

Generating Set of the Complete Semigroups of Binary Relations

Yasha Diasamidze¹, Neset Aydin², Ali Erdoğan³

¹Shota Rustavelli University, Batumi, Georgia

²Çanakkale Onsekiz Mart University, Çanakkale, Turkey

³Hacettepe University, Ankara, Turkey

Email: diasamidze ya@mail.ru, neseta@comu.edu.tr, alier@hacettepe.edu.tr

Received 16 December 2015; accepted 25 January 2016; published 28 January 2016

Copyright © 2016 by authors and Scientific Research Publishing Inc.

This work is licensed under the Creative Commons Attribution International License (CC BY).

http://creativecommons.org/licenses/by/4.0/

Open Access

Abstract

Difficulties encountered in studying generators of semigroup $B_X(D)$ of binary relations defined by a complete *X*-semilattice of unions *D* arise because of the fact that they are not regular as a rule, which makes their investigation problematic. In this work, for special *D*, it has been seen that the semigroup $B_X(D)$, which are defined by semilattice *D*, can be generated by the set

$$B = \left\{ \alpha \in B_X (D) \middle| V(X^*, \alpha) = D \right\}.$$

Keywords

Semigroups, Binary Relation, Generated Set, Generators

1. Introduction

Theorem 1. Let $D = \{ \check{D}, Z_1, Z_2, \dots, Z_{m-1} \}$ be some finite X-semilattice of unions and $C(D) = \{ P_0, P_1, P_2, \dots, P_{m-1} \}$

be the family of sets of pairwise nonintersecting subsets of the set X.

If φ is a mapping of the semilattice D on the family of sets C(D) which satisfies the condition $\varphi(D) = P_0$ and $\varphi(Z_i) = P_i$ for any $i = 1, 2, \dots, m-1$ and $\hat{D}_Z = D \setminus D_T$, then the following equalities are valid:

$$\begin{split}
\widetilde{D} &= P_0 \cup P_1 \cup P_2 \cup \dots \cup P_{m-1}, \\
Z_i &= P_0 \cup \bigcup_{T \in \widehat{D}_{Z_i}} \varphi(T).
\end{split} \tag{1}$$

In the sequel these equalities will be called formal.

It is proved that if the elements of the semilattice D are represented in the form 1, then among the parameters P_i $(i=0,1,2,\cdots,m-1)$ there exist such parameters that cannot be empty sets for D. Such sets P_i $(0 < i \le m-1)$ are called basis sources, whereas sets P_i $(0 \le j \le m-1)$ which can be empty sets too are called completeness sources.

It is proved that under the mapping φ the number of covering elements of the pre-image of a basis source is always equal to one, while under the mapping φ the number of covering elements of the pre-image of a completeness source either does not exist or is always greater than one (see [1], Chapter 11). Some positive results in this direction can be found in [2]-[6].

Let $P_0, P_1, P_2, \dots, P_{m-1}$ be parameters in the formal equalities, $\beta \in B_X(D)$ and

$$\overline{\beta} = \bigcup_{i=0}^{m-1} \left(P_i \times \bigcup_{t \in P_i} t \beta \right) \cup \bigcup_{t' \in X \setminus \overline{D}} \left(\left\{ t' \right\} \times t' \beta \right). \tag{2}$$

$$\tilde{\beta} = \bigcup_{i=0}^{m-1} \left(P_i \times \bigcup_{t \in P_i} t \beta \right) \cup \left(\left(X \setminus \breve{D} \right) \times \breve{D} \right)$$
(3)

The representation of the binary relation β of the form $\bar{\beta}$ and $\tilde{\beta}$ will be called subquasinormal and maximal subquasinormal.

If $\bar{\beta}$ and $\tilde{\beta}$ are the subquasinormal and maximal subquasinormal representations of the binary relation β , then for the binary relations $\bar{\beta}$ and $\tilde{\beta}$ the following statements are true:

- a) $\overline{\beta}$, $\widetilde{\beta} \in B_X(D)$;
- b) $\beta \subseteq \overline{\beta} \subseteq \widetilde{\beta}$;
- c) the subquasinormal representation of the binary relation β is quasinormal;
- d) if

$$\overline{\beta}_1 = \begin{pmatrix} P_0 & P_1 & \cdots & P_{m-1} \\ P_0 \overline{\beta} & P_1 \overline{\beta} & \cdots & P_{m-1} \overline{\beta} \end{pmatrix},$$

then $\overline{\beta}_1$ is a mapping of the family of sets $C(D) = \{P_0, P_1, P_2, \dots, P_{m-1}\}$ in the X-semilattice of unions

$$D = \left\{ \widecheck{D}, Z_1, Z_2, \cdots, Z_{m-1} \right\}.$$

e) if $\overline{\beta}_2: X \setminus D \to D$ is a mapping satisfying the condition $\overline{\beta}_2(t') = t'\beta$ for all $t' \in X \setminus D$, then

$$\overline{\beta} = \bigcup_{i=0}^{m-1} \left(P_i \times \bigcup_{t \in P_i} t \beta \right) \cup \bigcup_{t' \in X \setminus \overline{D}} \left(\left\{ t' \right\} \times \overline{\beta}_2 \left(t' \right) \right).$$

2. Results

Proposition 2. Let $\alpha, \beta \in B_{\chi}(D)$. Then

$$\alpha \circ \beta = \alpha \circ \overline{\beta} = \alpha \circ \widetilde{\beta}.$$

Proof. It is easy to see the inclusion $\alpha \circ \beta \subseteq \alpha \circ \overline{\beta} \subseteq \alpha \circ \widetilde{\beta}$ holds, since $\beta \subseteq \overline{\beta} \subseteq \widetilde{\beta}$. If $x(\alpha \circ \widetilde{\beta})y$ $(x, y \in X)$, then $x\alpha z\widetilde{\beta}y$ for some $z \in X$. So, $z \notin X \setminus D$ since $z \in x\alpha \in D$ and $z(\bigcup_{i=0}^{m-1} (P_i \times \bigcup_{t \in P_i} t\beta))y$.

Then $z(P_k \times \bigcup_{t \in P_k} t\beta)y$ for some k $(0 \le k \le m-1)$ *i.e.* $z \in P_k$ and $y \in z\beta \subseteq \bigcup_{t \in P_k} t\beta$. For the last condition follows that $z\beta y$. We have $x\alpha z\beta y$ and $x(\alpha \circ \beta)y$. Therefore, the inclusion $\alpha \circ \tilde{\beta} \subseteq \alpha \circ \beta$ is true. Of this and by inclusion $\alpha \circ \beta \subseteq \alpha \circ \tilde{\beta} \subseteq \alpha \circ \tilde{\beta}$ follows that the equality $\alpha \circ \beta = \alpha \circ \tilde{\beta} = \alpha \circ \tilde{\beta}$ holds.

