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Abstract

Difficulties encountered in studying generators of semigroup B, (D) of binary relations defined

by a complete X-semilattice of unions D arise because of the fact that they are not regular as a rule,
which makes their investigation problematic. In this work, for special D, it has been seen that the

semigroup B, ( D) , which are defined by semilattice D, can be generated by the set

B={aeB, (D)V(X",a)=D]|.

Keywords

Semigroups, Binary Relation, Generated Set, Generators

1. Introduction

Theorem 1. Let D= {5, Z, ZZ,---,ZM} be some finite X-semilattice of unions and
C(D) = {PO, RPess mel}

be the family of sets of pairwise nonintersecting subsets of the set X.

If ¢ is a mapping of the semilattice D on the family of sets C(D) which satisfies the condition (0([3) =P,
and ¢(Z;)=P forany i=12,.-,m-1 and D, = D\D,, then the following equalities are valid:

D=P,UP,UP,U---UP, ,

Z,=Pu |Jo(T). 1)

Teljzi
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In the sequel these equalities will be called formal.

It is proved that if the elements of the semilattice D are represented in the form 1, then among the parameters
Pi (i=0,1,2,---,m—1) there exist such parameters that cannot be empty sets for D. Such sets P; (0<i<m-1)
are called basis sources, whereas sets P; (0 <j< m—l) which can be empty sets too are called completeness
sources.

It is proved that under the mapping ¢ the number of covering elements of the pre-image of a basis source is
always equal to one, while under the mapping ¢ the number of covering elements of the pre-image of a com-
pleteness source either does not exist or is always greater than one (see [1], Chapter 11). Some positive results in
this direction can be found in [2]-[6].

Let P,,P,P,-,P,_, be parameters in the formal equalities, 8B, (D) and

5= U (110

=0 teR t'eX\D

~ mil ~ ol
,B:U(PixUtﬂJu((X\D)xD) (3)
i=0 teR
The representation of the binary relation g of the form £ and B will be called subquasinormal and
maximal subguasinormal.

If g and g are the subquasinormal and maximal subquasinormal representations of the binary relation

B, then for the binary relations g and g the following statements are true:
a) B,feB,(D);
b) Bc BB

c) the subquasinormal representation of the binary relation £ is quasinormal;

d) if
a R R R

B=lo% o5 = |
Poﬁ P1ﬁ Pm—lﬂ

then A, isa mapping of the family of sets C(D):{PO,Pl,Pz,---,P

m-1

D={D,Z,,Z,Z 4}

} in the X-semilattice of unions

e)if B,:X\D— D isamapping satisfying the condition j,(t')=t'# forall t'e X \D, then

p-Ulre U U (1110

i teR t'eX\D

2. Results
Proposition 2. Let «,f € B, (D). Then
aoﬂ:aoﬁzaoﬁ.
Proof. It is easy to see the inclusion aocfBcaoB ca-f holds, since BB f.If x(aoB)y
(x,yeX), then xazfy forsome zeX.So, zg X\D since zexaeD and z(Ui"j(F} XUrep,tﬂ))y'

Then z(Pk xUtE&tﬁ)y forsomek (0<k<m-1) ie. zeP, and yez8c Utepkt/)’ . For the last condition
follows that z3y. We have xazpfy and X(a°B)y . Therefore, the inclusion aoﬁ; ao B is true. Of this
and by inclusion aof caof caof follows that the equality aof=aof =a-f holds. g
Corollary 1. If ,6,4€B, (D) and BcSc B, then aof=aoS=aop.
Proof. We have fcdcf and acfcacdcaqf. Of this follows that aof=ac5=acf since
aoff=acf. (]
Let the X-semilattice D = {24,23,22,21, D} of unions given by the diagram of Figure 1. Formal equalities

of the given semilattice have a form:
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Figure 1. Diagram of D.

D=PRURUPR,UPRUPR,
Z, =P UPR,UP,UP,,
Z,=P,UR,UR,UP, 4)
Z,=FB,UR UPR, UPR,,
Z,=P,UP,.
The parameters Py, P, P; are basis sources and the parameters P,, P, are completeness sources, i.e. |X| >3.
Example 3. Let X ={1,2,3,4,5,6,7}, B ={L4}, P,={25}, B, ={3,6}, P,=P,=3. Then for the for-
mal equalities of the semilattice D follows that Z, ={2,5}, Z,=1{1,2,4,5}, Z,={13,4,6}, Z, ={2,35,6},
D=1{123456}, D={{2},{1.2},{13},{2,3},{1,2,3}}, and

B=({1}x{2,35,6})U({2}x{1,3,4,6})U({3} x{12,4,5})U({4,5,6,7} x{2,5}).

