in the conjugacy class of order p. Now ( ) 2GC y =  and so ( ) 2o y =  since y e≠ .  
Turning to an element x in a conjugacy class of order 2 then ( )GC x p= . Since p is prime it follows that  

( )GC x x=  is cyclic of order p. We cannot have 2
p

y x=  for then ( )GC y G=  and ( )y Z G∈  whereas 

( ) { }Z G e= . Hence 2 pG D≈ .                                                                 

7. Case by Case Study 
For each order bigger than 5 we are looking for a non-abelian group G. Since G is not abelian we have that 

( )Z G G≠ . Since groups of prime order are cyclic we do not need to consider the cases 2,3,5,7,11,13G = . 
Furthermore Theorem 1 disposes of the cases 6,10,14n =  so it remains to study the cases 8,9,12,15. 

7.1. 9G =  
It follows from Lemma 2 that ( ) { }Z G e≠ . Hence we can only have that ( ) 3Z G = . Now ( ) 3G Z G =  and 
so ( )G Z G  is cyclic and hence G is abelian by Fact 3. 

7.2. 15G =  
By Lemma 1 ( ) { }Z G e=  and the class equation gives 15 1 3 3 3 5= + + + + . The elements of the conjugacy 
class of order 5 are themselves of order 3: they cannot be of order 5 because their centralizers are of order 3 
whereas an element of order 5 has a centralizer of order at least 5. On the other hand each of the elements in the 
3 conjugacy classes of order 3 must have order 5: indeed, if x is such an element then ( ) 5GC x =  and x must 
generate ( )GC x . Now the total number of elements of order 5 must be 9, which contradicts Fact 5, since it 
would have to be multiple of 4. Hence there cannot exist G for which 15G =  and G is non-abelian. 

7.3. 8G =  
We know of course that 8D  is a non-abelian group of order 8. We investigate whether there are any others. 
According to Fact 4, G must have an element x of order 4. Suppose that y G∈  but that y x∉ . Then 
according to Theorem 2, if G is not isomorphic to 8D  we may assume both that 4y e=  and 2 2x y= . It is 
then easy to see by cancelation that the elements of G must be { }2 3 3, , , , , , ,e x x x y y xy yx . Now yx xy≠  or else G 
will be abelian. The only possibilities for ( )o xy  are 2 or 4; however, if ( )2xy e=  then 3 3 5yx x y xy xy= = =  
and again G would be abelian and so ( ) 4o xy = . Again by cancelation and elimination of all other possibilities 
we see that ( ) 1yx xy −= ; furthermore ( )2 2 2xy x y= =  since xy has order 2. We will now rewrite the elements  
of G as ( ){ }32 3 3, , , , , , ,e x x x y y xy xy . Note that ( )3 2yx xy y xy= =  and hence x yxy= . Similarly xyx y= .  

Finally we can replace e by 1, 2x  by 1−  and , ,x y xy  by , ,i j k , respectively, so as to obtain the quaternion 
group Q usually written as { }1, , ,± ± ± ±i j k . 

7.4. 12G =  
We have since ( )Z G G<  that ( )Z G  could be 1, 2, 3, 4 or 6. We may reject the cases ( ) 4Z G =  or 

( ) 6Z G =  because of Fact 4. Suppose next that ( ) 3Z G = . Then in the class equation we must have another 
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odd number, which can only be 3. Thus 12 1 1 1 3= + + + + . Consider an element x in the conjugacy classes of 
order 3. Its centralizer is of order 4 and contains ( )Z G  as a subgroup which is impossible since 3 does not 
divide 4. Thus ( ) 1Z G =  or 2. 