Corollary 1. If $\alpha, \delta, \beta \in B_X(D)$ and $\beta \subseteq \delta \subseteq \tilde{\beta}$, then $\alpha \circ \beta = \alpha \circ \delta = \alpha \circ \tilde{\beta}$.

Proof. We have $\beta \subseteq \delta \subseteq \tilde{\beta}$ and $\alpha \circ \beta \subseteq \alpha \circ \delta \subseteq \alpha \circ \tilde{\beta}$. Of this follows that $\alpha \circ \beta = \alpha \circ \delta = \alpha \circ \tilde{\beta}$ since $\alpha \circ \beta = \alpha \circ \tilde{\beta}$.

Let the X-semilattice $D = \{Z_4, Z_3, Z_2, Z_1, \breve{D}\}$ of unions given by the diagram of **Figure 1**. Formal equalities of the given semilattice have a form:

Figure 1. Diagram of D.

$$\begin{split} & \breve{D} = P_0 \cup P_1 \cup P_2 \cup P_3 \cup P_4, \\ & Z_1 = P_0 \cup P_2 \cup P_3 \cup P_4, \\ & Z_2 = P_0 \cup P_1 \cup P_3 \cup P_4, \\ & Z_3 = P_0 \cup P_1 \cup P_2 \cup P_4, \\ & Z_4 = P_0 \cup P_2. \end{split} \tag{4}$$

The parameters P_1 , P_2 , P_3 are basis sources and the parameters P_0 , P_4 are completeness sources, i.e. $|X| \ge 3$. **Example 3.** Let $X = \{1, 2, 3, 4, 5, 6, 7\}$, $P_1 = \{1, 4\}$, $P_2 = \{2, 5\}$, $P_3 = \{3, 6\}$, $P_0 = P_4 = \emptyset$. Then for the formal equalities of the semilattice D follows that $Z_4 = \{2, 5\}$, $Z_3 = \{1, 2, 4, 5\}$, $Z_2 = \{1, 3, 4, 6\}$, $Z_1 = \{2, 3, 5, 6\}$, $\overline{D} = \{1, 2, 3, 4, 5, 6\}$, $D = \{\{2\}, \{1, 2\}, \{1, 3\}, \{2, 3\}, \{1, 2, 3\}\}$, and

 $\beta = (\{1\} \times \{2,3,5,6\}) \cup (\{2\} \times \{1,3,4,6\}) \cup (\{3\} \times \{1,2,4,5\}) \cup (\{4,5,6,7\} \times \{2,5\}).$

Then we have:

$$\bigcup_{t \in P_1} t\beta = \{2, 3, 5, 6\}, \bigcup_{t \in P_2} t\beta = \{1, 2, 3, 4, 5, 6\}, \bigcup_{t \in P_3} t\beta = \{1, 2, 4, 5\},
\bigcup_{t \in P_0} t\beta = \bigcup_{t \in P_4} t\beta = \emptyset;
\overline{\beta} = (\{1, 4\} \times \{2, 3, 5, 6\}) \cup (\{2, 5\} \times \{1, 2, 3, 4, 5, 6\}) \cup (\{3, 6\} \times \{1, 2, 4, 5\}) \cup (\{7\} \times \{2, 5\});
\widetilde{\beta} = (\{1, 4\} \times \{2, 3, 5, 6\}) \cup (\{2, 5\} \times \{1, 2, 3, 4, 5, 6\}) \cup (\{3, 6\} \times \{1, 2, 4, 5\}) \cup (\{7\} \times \{1, 2, 3, 4, 5, 6, 7\}).$$

Theorem 4. Let the X-semilattice $D = \{Z_4, Z_3, Z_2, Z_1, \overline{D}\}$ of unions given by the diagram of **Figure 1**, $B = \{\alpha \in B_X(D) | V(X^*, \alpha) = D\}$ and $|X \setminus \overline{D}| \ge 3$. Then the set B is generating set of the semigroup $B_X(D)$.

Proof. It is easy to see that $|X| \ge 6$ since $P_1, P_2, P_3 \notin \{\emptyset\}$ and $|X \setminus \overline{D}| \ge 3$. Now, let α be any binary relation of the semigroup $B_{\underline{X}}(D)$; $\alpha_1, \alpha_2, \cdots, \alpha_n \in B$, $\alpha = \alpha_1 \circ \alpha_2 \circ \cdots \circ \alpha_n$ and $\beta = \alpha_2 \circ \alpha_3 \circ \cdots \circ \alpha_n$. Then the equality $\alpha = \alpha_1 \circ \beta = \alpha_1 \circ \overline{\beta}$ ($\overline{\beta}$ is subquasinormal representation of a binary relation β) is true. By assumption $\alpha_1 \in B_{\underline{X}}(D)$, *i.e.* the quasinormal representation of a binary relation α_1 have a form

$$\alpha_1 = \left(Y_4^{\alpha_1} \times Z_4\right) \cup \left(Y_3^{\alpha_1} \times Z_3\right) \cup \left(Y_2^{\alpha_1} \times Z_2\right) \cup \left(Y_1^{\alpha_1} \times Z_1\right) \cup \left(Y_0^{\alpha_1} \times \widetilde{D}\right).$$

Of this follows that

$$\alpha = \alpha_{1} \circ \overline{\beta} = (Y_{4}^{\alpha_{1}} \times Z_{4}) \cup (Y_{3}^{\alpha_{1}} \times Z_{3}) \cup (Y_{2}^{\alpha_{1}} \times Z_{2}) \cup (Y_{1}^{\alpha_{1}} \times Z_{1}) \cup (Y_{0}^{\alpha_{1}} \times \overline{D}) \circ \overline{\beta}$$

$$= (Y_{4}^{\alpha_{1}} \times Z_{4}\overline{\beta}) \cup (Y_{3}^{\alpha_{1}} \times Z_{3}\overline{\beta}) \cup (Y_{2}^{\alpha_{1}} \times Z_{2}\overline{\beta}) \cup (Y_{1}^{\alpha_{1}} \times Z_{1}\overline{\beta}) \cup (Y_{0}^{\alpha_{1}} \times \overline{D}\overline{\beta}).$$

$$(5)$$

For the binary relation α we consider the following case.

a) Let $|V(X^*, \alpha)| = 1$. Then $\alpha = X \times T$, where $T \in D$. By element T we consider the following cases:

1. $T \neq \overline{D}$. In this case suppose that

$$\overline{\beta}_1 = \begin{pmatrix} P_0 & P_1 & P_2 & P_3 & P_4 \\ \varnothing & T & T & T & \varnothing \end{pmatrix}$$

and $\overline{\beta}_2$ are mapping of the set $X\setminus \widecheck{D}$ on the set $\{Z_4,Z_3,Z_2,Z_1\}\setminus \{T\}$. Then

$$\overline{\beta} = (P_0 \times \varnothing) \cup (P_1 \times T) \cup (P_2 \times T) \cup (P_3 \times T) \cup (P_4 \times \varnothing) \cup \bigcup_{t' \in X \setminus \overline{D}} (\{t'\} \times \overline{\beta}_2(t')),$$

$$\alpha_1 = (Y_4^{\alpha_1} \times Z_4) \cup (Y_3^{\alpha_1} \times Z_3) \cup (Y_2^{\alpha_1} \times Z_2) \cup (Y_1^{\alpha_1} \times Z_1) \cup (Y_0^{\alpha_1} \times \overline{D}),$$
(6)

where $Y_4^{\alpha_1}, Y_3^{\alpha_1}, Y_2^{\alpha_1}, Y_1^{\alpha_1} \notin \{\emptyset\}$, then it is easy to see, that $\alpha_1, \overline{\beta} \in B$ since $V(D, \alpha_1) = V(D, \overline{\beta}) = D$. From the formal equality and equalities (6) and (5) we have:

$$\begin{split} Z_4\overline{\beta} &= \left(P_0 \cup P_2\right)\overline{\beta} = P_0\overline{\beta} \cup P_2\overline{\beta} = \varnothing \cup T = T; \\ Z_3\overline{\beta} &= \left(P_0 \cup P_1 \cup P_2 \cup P_4\right)\overline{\beta} = P_0\overline{\beta} \cup P_1\overline{\beta} \cup P_2\overline{\beta} \cup P_4\overline{\beta} = \varnothing \cup T \cup T \cup \varnothing = T; \\ Z_2\overline{\beta} &= \left(P_0 \cup P_1 \cup P_3 \cup P_4\right)\overline{\beta} = P_0\overline{\beta} \cup P_1\overline{\beta} \cup P_3\overline{\beta} \cup P_4\overline{\beta} = \varnothing \cup T \cup T \cup \varnothing = T; \\ Z_1\overline{\beta} &= \left(P_0 \cup P_2 \cup P_3 \cup P_4\right)\overline{\beta} = P_0\overline{\beta} \cup P_2\overline{\beta} \cup P_3\overline{\beta} \cup P_4\overline{\beta} = \varnothing \cup T \cup T \cup \varnothing = T; \\ \overline{D}\overline{\beta} &= \left(P_0 \cup P_1 \cup P_2 \cup P_3 \cup P_4\right)\overline{\beta} = P_0\overline{\beta} \cup P_1\overline{\beta} \cup P_2\overline{\beta} \cup P_3\overline{\beta} \cup P_4\overline{\beta} \\ &= \varnothing \cup T \cup T \cup \varnothing = T; \\ \alpha &= \alpha_1 \circ \overline{\beta} \\ &= \left(Y_4^{\alpha_1} \times Z_4\overline{\beta}\right) \cup \left(Y_3^{\alpha_1} \times Z_3\overline{\beta}\right) \cup \left(Y_2^{\alpha_1} \times Z_2\overline{\beta}\right) \cup \left(Y_1^{\alpha_1} \times Z_1\overline{\beta}\right) \cup \left(Y_0^{\alpha_1} \times \overline{D}\overline{\beta}\right) \\ &= \left(Y_4^{\alpha_1} \times T\right) \cup \left(Y_3^{\alpha_1} \times T\right) \cup \left(Y_2^{\alpha_1} \times T\right) \cup \left(Y_1^{\alpha_1} \times T\right) \cup \left(Y_0^{\alpha_1} \times T\right) = X \times T \end{split}$$

since $Y_4^{\alpha_1} \cup Y_3^{\alpha_1} \cup Y_2^{\alpha_1} \cup Y_1^{\alpha_1} \cup Y_0^{\alpha_1} = X$. 2. $T = \widecheck{D}$. In this case suppose that

$$\overline{\beta}_1 = \begin{pmatrix} P_0 & P_1 & P_2 & P_3 & P_4 \\ \overline{D} & Z_1 & Z_2 & Z_3 & Z_4 \end{pmatrix}$$

and $\bar{\beta}_2$ are mapping of the set $X \setminus \bar{D}$ in the set D. Then

$$\overline{\beta} = (P_0 \times \overline{D}) \cup (P_1 \times Z_1) \cup (P_2 \times Z_2) \cup (P_3 \times Z_3) \cup (P_4 \times Z_4) \cup \bigcup_{t' \in X \setminus \overline{D}} (\{t'\} \times \overline{\beta}_2(t')),$$

$$\alpha_1 = (Y_4^{\alpha_1} \times Z_4) \cup (Y_3^{\alpha_1} \times Z_3) \cup (Y_2^{\alpha_1} \times Z_2) \cup (Y_1^{\alpha_1} \times Z_1) \cup (Y_0^{\alpha_1} \times \overline{D}),$$
(7)

where $Y_4^{\alpha_1}, Y_3^{\alpha_1}, Y_2^{\alpha_1}, Y_1^{\alpha_1} \notin \{\emptyset\}$, then it is easy to see, that $\alpha_1, \overline{\beta} \in B$ since $V(D, \alpha_1) = V(D, \overline{\beta}) = D$. From the formal equality and equalities (7) and (5) we have:

$$\begin{split} Z_{4}\overline{\beta} &= \left(P_{0} \cup P_{2}\right)\overline{\beta} = P_{0}\overline{\beta} \cup P_{2}\overline{\beta} = \breve{D}; \\ Z_{3}\overline{\beta} &= \left(P_{0} \cup P_{1} \cup P_{2} \cup P_{4}\right)\overline{\beta} = P_{0}\overline{\beta} \cup P_{1}\overline{\beta} \cup P_{2}\overline{\beta} \cup P_{4}\overline{\beta} = \breve{D}; \\ Z_{2}\overline{\beta} &= \left(P_{0} \cup P_{1} \cup P_{3} \cup P_{4}\right)\overline{\beta} = P_{0}\overline{\beta} \cup P_{1}\overline{\beta} \cup P_{3}\overline{\beta} \cup P_{4}\overline{\beta} = \breve{D}; \\ Z_{1}\overline{\beta} &= \left(P_{0} \cup P_{2} \cup P_{3} \cup P_{4}\right)\overline{\beta} = P_{0}\overline{\beta} \cup P_{2}\overline{\beta} \cup P_{3}\overline{\beta} \cup P_{4}\overline{\beta} = \breve{D}; \\ \breve{D}\overline{\beta} &= \left(P_{0} \cup P_{1} \cup P_{2} \cup P_{3} \cup P_{4}\right)\overline{\beta} = P_{0}\overline{\beta} \cup P_{1}\overline{\beta} \cup P_{2}\overline{\beta} \cup P_{3}\overline{\beta} \cup P_{4}\overline{\beta} = \breve{D}; \\ \alpha &= \alpha_{1} \circ \overline{\beta} \\ &= \left(Y_{4}^{\alpha_{1}} \times Z_{4}\overline{\beta}\right) \cup \left(Y_{3}^{\alpha_{1}} \times Z_{3}\overline{\beta}\right) \cup \left(Y_{2}^{\alpha_{1}} \times Z_{2}\overline{\beta}\right) \cup \left(Y_{1}^{\alpha_{1}} \times Z_{1}\overline{\beta}\right) \cup \left(Y_{0}^{\alpha_{1}} \times \breve{D}\overline{\beta}\right) \\ &= \left(Y_{4}^{\alpha_{1}} \times \breve{D}\right) \cup \left(Y_{3}^{\alpha_{1}} \times \breve{D}\right) \cup \left(Y_{2}^{\alpha_{1}} \times \breve{D}\right) \cup \left(Y_{0}^{\alpha_{1}} \times \breve{D}\right) \cup \left(Y_{0}^{\alpha_{1}} \times \breve{D}\right) \\ &= X \times \breve{D}. \end{split}$$