Then we have:

Utp={2356}, (Jtp={123456}, JtB={1245}

teR teP, tePs
Uts=Uts=2;
teRy tePy

B =({1,4}x{2,3,5,6})U({2,5}x{1,2,3,4,5,6})u

(13 1245) ({7}{25});
£ =({1.4}x{2,3,5,6})U({2,5}x{1,2,3.4,5,6})U({

3,6)x{1,2,4,5})U({7}x{1,2,3,4,5,6,7}).
Theorem 4. Let the X-semilattice D—{Z 2,,2,,Z, D} of unions given by the diagram of Figure 1,
B= {a e B, (D)|V (X*,a) = D} and |X \D| > 3. Then the set B is generatlng set of the semigroup By (D).

Proof. It is easy to see that |x|26 since P,P,,P, ¢{J} D|>3. Now, let a be any binary rela-
tion of the semigroup By (D); @, a,, .2, €B, a=goa,0-0a, and f=a,oa;0 . Then the
equality a=a,°f= aloﬂ (B is subquasmormal representatlon of a binary relation ,6’) |s true. By
assumption ¢, € B, (D) i.e. the quasinormal representation of a binary relation ¢, have a form

o = (Y xZ, ) (Yt x Zg ) U(Ys % Z, ) U(Y x Z, ) U(Ys* < D).

Of this follows that
a=ayo = (Y xZ,)U(Y x Zy ) U (Y, x Z, ) u (Y, % Z,)u(Yg2 x D)o B
= (Y2 xZ,B) V(Y5 x ZoB) L (Y;2 x Z,B) (Y, x Z,8) U (Vs x D).
For the binary relation « we consider the following case.
a) Let ’V(X*,a)‘ =1.Then a=XxT ,where T € D.Byelement T we consider the following cases:

B:POP1P2P3P4
o 1T T T @

and f, are mapping of theset X\D ontheset {Z,,Z,,Z,,Z,}\{T}. Then

®)

1. T # D. In this case suppose that
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E:(POx@)u(Ple)u(PzxT)u(P3xT)u(P4x@)ut'ELXJ\D({t’}xﬁz(t')), o

o, = (Y % Z,)U(¥52 x Z,) (Y52 x Z, ) UV, x Z, ) U Yy % D),
where Y, Y, Y% Y% ¢ {@} , then it is easy to see, that «,#< B since V(D,a,)=V (D,f)=D.Fromthe
formal equality and equalities (6) and (5) we have:
Z,=(RUR)B=PRBUPB=CUT=T,;
Z,p=(R,URUPR,UR)B=RBURBURBUPL=CUTUTUD=T;
Z,=(RURURUPR,)B=RBURBURBUPRL=CUTUTUD=T,;
Z,B8=(P,UP,URUPR,)B=RBURBURBUPB=CUTUTUD=T;
DB =(PR,URUPR,URUPR)B=PRBURBUPBUPRBUPRS
= JuTuUTuUTUI=T;
azaloﬁ
= (Y2 xZ,B) (Y x ZoB) (Y2 xZ,B) (Y, xZ,B) L (Y5 x D)
= (Y xT)O(¥5e xT) (V2 xT ) O (Y2 xT)u(Yg2 xT ) = X xT

since Y, UY,* LYt UY,TUYE =X,

2. T =D. Inthis case suppose that

i Po P1 Pz P3 F)4
D z Z, Z, Z,
and g, are mapping of the set X\D inthe set D. Then

B=(Pg X Ij)U(Plle)U(Pz xZ,)U(PyxZ;)U(P, XZ4)U‘,€LXJ\D({V}XBZ (t,)>’ @

o, = (Y % Z, ) O (Y52 x Zg ) U (Y, x Z, ) (Y x Z, ) U (Y5 x D),
where Y, Y;% Y%, Y, % ¢ {@} , then it is easy to see, that a,, feB since V (D,e )=V (D,A)=D.Fromthe
formal equality and equalities (7) and (5) we have:
Z4B:(P0 “ Pz)B: POBU PzB: D;
p=(P,URUPR,UP,)B=RBURBUPRBUP,