Suppose then that ( ) { },Z G e z=  where 2z e= . Then again by Fact 4 we can only have that ( ) 6G Z G D≈ . 
Now we know that 6D  contains a cyclic normal subgroup N  of order 3. According to the correspondence 
theorem [4], which is really the deluxe version of the first isomorphism theorem, N  engenders a normal 
subgroup N of order 6 in G that contains ( )Z G . Since N itself has a non-trivial center it too must be cyclic. 
Suppose that N x= . Since N G  there exists y G∈  such that G x y x=   and furthermore 

2y x∈ . 
Notice that ( ) { }3,Z G e x=  since ( )Z G N⊂  and if any other positive power of x were in ( )Z G  then 
( ) 2Z G > . Furthermore, ( )2y Z G∈  since 2y  commutes with x and y so 2 3y x=  or else 2y e=  in which 

case 12G D≈  by Theorem 2. 
So in order to avoid having 12G D≈  we must have 2 3y x= . Evidently the group G can be written as 
{ }2 3 4 5 2 3 4 5, , , , , , , , , , ,e x x x x x y xy x y x y x y x y . So which element is yx? Clearly, since y x∉ , we have 
yx x∉  and yx y≠ . Moreover yx xy≠  or else G would be abelian. If 3yx x y=  then 3yx yx=  since  

( )3x Z G∈  which would give 2x e=  and so 3yx x y≠ . If 2yx x y=  then ( )2 2 2 6yx yxyx x y x x e= = = = .  
So ( )2yx e=  and 3yx x≠  so 12G D≈  by Theorem 2. If 4yx x y=  then ( )2 4 2 8 2yx x y x x x= = =  so that 

( )( )3 2o yx =  and ( )3 2 3yx yxx x y= = . According to Theorem 2 we must have 12G D≈  unless 3 3x y x= , 
which is of course impossible. 
Thus the only way to avoid having 12G D≈  is to have 2 3y x=  and 5yx x y=  and of course 6 4x y e= =  

and all the conditions for the existence of a group are now met. To recognize this group, introduce a new generator 
2w x=  so that 3w e= . The elements of G can be written as { }2 3 2 3 2 2 2 2 2 3, , , , , , , , , , ,e y y y w wy wy wy w w y w y w y . 

Now 2 4 2 3 2 3w x yxy xy y x y y wy= = = =  where we have used the fact that ( )2y Z G∈ . Hence 1 2y wy w− = . 
Thus the group 4Z  generated by y, acts on 3Z  generated by w via conjugation and engenders a group denoted 
by T that is a semi-direct product of 4Z  and 3Z . Although ( ) 6G Z G D≈  and in fact 6 2G Z Z≈  neither of 
these extensions split: here 6Z x≈ . 

In fact the group T belongs to a familiar class of finite groups of order 4n called the dicyclic groups and also 
known as the binary dihedral groups. Depending how one counts, the first such group is 4Z  and the second the 
group Q studied in subsection 6.3. For further details see [13] which is another nice reference for more advanced 
material. 

Now suppose that ( ) 1Z G = . The class equation must contain another odd number which can only be 3. 
Hence we have the following cases: 
• 12 1 3 2 2 2 2= + + + + +  
• 12 1 3 2 2 4= + + + +  
• 12 1 2 3 3 3= + + + +  
• 12 1 3 4 4= + + + . 

We consider the first three cases for which 2 appears in the class equation. We take x in one of the conjugacy 
classes of order 2. Then ( ) 6GC x = . Since ( )GC x  has index 2 it is normal in G. Hence we may write 
G x x y=   where 2y x∈ . If 2y  is a positive power of x, it will be a central element. However, we are 
considering now only cases where ( ) 1Z G =  so the only possibility is 2y e= . Now we can invoke Corollary 
1 and conclude that 12G D≈ . Since for 12G D=  we have that ( ) 2Z G =  we conclude that none of the three 
cases for which 2 appears in the class equation actually do occur. 

Now consider the last case of the class equation 12 1 3 4 4= + + + . Each of the elements in the conjugacy 
classes of order 4 must have order 3 because their centralizers are of order 3. Elements in the conjugacy class of 
order 3 could have order 2 or 4 because each of their centralizers are of order 4; however, if the elements have 
order four their squares would have order 2 and there are no conjugacy classes left to accommodate them. Hence 
the elements in the conjugacy class of order 3 have order 2. 