b)
$$|V(X^*,\alpha)| = 2$$
. Then

$$V(X^*,\alpha) \in \{\{Z_4,Z_1\},\{Z_4,Z_3\},\{Z_4,\check{D}\},\{Z_3,\check{D}\},\{Z_2,\check{D}\},\{Z_1,\check{D}\}\}\}$$

since $V(X^*,\alpha)$ is X-semilattice of unions. For the semilattice of unions $V(X^*,\alpha)$ consider the following

1. Let $V(X^*, \alpha) = \{Z_4, T\}$, where, $T \in \{Z_1, Z_3\}$. Then binary relation α has representation of the form

 $\alpha = (Y_4^{\alpha} \times Z_4) \cup (Y_T^{\alpha} \times T)$. In this case suppose that

$$\overline{\beta}_{1} = \begin{pmatrix} P_{0} & P_{1} & P_{2} & P_{3} & P_{4} \\ \varnothing & T & Z_{4} & T & \varnothing \end{pmatrix}$$

and $\overline{\beta}_2$ are mapping of the set $X \setminus \overline{D}$ on the set $D \setminus \{Z_4, T\}$. Then

$$\overline{\beta} = (P_0 \times \varnothing) \cup (P_1 \times T) \cup (P_2 \times Z_4) \cup (P_3 \times T) \cup (P_4 \times \varnothing) \cup \bigcup_{t' \in X \setminus \overline{D}} (\{t'\} \times \overline{\beta}_2(t')),$$

$$\alpha_1 = (Y_4^{\alpha_1} \times Z_4) \cup (Y_3^{\alpha_1} \times Z_3) \cup (Y_2^{\alpha_1} \times Z_2) \cup (Y_1^{\alpha_1} \times Z_1) \cup (Y_0^{\alpha_1} \times \overline{D}),$$
(8)

where $Y_4^{\alpha_1}$, $Y_3^{\alpha_1}$, $Y_2^{\alpha_1}$, $Y_1^{\alpha_1} \notin \{\emptyset\}$, $Y_4^{\alpha_1} = Y_4^{\alpha}$ and $Y_3^{\alpha_1} \cup Y_2^{\alpha_1} \cup Y_1^{\alpha_1} \cup Y_0^{\alpha_1} = Y_0^{\alpha}$, then it is easy to see, that $\alpha_1, \overline{\beta} \in B$ since $V(D, \alpha_1) = V(D, \overline{\beta}) = D$. From the formal equality and equalities (8) and (5) we have:

$$\begin{split} Z_4\overline{\beta} &= (P_0 \cup P_2)\overline{\beta} = P_0\overline{\beta} \cup P_2\overline{\beta} = \varnothing \cup Z_4 = Z_4; \\ Z_3\overline{\beta} &= (P_0 \cup P_1 \cup P_2 \cup P_4)\overline{\beta} = P_0\overline{\beta} \cup P_1\overline{\beta} \cup P_2\overline{\beta} \cup P_4\overline{\beta} \\ &= \varnothing \cup T \cup Z_4 \cup \varnothing = T; \\ Z_2\overline{\beta} &= (P_0 \cup P_1 \cup P_3 \cup P_4)\overline{\beta} = P_0\overline{\beta} \cup P_1\overline{\beta} \cup P_3\overline{\beta} \cup P_4\overline{\beta} \\ &= \varnothing \cup T \cup T \cup \varnothing = T; \\ Z_1\overline{\beta} &= (P_0 \cup P_2 \cup P_3 \cup P_4)\overline{\beta} = P_0\overline{\beta} \cup P_2\overline{\beta} \cup P_3\overline{\beta} \cup P_4\overline{\beta} \\ &= \varnothing \cup Z_4 \cup T \cup \varnothing = T; \\ \overline{D}\overline{\beta} &= (P_0 \cup P_1 \cup P_2 \cup P_3 \cup P_4)\overline{\beta} = P_0\overline{\beta} \cup P_1\overline{\beta} \cup P_2\overline{\beta} \cup P_3\overline{\beta} \cup P_4\overline{\beta} \\ &= \varnothing \cup T \cup Z_4 \cup T \cup \varnothing = T; \\ \alpha &= \alpha_1 \circ \overline{\beta} \\ &= (Y_4^{\alpha_1} \times Z_4\overline{\beta}) \cup (Y_3^{\alpha_1} \times Z_3\overline{\beta}) \cup (Y_2^{\alpha_1} \times Z_2\overline{\beta}) \cup (Y_1^{\alpha_1} \times Z_1\overline{\beta}) \cup (Y_0^{\alpha_1} \times \overline{D}\overline{\beta}) \\ &= (Y_4^{\alpha_1} \times Z_4) \cup ((Y_3^{\alpha_1} \cup Y_2^{\alpha_1} \cup Y_1^{\alpha_1} \cup Y_0^{\alpha_1}) \times T) = (Y_4^{\alpha_1} \times Z_4) \cup (Y_0^{\alpha_1} \times T). \end{split}$$