Z,5=( B =D;
Z,=(P,URUP,UP,)B=PBURBURBUPS =D;
B
|\

ZB=(R,UR,UR,UR)B=PBUPBUPRBUPS=
DB =(P,URUP,URUP)B=PRBURBUPRS
a=a0f
= (Y xZ,B) (Y52 xZ,B) U (V52 x Z,8) U (Y, x Z,8) U (Y x D)
=(Y,2xD)u(Ys xD) U (Y2 x D)u(Y,* x D) u(¥s* x D)
=X xD.
b) ‘V(X*,a)‘:Z.Then
V(X*.a)el{z,,2.}.{2,,2,},{2,.0}.{z,,D}.{z,,D},{z,, D}
since V(X*,a) is X-semilattice of unions. For the semilattice of unions V(X*,a) consider the following

cases.
1. Let V(X*,a):{z4,T}, where, T e{Z,,Z,}. Then binary relation « has representation of the form

w9

| O
C
o

|

1l

O



Y. Diasamidze et al.

a =(Y xZ,)U(Y xT). In this case suppose that

—_PoPlP2P3P4
T 2z, T @

=
and f, are mappingoftheset X\D ontheset D\{Z,,T}.Then

B =(Px@)U(RxT)U(P,xZ,)U(PxT)U(P,xB)U u({t’}x/f2 (t’)),
t'eX\D (8)
o = (Y xZ, ) U (Yt x Zg ) U(¥32 x Z, ) U (Y, < Z, ) U (Y5 x D),

where Y%, Y4 Y4 Y ¢ (@), YA =Y, and YR OY,M OY, M OYt =Y, then it is easy to see, that
a,f €B since V (D,ey)=V (D,E) = D . From the formal equality and equalities (8) and (5) we have:
Z,8=(RUPR)B=RBURB=0UZ, =2,
Zaﬁz(PoupluszPzt)B:POEUHEUFEBUPME
=QuTuZ, V=T,
Z,8=(RURUPRUPR)B=RBURBURBUPS
=guUTuUTuUd=T,;
ZlB:(PO VR UR U P4)B: POBU PzEU P3EU P4B
=0uZ,VTuUd=T,
EBZ(POUP].UPZUP3UP4)E=POEUPJ_BUPZBUPBBUP4E
=0uTuZ,UTUD=T,;
aZaloB
=Yy xZ,B) (Y5 % ZB) U(¥s2 xZ,8) (Y, xZ,8) u(Ys* x D)
= (Y2 xZ, ) (Y xT) O (Y2 xT) UV xT)u (Y2 xT)
= (Yir xZy )oY Y oY Y )T ) = (Ve x 2, ) o (Y <T).
2. Let V(X*,a):{T,f)}, where, T 6{24,23,22,21}. Then binary relation o has representation of the

form o= (YT“ xT)u(YO“ X I5) . In this case suppose that

—_P0P1P2P3P4
g DT D @

=

and j, are mapping of theset X \D on the set D\{ . Then

7.0}
B =(Rx2)(RxD) (R xT)u(RxD)w(Rx@)w U ({thxf (1)),
t'eX\D
©)
o = (Y xZ,) U (Vs xZ3)u(Y,2 x Z, ) u(Y, x 2, ) u(Yg* x D),
where Y, Y74 Y1 Y ¢ (D), YA =Y and YR OV, OYM OYt =Yy, then it is easy to see, that
a,,f€B since V (Dyey)=V (DB) = D . From the formal equality and equalities (9) and (5) we have:
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(RUR)B=RBURB=CUT =T;
(R,URUP,UPR)B=PRBURBUPRLUPB=BUDUT UD=D;
(

(

PURURUPR)B=PRBUPBUPRBUPRB=0UDUDUZ=D;
P,UP,URUPR)B=PRBUPRBUPRBUPRB=UTUDUD=D
=(R,URUP,UP, uP),B PBAUPRBUPRBUPBUPRS
=gubDuTubDuUB=D

z
z
z
z

=
v
P
B
Dj

O!=C!103

= (Y2 xZ,B) U(Y52 % Z,B) U (Y, x Z,B) L (Y, x Z,B) L (Y5 x DB)
= (Y2 xT) (Y2 x D) u (Y2 x D) u(Y,* x D) (Y2 x D)