Let x and y be elements of order 2 and 3, respectively. Then 2yxy  and 2y xy  are of order 2 since they are 
conjugate to x; if any two of 2 2, ,x yxy y xy  are equal we would have that xy yx= . In that case we have a 
cyclic subgroup of order 6 generated by xy and whose only element of order 2 is x. Now pick a second element 
of order 2 and appeal to Corollary 1 to conclude again that 12G D≈  and again contradicting ( ) 1Z G = . Thus 
we may assume that 2 2, ,x yxy y xy  are distinct. Now xy and yx must be of order 3. It follows that 2xyxy y x=  



G. Thompson 
 

 
64 

and 2yxyx xy= . Besides 2 2, , ,e x yxy y xy  the remaining elements of G are 2 2 2, , , , , , ,y y xy yx xyx xy yxy y x . Now 
obviously y and xyx  and xy  and yx , respectively, are conjugate. Furthermore, 2xy  and yxy  and 2y x  
are conjugate. Now 2xyxy y x=  implies that 2xy x yxy=  and 2yxyx xy=  that 2yxy xy x=  so  

2 2 2y xyxy y xxy x yx= =  and so xyx  is conjugate to yx . Hence the conjugacy classes have to be { } ,e
{ } { } { }2 2 2 2 2, , , , , , , , , ,x yxy y xy y xy yx xyx y xy y x yxy . It follows that 4G A≈ . We can obtain the usual presen- 
tation of 4A  by mapping x and y to the permutations (12) (34) and (123), respectively. 

Finally, a more sophisticated approach is to note that the conjugacy class of order 3 together with e forms a 
normal subgroup 2 2N Z Z≈ ×  of order 4: indeed the centralizer of an element x in the conjugacy class of order 
3 is of order 4. Since elements in the two conjugacy class of order 4 are each of order 3, the only possibility is to 
obtain the normal subgroup N described above. It follows that 3G N Z≈ . From there it is not difficult to argue 
that 3Z  acts on N as a semi-direct product and deduce that 4G A≈ . Of course N turns out to be the Sylow 
2-subgroup. 

8. Conclusions 
We have classified all groups of order < 16 without using Sylow theory and assuming we have known the 
classification of finite abelian groups. It seems remarkable to the author that for 16G <  the classification of 
the non-abelian groups becomes almost routine and depends only on elementary facts: the case 12G =  is the 
only one that is at all challenging. So why stop at 16G = ? In fact, it turns out that up to isomorphism there are 
14 distinct such groups! As an exercise (see next Section) try to find 8 of them. In fact, the groups that are the 
hardest to classify are p-groups where the order of mG p=  and p is prime and m is a positive integer. Sylow’s 
powerful theorems tell us nothing for such groups. Furthermore, the smaller that p is, the harder are the groups 
to classify. Naively speaking, the smaller that p is the more combinatorial possibilities there are to satisfy the 
group axioms. 

In [14] one can find descriptions of the non-abelian groups of order < 32 in terms of generators and relations. 
We should also mention the computer algebra system GAP that contains the “Small Groups Library”. In that 
system groups of order up to 2000 are listed up to isomorphism with the exception of groups of order 

101024 2= : apparently there are an 49,487,365,422 non-isomorphic 2-groups of order 1024. At the time of 
writing, according to Wolfram, all groups have been classified up to isomorphism up to order 112047 2 1= − . In 
addition to Wolfram the author has also gained a lot of information from Wikipaedia: search for “List of small 
groups”. However, I am warned to add the usual disclaimers about referring to websites. 

9. Exercises for the Student 
• Supply proofs of the six Elementary Facts. As a hint for the sixth, note that it suffices to map generators to 

generators. 
• Show that the orbits ( )Orb x  defined in Section 4 according as elements belong to the same orbit actually 

is an equivalence relation. 
• Show that for the stabilizer subgroup of ( )Stab x  or xG  defined in Section 4, xG G< . 
• Finish the details of Theorem 4.1. 
• Find 8 mutually non-isomorphic groups of order 16. 
• Find generators and relations for the group 4A  starting from its definition as the subgroup of the symmetric 

group 4S  consisting of even permutations. 
• Find an explicit isomorphism between 2nD  and 2 nZ D× . 
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