= (Y xT) UV UYs® OY UYgr)x D) = (% xT) U (¥ x D).

c) r\/(x*,a)‘:&Then
V(x*.a)e{{z,.2,,0}.{2, 2,,0}.{2,.2,,0}.{2,.2,,D} {Z,,2,,D} {Z, Z;,D}}
since V(X*,a) is X-semilattice of unions. For the semilattice of unions V(X*,a) consider the following

cases.
1. Let V (X*,a) = {24,21, D} . Then binary relation « has representation of the form

= (Yf X Z4)U(Y1“ x Zl)u(YO“ X 5) . In this case suppose that
= (R R R P P
b=
o 7, 7, 7, O
and f, are mappingoftheset X\D ontheset D\{Z,,Z,,Z,}. Then

B=(PxD)U(RxZ,)U(P,xZ,)u(PxZ)U(Px@)u [ ({t}xf (1)),

t'eX\D (10)
= (Y% Z, ) U (Y5 x Zy ) U (Y, x Z, ) U(Y,* x Z, ) u(Yg* x D),
where Y% Y1 Y41V e (@), YA =Y, Y, =Y and Y, OY,R UM =Y/, then it is easy to see, that
a,f €B since V (D,ey)=V (D,ﬂ) = D . From the formal equality and equalities (10) and (5) we have:

2B=(P,UP)B=PBURBE=0UZ, =1,
Z,8=(P,URUP,UPR)B=PBUBRBURBUPRB=0UZ,UZ,uD=
Z,=(R,URURUPR,)B=RBUPBURBUPL=0UZ,0Z D=
Z,B= (P uquP3uP4)/3=PoﬂuPz/;’u%ﬁuP4ﬁ:®uZ4uZlu®:Zl,

Df=(RURURURUR)F=RFURBUPBUPSUPRS
=guz,0uZ,0uZ,uP=D;

a:al"B
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a= (Yf X Z4)U(Y;’ X Z3)U(YO“ X f)) . In this case suppose that

B_ PO Pl PZ P3 P4
‘'@z, z, z, @

and f, are mapping of theset X\D ontheset D\{Z,,Z,,Z,}.Then

B =(Rx@)U(RxZ;)U(PxZ,)U(PxZ,)u(Px@)u | ({thxf (1)),
t'eX\D (11)
= (Y xZ, ) U (Y52 x Z5) U (Y2 x Z, )L (Y, x Z, ) U (Y5 x D),

where Y, Y1 Y Y e (D), YA =Y, Y =Y and YUY OYS =Y, then it is easy to see, that
o, €B since V(D,a)=V (D,,B) = D . From the formal equality and equalities (11) and (5) we have:

2,8=(RUPR)B=RBURB=0UZ, =2,
Z,p=(R,URUP,UPR,)B=RBURBUPRBUPS
=QuZ, v, V=1,
Z,8=(RURURUPR)B=RBURBURBUPS
=QuZ,uZ,UP=D
Z,8=(P,UR,UR,UP,)B=RBURBUPRBUPS
=Quz,uZ,uB=D;
DB =(R,URUPR,URUPR,)B=RBURBUPBUPRBUPRS
=guz,uZ,0Z, U =D;
06=0l10,§
= (Y2 xZ,B) 0 (Y2 % Z,B) 0 (Y2 % Z,8) u(V,* xZ,8) L(Ys* x D)

YixZ,)u ( ) (Y;2xD) (Y, xD)u(Ys* x D)

(
(Y xz,)u 2)u((Yr Y LY )= D)
\A xZA)u(Y;‘ ><Z3)U(YO“ xD).

3. Let V (X*,a) = {24,22, D} . Then binary relation o has representation of the form
= (Yf X Z4)U(Y2a x ZZ)U(YO“ x f)) . In this case suppose that

Bz PO I:)l PZ P3 I:)4
Yooz, z, 2, @

and f, are mapping of theset X\D ontheset D\{Z,,Z,}.Then

B=(Px@)U(RxZ,)u(P,xZ,)u(PxZ,)U(P,x@)uU J ({t'}x f (t')),
t'eX\D (12)
= (Y xZ, ) U (Y5 x Zg ) u(Y52 x Z, )u (Y2 x Z, ) (Y52 x D),

where Y, Y% Y1 Y, e (@), YA =Y, Y=Y and Y OY,  OY =Y, then it s easy to see, that
a, B since V(D,o)=V (D,,B) = D . From the formal equality and equalities (12) and (5) we have:
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=(RUR)B=PBURB=0UZ, =2,
=(RURURUR)B=PRBUPBUPBUPL=0UZ,0Z, VD =D;
=(R,URURUR)B=RBURBURBUPB=0UZ,0Z, 0D =1,
=(RUP,URUPR)B=RBUPBURBUPB=0UZ,UZ, VD =D;
=(P0uPluP2uP3uP4),B=PO,BUH,BUPZ,BUPSﬂuP4,6
=guz,vZ,uZ,UP=D;

a=a0f

(Yt x ZB) (Y x ZB) U (Y;2 x Z,B) U(Y,* x 2,8 ) U(Ys* x DB

( (Ys2xD)u (Y2 xZ,) u(Y,* x D) U (Y2 x D)

(Y2 ) o

=(

Y xZ, ) u((Ye wY LYt )x D)
YPxZ )u Yy xZ )U(YO“XD).

YAxZ )

4

4, Let V( ) { } Then binary relation « has representation of the form
(Y ><Z) (Y"xzz) (YO ><D).Inthlscasesupposethat
a2 R R R PR PR
b=
@ 2,2, 2, &
and f, are mapping oftheset X\D ontheset D\{Z,,Z,}. Then

B=(Rx@)u(RxZ)u(P,xZ,)U(PxZ)u(P,xD)u |J ({t'}xf(t)),

teX\D (13)
o, = (Y x 2, )L (Y52 x Z3 ) U (Y2 x Z, ) U (Y, x Z, ) U (Y52 x D),

where Y1 Y, % YY" e (D), Y=Y, Y=Y, and Y2 OY, 2 OY =Y, then it is easy to see, that

a,,f€B since V (Dyey)=V (DB) = D . From the formal equality and equalities (13) and (5) we have:
Z,=(RUPR)B=PBUPB=00UZ,=7,

Z,p=(R,URURUR)B=RBUPBURBUPB=0UZ UZ,UD=D;

Z,8=(R,URURUP,)B=RBURBURBUPL=0UZ, UZ WD =1;

Z,B8=(RUP,URUR)B=PRBUPBURBUPRB=0UZ,UZ WD =D;

DB =(R,URURUPRUPR)B=RBURBURBURBUPS
=Quz,uZ,uZ,uP=D;

a=06103

(Yt x ZB) (Vs x ZoB) U (Ys2 x Z,B) U(Y,* x Z,B) L (Y5 x DB

(Y2 Z,)u(Ys2 % D)u(Y;2 xZ, ) U (Y, x D) (Y, x D)

(Y2 xZ ) u(Yer x 2, ) o (Vs LY LY ) D)

=Y xZ,)u (Y5 xZ,)u(Yy x D).

5. Let V(X* a):{Zl,ZS,D} Then binary relation « has representation of the form
(Y xZ ) (Y“ xZa) (Y X D). In this case suppose that

5 R R P R P
b=
O 7, Z, Z, O
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and 3, are mapping of theset X \D ontheset D\{Z,,Z,}. Then

B=(P,xD)U(P,xZ,)U(P,xZ))U(P,xZ,) U (P, x @)U ’U4<{t'}>< f (1),
t'eX\D (14)

o = (Y x 2, ) (Y2 x Z3 ) U (Y2 x Z, ) U (Y, x Z, ) U (Y52 x D),
where Y%, Y1 Y0 Y% e (D), YA =Y, Y=Y and Yo OY, 2 OY =Y, then it is easy to see, that
a,f B since V (D,ey) =V (D ,8) D . From the formal equality and equalities (14) and (5) we have:
(POUPZ)IB_POﬂUPZEZQle:ZI;
(RURUPUPR)B=RBURBURBUPRB=0UZ,UZ, UD=D;

P URURUPR)B=RBURBURBUPB=CUZ,0Z,uD =1,
PUPR,URUR)B=PRBUPRBURBUPL=0UZ UZ,uD=D
(RURUPR,URUPR)B=RBURBURBUPBUPRS
=QuZ,0uZ,UZ,uB=D;
a:aloﬁ
(Y xZ,B) (Y52 xZ,B) U (Y, x Z,B) U(V, x Z,B) u(Ys* x D)
(Vi xZ,)u(Y x D) U (¥, xZ, ) u(Y, x D) u(Ys* x D)
(YerxZy ) o (Yse < Zg )u((Ys* LY LYs )% D)
(

Y xZ, ) U (Y5 x 2 ) u(Yg < D).
j

Z,p
Z,p
Z,p
Zp

Dj

6. Let V(X*,a):{Zz,Zs,D . Then binary relation o has representation of the form
= (Y;‘ X ZZ)U(YB“ x Z3)U(YO“ x f)) . In this case suppose that

PR P OR P
B
o 7, 2, 7, @

and S, are mapping of theset X \D on the set D\{Z;,Z,}. Then

B=(P,xD)U(PR, xZ3)U(P,xZ,)U(Pyx Zy) U (P x @)U U_({t’}xf(t'))

t'eX\D (15)
= (Y2 xZ, ) U (Y52 x Z ) U(¥52 % Z, ) (Y, x Z, ) u(Ys* x D),

where Y, Y1 Y, Y ¢ (@), YA =Y, Y=Y and Y OY, 2 OY =Y, then it is easy to see, that

a,,f€B since V (Dyey)=V (DB) = D . From the formal equality and equalities (15) and (5) we have:
Z,8=(RUPR)B=PBUPB=00UZ,=7,
Z,p=(RURURUR)B=RBUPRBURBUPB=0UZ,UZ,UD=D
Z,=(R,URURUPR,)B=RBUPBURBURL=CUZ,0Z, 0D =7,
Z,8=(RUP,UR,UR)B=PRBUPBURBUPL=0UZ,UZ,UD=D;

DBA=(R,URURUPRUPR)B=RBURBURBURBUPS

=guz,uZ,UZ,uB=D;

06=0!l°,g

(Y x ZB) (Vs x Z,B) (Y2 x Z,B) U(Y,* x Z,B) (Y5 x DB

(Ve xZ,)u(Ys* x D) U(¥;2 x Z, ) u(Y,* x D) U(Y* x D)

(Yo xZ, ) u(Ys2 x Zg ) o (Y™ vV LY ) D)

(Y% Z,) U(Y¥5 % Z5) U(Ys x D).
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7. Let V (X*,a) = {Z4,Z3,Zl, f)} . Then binary relation o has representation of the form
= (Yf X Z4)U(Y3"‘ X Z3)U(Yl“ X Zl)u(YO“ X f)) . In this case suppose that

Bz PO F)l PZ P3 P4
‘oz, z, z, @

and f, are mapping of theset X\D ontheset D\{Z,,Z,,Z}.Then

B=(RxD)U(RxZ;)L(P,xZ,)u(PxZ) (P x@)w U ({t}x (1)),
teX\D (16)
o, = (Y xZ, ) (Y2 x Z3 ) U (Y2 x Z, ) U (Y, x Z, ) U (Y52 x D),

where Y, Y/ Y0 Y e (@, YA =Y, V=Y, Y=Y, and Y2 OY =Y, then it is easy to see,

1

that o, B since V (Dyey)=V (DB) = D . From the formal equality and equalities (16) and (5) we have:

Z,p=(RUPR)B=RBURE=0UZ, =12,
Z,f=(PR,URURUR)B=RBUPRBURBUPRL=CUZ,UZ,UD=17;;
Z,B=(R,URUR,UPR)B=PBUPBUPRBUPB=CUZ,UZ VD =D;
zﬁ:(PuPuPuP)ﬁ:PBuPBuPBuPB:@uZ uZ, VD=2
DB =(R,URUPR,URUPR)B=RBURBUPRBURBUPRS
=QuzZ,uZ,uZ, VB =D;

@B

Y xZ,B)u (alx B) OV xZ,B) (Y, x Z,B) U(Ys* x D)
32, o (Yx Zg ) U “1><D) (*x2,)u (Y2 x D)

(
(¥ (¥
(Y22 o 52 (2o (2 13 <D)
= (Y xZ,) (Vs x Z5) U (Y, x Z,)u(Ys x D).

0
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