2. Let $V(X^*, \alpha) = \{T, \check{D}\}$, where, $T \in \{Z_4, Z_3, Z_2, Z_1\}$. Then binary relation α has representation of the form $\alpha = (Y_T^\alpha \times T) \cup (Y_0^\alpha \times \check{D})$. In this case suppose that

$$\overline{\beta}_{1} = \begin{pmatrix} P_{0} & P_{1} & P_{2} & P_{3} & P_{4} \\ \varnothing & \overline{D} & T & \overline{D} & \varnothing \end{pmatrix}$$

and \overline{eta}_2 are mapping of the set $X\setminus \widecheck{D}$ on the set $D\setminus \left\{T,\widecheck{D}\right\}$. Then

$$\begin{split} \overline{\beta} &= \left(P_0 \times \varnothing\right) \cup \left(P_1 \times \overline{D}\right) \cup \left(P_2 \times T\right) \cup \left(P_3 \times \overline{D}\right) \cup \left(P_4 \times \varnothing\right) \cup \bigcup_{t' \in X \setminus \overline{D}} \left(\left\{t'\right\} \times f\left(t'\right)\right), \\ \alpha_1 &= \left(Y_4^{\alpha_1} \times Z_4\right) \cup \left(Y_3^{\alpha_1} \times Z_3\right) \cup \left(Y_2^{\alpha_1} \times Z_2\right) \cup \left(Y_1^{\alpha_1} \times Z_1\right) \cup \left(Y_0^{\alpha_1} \times \overline{D}\right), \end{split} \tag{9}$$

where $Y_4^{\alpha_1}, Y_3^{\alpha_1}, Y_2^{\alpha_1}, Y_1^{\alpha_1} \notin \{\emptyset\}$, $Y_4^{\alpha_1} = Y_T^{\alpha}$ and $Y_3^{\alpha_1} \cup Y_2^{\alpha_1} \cup Y_1^{\alpha_1} \cup Y_0^{\alpha_1} = Y_0^{\alpha}$, then it is easy to see, that $\alpha_1, \overline{\beta} \in B$ since $V(D, \alpha_1) = V(D, \overline{\beta}) = D$. From the formal equality and equalities (9) and (5) we have:

$$\begin{split} Z_4\overline{\beta} &= \left(P_0 \cup P_2\right)\overline{\beta} = P_0\overline{\beta} \cup P_2\overline{\beta} = \varnothing \cup T = T; \\ Z_3\overline{\beta} &= \left(P_0 \cup P_1 \cup P_2 \cup P_4\right)\overline{\beta} = P_0\overline{\beta} \cup P_1\overline{\beta} \cup P_2\overline{\beta} \cup P_4\overline{\beta} = \varnothing \cup \widecheck{D} \cup T \cup \varnothing = \widecheck{D}; \\ Z_2\overline{\beta} &= \left(P_0 \cup P_1 \cup P_3 \cup P_4\right)\overline{\beta} = P_0\overline{\beta} \cup P_1\overline{\beta} \cup P_3\overline{\beta} \cup P_4\overline{\beta} = \varnothing \cup \widecheck{D} \cup \widecheck{D} \cup \varnothing = \widecheck{D}; \\ Z_1\overline{\beta} &= \left(P_0 \cup P_2 \cup P_3 \cup P_4\right)\overline{\beta} = P_0\overline{\beta} \cup P_2\overline{\beta} \cup P_3\overline{\beta} \cup P_4\overline{\beta} = \varnothing \cup T \cup \widecheck{D} \cup \varnothing = \widecheck{D}; \\ \widecheck{D}\overline{\beta} &= \left(P_0 \cup P_1 \cup P_2 \cup P_3 \cup P_4\right)\overline{\beta} = P_0\overline{\beta} \cup P_1\overline{\beta} \cup P_2\overline{\beta} \cup P_3\overline{\beta} \cup P_4\overline{\beta} \\ &= \varnothing \cup \widecheck{D} \cup T \cup \widecheck{D} \cup \varnothing = \widecheck{D}; \\ \alpha &= \alpha_1 \circ \overline{\beta} \\ &= \left(Y_4^{\alpha_1} \times Z_4\overline{\beta}\right) \cup \left(Y_3^{\alpha_1} \times Z_3\overline{\beta}\right) \cup \left(Y_2^{\alpha_1} \times Z_2\overline{\beta}\right) \cup \left(Y_1^{\alpha_1} \times Z_1\overline{\beta}\right) \cup \left(Y_0^{\alpha_1} \times \widecheck{D}\overline{\beta}\right) \\ &= \left(Y_4^{\alpha_1} \times T\right) \cup \left(Y_3^{\alpha_1} \times \widecheck{D}\right) \cup \left(Y_2^{\alpha_1} \times \widecheck{D}\right) \cup \left(Y_1^{\alpha_1} \times \widecheck{D}\right) \cup \left(Y_0^{\alpha_1} \times \widecheck{D}\right). \end{split}$$

c)
$$|V(X^*, \alpha)| = 3$$
. Then $V(X^*, \alpha) \in \{\{Z_4, Z_1, \breve{D}\}, \{Z_4, Z_3, \breve{D}\}, \{Z_4, Z_2, \breve{D}\}, \{Z_1, Z_2, \breve{D}\}, \{Z_1, Z_3, \breve{D}\}, \{Z_2, Z_3, \breve{D}\}\}\}$

since $V(X^*, \alpha)$ is X-semilattice of unions. For the semilattice of unions $V(X^*, \alpha)$ consider the following cases.

1. Let $V(X^*, \alpha) = \{Z_4, Z_1, \check{D}\}$. Then binary relation α has representation of the form $\alpha = (Y_4^\alpha \times Z_4) \cup (Y_1^\alpha \times Z_1) \cup (Y_0^\alpha \times \check{D})$. In this case suppose that

$$\overline{\beta}_1 = \begin{pmatrix} P_0 & P_1 & P_2 & P_3 & P_4 \\ \varnothing & Z_2 & Z_4 & Z_1 & \varnothing \end{pmatrix}$$

and $\overline{\beta}_2$ are mapping of the set $X\setminus \widecheck{D}$ on the set $D\setminus \{Z_4,Z_2,Z_1\}$. Then

 $Z_{A}\overline{\beta} = (P_{0} \cup P_{2})\overline{\beta} = P_{0}\overline{\beta} \cup P_{2}\overline{\beta} = \emptyset \cup Z_{A} = Z_{A};$

$$\overline{\beta} = (P_0 \times \varnothing) \cup (P_1 \times Z_2) \cup (P_2 \times Z_4) \cup (P_3 \times Z_1) \cup (P_4 \times \varnothing) \cup \bigcup_{t' \in X \setminus \overline{D}} (\{t'\} \times f(t')),$$

$$\alpha_1 = (Y_4^{\alpha_1} \times Z_4) \cup (Y_3^{\alpha_1} \times Z_3) \cup (Y_2^{\alpha_1} \times Z_2) \cup (Y_1^{\alpha_1} \times Z_1) \cup (Y_0^{\alpha_1} \times \overline{D}),$$
(10)

where $Y_4^{\alpha_1}, Y_3^{\alpha_1}, Y_2^{\alpha_1}, Y_1^{\alpha_1} \notin \{\emptyset\}$, $Y_4^{\alpha_1} = Y_4^{\alpha}$, $Y_1^{\alpha_1} = Y_1^{\alpha}$ and $Y_3^{\alpha_1} \cup Y_2^{\alpha_1} \cup Y_0^{\alpha_1} = Y_0^{\alpha}$, then it is easy to see, that $\alpha_1, \overline{\beta} \in B$ since $V(D, \alpha_1) = V(D, \overline{\beta}) = D$. From the formal equality and equalities (10) and (5) we have:

$$\begin{split} &Z_{3}\overline{\beta} = \left(P_{0} \cup P_{1} \cup P_{2} \cup P_{4}\right)\overline{\beta} = P_{0}\overline{\beta} \cup P_{1}\overline{\beta} \cup P_{2}\overline{\beta} \cup P_{4}\overline{\beta} = \varnothing \cup Z_{2} \cup Z_{4} \cup \varnothing = \breve{D}; \\ &Z_{2}\overline{\beta} = \left(P_{0} \cup P_{1} \cup P_{3} \cup P_{4}\right)\overline{\beta} = P_{0}\overline{\beta} \cup P_{1}\overline{\beta} \cup P_{3}\overline{\beta} \cup P_{4}\overline{\beta} = \varnothing \cup Z_{2} \cup Z_{1} \cup \varnothing = \breve{D}; \\ &Z_{1}\overline{\beta} = \left(P_{0} \cup P_{2} \cup P_{3} \cup P_{4}\right)\overline{\beta} = P_{0}\overline{\beta} \cup P_{2}\overline{\beta} \cup P_{3}\overline{\beta} \cup P_{4}\overline{\beta} = \varnothing \cup Z_{4} \cup Z_{1} \cup \varnothing = Z_{1}; \\ &\breve{D}\overline{\beta} = \left(P_{0} \cup P_{1} \cup P_{2} \cup P_{3} \cup P_{4}\right)\overline{\beta} = P_{0}\overline{\beta} \cup P_{1}\overline{\beta} \cup P_{2}\overline{\beta} \cup P_{3}\overline{\beta} \cup P_{4}\overline{\beta} \\ &= \varnothing \cup Z_{2} \cup Z_{4} \cup Z_{1} \cup \varnothing = \breve{D}; \\ &\alpha = \alpha_{1} \circ \overline{\beta} \\ &= \left(Y_{4}^{\alpha_{1}} \times Z_{4}\overline{\beta}\right) \cup \left(Y_{3}^{\alpha_{1}} \times Z_{3}\overline{\beta}\right) \cup \left(Y_{2}^{\alpha_{1}} \times Z_{2}\overline{\beta}\right) \cup \left(Y_{1}^{\alpha_{1}} \times Z_{1}\overline{\beta}\right) \cup \left(Y_{0}^{\alpha_{1}} \times \breve{D}\overline{\beta}\right) \\ &= \left(Y_{4}^{\alpha_{1}} \times Z_{4}\right) \cup \left(Y_{3}^{\alpha_{1}} \times \breve{D}\right) \cup \left(Y_{2}^{\alpha_{1}} \times \breve{D}\right) \cup \left(Y_{0}^{\alpha_{1}} \times Z_{1}\right) \cup \left(Y_{0}^{\alpha_{1}} \times \breve{D}\right) \\ &= \left(Y_{4}^{\alpha_{1}} \times Z_{4}\right) \cup \left(Y_{1}^{\alpha_{1}} \times Z_{1}\right) \cup \left(\left(Y_{3}^{\alpha_{1}} \cup Y_{2}^{\alpha_{1}} \cup Y_{0}^{\alpha_{1}}\right) \times \breve{D}\right) \\ &= \left(Y_{4}^{\alpha_{1}} \times Z_{4}\right) \cup \left(Y_{1}^{\alpha_{1}} \times Z_{1}\right) \cup \left(\left(Y_{3}^{\alpha_{1}} \cup Y_{2}^{\alpha_{1}} \cup Y_{0}^{\alpha_{1}}\right) \times \breve{D}\right) \\ &= \left(Y_{4}^{\alpha_{1}} \times Z_{4}\right) \cup \left(Y_{1}^{\alpha_{1}} \times Z_{1}\right) \cup \left(\left(Y_{3}^{\alpha_{1}} \cup Y_{2}^{\alpha_{1}} \cup Y_{0}^{\alpha_{1}}\right) \times \breve{D}\right) \\ &= \left(Y_{4}^{\alpha_{1}} \times Z_{4}\right) \cup \left(Y_{1}^{\alpha_{1}} \times Z_{1}\right) \cup \left(Y_{0}^{\alpha_{1}} \times \breve{D}\right). \end{split}$$

2. Let $V(X^*, \alpha) = \{Z_4, Z_3, \breve{D}\}$. Then binary relation α has representation of the form

 $\alpha = (Y_4^{\alpha} \times Z_4) \cup (Y_3^{\alpha} \times Z_3) \cup (Y_0^{\alpha} \times \overline{D})$. In this case suppose that

$$\overline{\beta}_1 = \begin{pmatrix} P_0 & P_1 & P_2 & P_3 & P_4 \\ \varnothing & Z_3 & Z_4 & Z_2 & \varnothing \end{pmatrix}$$

and $\overline{\beta}_2$ are mapping of the set $X \setminus \overline{D}$ on the set $D \setminus \{Z_4, Z_3, Z_2\}$. Then

$$\overline{\beta} = (P_0 \times \varnothing) \cup (P_1 \times Z_3) \cup (P_2 \times Z_4) \cup (P_3 \times Z_2) \cup (P_4 \times \varnothing) \cup \bigcup_{t' \in X \setminus \overline{D}} (\{t'\} \times f(t')),$$

$$\alpha_1 = (Y_4^{\alpha_1} \times Z_4) \cup (Y_3^{\alpha_1} \times Z_3) \cup (Y_2^{\alpha_1} \times Z_2) \cup (Y_1^{\alpha_1} \times Z_1) \cup (Y_0^{\alpha_1} \times \overline{D}),$$
(11)

where $Y_4^{\alpha_1}, Y_3^{\alpha_1}, Y_2^{\alpha_1}, Y_1^{\alpha_1} \notin \{\emptyset\}$, $Y_4^{\alpha_1} = Y_4^{\alpha}$, $Y_3^{\alpha_1} = Y_3^{\alpha}$ and $Y_2^{\alpha_1} \cup Y_1^{\alpha_1} \cup Y_0^{\alpha_1} = Y_0^{\alpha}$, then it is easy to see, that $\alpha_1, \overline{\beta} \in B$ since $V(D, \alpha_1) = V(D, \overline{\beta}) = D$. From the formal equality and equalities (11) and (5) we have:

$$\begin{split} Z_{4}\overline{\beta} &= \left(P_{0} \cup P_{2}\right)\overline{\beta} = P_{0}\overline{\beta} \cup P_{2}\overline{\beta} = \varnothing \cup Z_{4} = Z_{4}; \\ Z_{3}\overline{\beta} &= \left(P_{0} \cup P_{1} \cup P_{2} \cup P_{4}\right)\overline{\beta} = P_{0}\overline{\beta} \cup P_{1}\overline{\beta} \cup P_{2}\overline{\beta} \cup P_{4}\overline{\beta} \\ &= \varnothing \cup Z_{3} \cup Z_{4} \cup \varnothing = Z_{3}; \\ Z_{2}\overline{\beta} &= \left(P_{0} \cup P_{1} \cup P_{3} \cup P_{4}\right)\overline{\beta} = P_{0}\overline{\beta} \cup P_{1}\overline{\beta} \cup P_{3}\overline{\beta} \cup P_{4}\overline{\beta} \\ &= \varnothing \cup Z_{3} \cup Z_{2} \cup \varnothing = \overline{D}; \\ Z_{1}\overline{\beta} &= \left(P_{0} \cup P_{2} \cup P_{3} \cup P_{4}\right)\overline{\beta} = P_{0}\overline{\beta} \cup P_{2}\overline{\beta} \cup P_{3}\overline{\beta} \cup P_{4}\overline{\beta} \\ &= \varnothing \cup Z_{4} \cup Z_{2} \cup \varnothing = \overline{D}; \\ \overline{D}\overline{\beta} &= \left(P_{0} \cup P_{1} \cup P_{2} \cup P_{3} \cup P_{4}\right)\overline{\beta} = P_{0}\overline{\beta} \cup P_{1}\overline{\beta} \cup P_{2}\overline{\beta} \cup P_{3}\overline{\beta} \cup P_{4}\overline{\beta} \\ &= \varnothing \cup Z_{3} \cup Z_{4} \cup Z_{2} \cup \varnothing = \overline{D}; \\ \alpha &= \alpha_{1} \circ \overline{\beta} \\ &= \left(Y_{4}^{\alpha_{1}} \times Z_{4}\overline{\beta}\right) \cup \left(Y_{3}^{\alpha_{1}} \times Z_{3}\overline{\beta}\right) \cup \left(Y_{2}^{\alpha_{1}} \times Z_{2}\overline{\beta}\right) \cup \left(Y_{1}^{\alpha_{1}} \times Z_{1}\overline{\beta}\right) \cup \left(Y_{0}^{\alpha_{1}} \times \overline{D}\overline{\beta}\right) \\ &= \left(Y_{4}^{\alpha_{1}} \times Z_{4}\right) \cup \left(Y_{3}^{\alpha_{1}} \times Z_{3}\right) \cup \left(\left(Y_{2}^{\alpha_{1}} \cup Y_{1}^{\alpha_{1}} \cup Y_{0}^{\alpha_{1}}\right) \times \overline{D}\right) \\ &= \left(Y_{4}^{\alpha_{1}} \times Z_{4}\right) \cup \left(Y_{3}^{\alpha_{1}} \times Z_{3}\right) \cup \left(\left(Y_{2}^{\alpha_{1}} \cup Y_{1}^{\alpha_{1}} \cup Y_{0}^{\alpha_{1}}\right) \times \overline{D}\right) \\ &= \left(Y_{4}^{\alpha_{1}} \times Z_{4}\right) \cup \left(Y_{3}^{\alpha_{1}} \times Z_{3}\right) \cup \left(\left(Y_{2}^{\alpha_{1}} \cup Y_{1}^{\alpha_{1}} \cup Y_{0}^{\alpha_{1}}\right) \times \overline{D}\right) \\ &= \left(Y_{4}^{\alpha_{1}} \times Z_{4}\right) \cup \left(Y_{3}^{\alpha_{1}} \times Z_{3}\right) \cup \left(Y_{0}^{\alpha_{1}} \times \overline{D}\right). \end{split}$$

3. Let $V(X^*, \alpha) = \{Z_4, Z_2, \breve{D}\}$. Then binary relation α has representation of the form $\alpha = (Y_4^\alpha \times Z_4) \cup (Y_2^\alpha \times Z_2) \cup (Y_0^\alpha \times \breve{D})$. In this case suppose that

$$\overline{\beta}_1 = \begin{pmatrix} P_0 & P_1 & P_2 & P_3 & P_4 \\ \varnothing & Z_2 & Z_4 & Z_2 & \varnothing \end{pmatrix}$$

and $\ \overline{eta}_2$ are mapping of the set $\ X\setminus \widecheck{D}$ on the set $\ D\setminus \{Z_4,Z_2\}$. Then

$$\begin{split} \overline{\beta} &= \left(P_0 \times \varnothing\right) \cup \left(P_1 \times Z_2\right) \cup \left(P_2 \times Z_4\right) \cup \left(P_3 \times Z_2\right) \cup \left(P_4 \times \varnothing\right) \cup \bigcup_{t' \in X \setminus \bar{D}} \left(\left\{t'\right\} \times f\left(t'\right)\right), \\ \alpha_1 &= \left(Y_4^{\alpha_1} \times Z_4\right) \cup \left(Y_3^{\alpha_1} \times Z_3\right) \cup \left(Y_2^{\alpha_1} \times Z_2\right) \cup \left(Y_1^{\alpha_1} \times Z_1\right) \cup \left(Y_0^{\alpha_1} \times \bar{D}\right), \end{split} \tag{12}$$

where $Y_4^{\alpha_1}, Y_3^{\alpha_1}, Y_2^{\alpha_1}, Y_1^{\alpha_1} \notin \{\emptyset\}$, $Y_4^{\alpha_1} = Y_4^{\alpha}$, $Y_2^{\alpha_1} = Y_2^{\alpha}$ and $Y_3^{\alpha_1} \cup Y_1^{\alpha_1} \cup Y_0^{\alpha_1} = Y_0^{\alpha}$, then it is easy to see, that $\alpha_1, \overline{\beta} \in B$ since $V(D, \alpha_1) = V(D, \overline{\beta}) = D$. From the formal equality and equalities (12) and (5) we have:

$$\begin{split} Z_4\overline{\beta} &= \left(P_0 \cup P_2\right)\overline{\beta} = P_0\overline{\beta} \cup P_2\overline{\beta} = \varnothing \cup Z_4 = Z_4; \\ Z_3\overline{\beta} &= \left(P_0 \cup P_1 \cup P_2 \cup P_4\right)\overline{\beta} = P_0\overline{\beta} \cup P_1\overline{\beta} \cup P_2\overline{\beta} \cup P_4\overline{\beta} = \varnothing \cup Z_2 \cup Z_4 \cup \varnothing = \breve{D}; \\ Z_2\overline{\beta} &= \left(P_0 \cup P_1 \cup P_3 \cup P_4\right)\overline{\beta} = P_0\overline{\beta} \cup P_1\overline{\beta} \cup P_3\overline{\beta} \cup P_4\overline{\beta} = \varnothing \cup Z_2 \cup Z_2 \cup \varnothing = Z_2; \\ Z_1\overline{\beta} &= \left(P_0 \cup P_2 \cup P_3 \cup P_4\right)\overline{\beta} = P_0\overline{\beta} \cup P_2\overline{\beta} \cup P_3\overline{\beta} \cup P_4\overline{\beta} = \varnothing \cup Z_4 \cup Z_2 \cup \varnothing = \breve{D}; \\ \breve{D}\overline{\beta} &= \left(P_0 \cup P_1 \cup P_2 \cup P_3 \cup P_4\right)\overline{\beta} = P_0\overline{\beta} \cup P_1\overline{\beta} \cup P_2\overline{\beta} \cup P_3\overline{\beta} \cup P_4\overline{\beta} \\ &= \varnothing \cup Z_2 \cup Z_4 \cup Z_2 \cup \varnothing = \breve{D}; \\ \alpha &= \alpha_1 \circ \overline{\beta} \\ &= \left(Y_4^{\alpha_1} \times Z_4\overline{\beta}\right) \cup \left(Y_3^{\alpha_1} \times Z_3\overline{\beta}\right) \cup \left(Y_2^{\alpha_1} \times Z_2\overline{\beta}\right) \cup \left(Y_1^{\alpha_1} \times Z_1\overline{\beta}\right) \cup \left(Y_0^{\alpha_1} \times \breve{D}\overline{\beta}\right) \\ &= \left(Y_4^{\alpha_1} \times Z_4\right) \cup \left(Y_3^{\alpha_1} \times Z_2\right) \cup \left(\left(Y_3^{\alpha_1} \cup Y_1^{\alpha_1} \cup Y_0^{\alpha_1}\right) \times \breve{D}\right) \\ &= \left(Y_4^{\alpha_1} \times Z_4\right) \cup \left(Y_2^{\alpha_1} \times Z_2\right) \cup \left(\left(Y_3^{\alpha_1} \cup Y_1^{\alpha_1} \cup Y_0^{\alpha_1}\right) \times \breve{D}\right) \\ &= \left(Y_4^{\alpha_1} \times Z_4\right) \cup \left(Y_2^{\alpha_1} \times Z_2\right) \cup \left(\left(Y_3^{\alpha_1} \cup Y_1^{\alpha_1} \cup Y_0^{\alpha_1}\right) \times \breve{D}\right) \\ &= \left(Y_4^{\alpha_1} \times Z_4\right) \cup \left(Y_2^{\alpha_1} \times Z_2\right) \cup \left(\left(Y_3^{\alpha_1} \cup Y_1^{\alpha_1} \cup Y_0^{\alpha_1}\right) \times \breve{D}\right) \\ &= \left(Y_4^{\alpha_1} \times Z_4\right) \cup \left(Y_2^{\alpha_1} \times Z_2\right) \cup \left(\left(Y_3^{\alpha_1} \cup Y_1^{\alpha_1} \cup Y_0^{\alpha_1}\right) \times \breve{D}\right) \\ &= \left(Y_4^{\alpha_1} \times Z_4\right) \cup \left(Y_2^{\alpha_1} \times Z_2\right) \cup \left(\left(Y_3^{\alpha_1} \cup Y_1^{\alpha_1} \cup Y_0^{\alpha_1}\right) \times \breve{D}\right) \\ &= \left(Y_4^{\alpha_1} \times Z_4\right) \cup \left(Y_2^{\alpha_1} \times Z_2\right) \cup \left(Y_3^{\alpha_1} \times \breve{D}\right). \end{split}$$

4. Let $V(X^*, \alpha) = \{Z_1, Z_2, \breve{D}\}$. Then binary relation α has representation of the form $\alpha = (Y_1^{\alpha} \times Z_1) \cup (Y_2^{\alpha} \times Z_2) \cup (Y_0^{\alpha} \times \breve{D})$. In this case suppose that

$$\overline{\beta}_1 = \begin{pmatrix} P_0 & P_1 & P_2 & P_3 & P_4 \\ \varnothing & Z_1 & Z_2 & Z_1 & \varnothing \end{pmatrix}$$

and $\overline{\beta}_2$ are mapping of the set $X\setminus \widecheck{D}$ on the set $D\setminus \{Z_2,Z_1\}$. Then

$$\overline{\beta} = (P_0 \times \varnothing) \cup (P_1 \times Z_1) \cup (P_2 \times Z_2) \cup (P_3 \times Z_1) \cup (P_4 \times \varnothing) \cup \bigcup_{t' \in X \setminus \overline{D}} (\{t'\} \times f(t')),$$

$$\alpha_1 = (Y_4^{\alpha_1} \times Z_4) \cup (Y_3^{\alpha_1} \times Z_3) \cup (Y_2^{\alpha_1} \times Z_2) \cup (Y_1^{\alpha_1} \times Z_1) \cup (Y_0^{\alpha_1} \times \overline{D}),$$
(13)

where $Y_4^{\alpha_1}, Y_3^{\alpha_1}, Y_2^{\alpha_1}, Y_1^{\alpha_1} \notin \{\emptyset\}$, $Y_2^{\alpha_1} = Y_1^{\alpha}$, $Y_4^{\alpha_1} = Y_2^{\alpha}$ and $Y_3^{\alpha_1} \cup Y_1^{\alpha_1} \cup Y_0^{\alpha_1} = Y_0^{\alpha}$, then it is easy to see, that $\alpha_1, \overline{\beta} \in B$ since $V(D, \alpha_1) = V(D, \overline{\beta}) = D$. From the formal equality and equalities (13) and (5) we have:

$$\begin{split} Z_4\overline{\beta} &= \left(P_0 \cup P_2\right)\overline{\beta} = P_0\overline{\beta} \cup P_2\overline{\beta} = \varnothing \cup Z_2 = Z_2; \\ Z_3\overline{\beta} &= \left(P_0 \cup P_1 \cup P_2 \cup P_4\right)\overline{\beta} = P_0\overline{\beta} \cup P_1\overline{\beta} \cup P_2\overline{\beta} \cup P_4\overline{\beta} = \varnothing \cup Z_1 \cup Z_2 \cup \varnothing = \widecheck{D}; \\ Z_2\overline{\beta} &= \left(P_0 \cup P_1 \cup P_3 \cup P_4\right)\overline{\beta} = P_0\overline{\beta} \cup P_1\overline{\beta} \cup P_3\overline{\beta} \cup P_4\overline{\beta} = \varnothing \cup Z_1 \cup Z_1 \cup \varnothing = Z_1; \\ Z_1\overline{\beta} &= \left(P_0 \cup P_2 \cup P_3 \cup P_4\right)\overline{\beta} = P_0\overline{\beta} \cup P_2\overline{\beta} \cup P_3\overline{\beta} \cup P_4\overline{\beta} = \varnothing \cup Z_2 \cup Z_1 \cup \varnothing = \widecheck{D}; \\ \widecheck{D}\overline{\beta} &= \left(P_0 \cup P_1 \cup P_2 \cup P_3 \cup P_4\right)\overline{\beta} = P_0\overline{\beta} \cup P_1\overline{\beta} \cup P_2\overline{\beta} \cup P_3\overline{\beta} \cup P_4\overline{\beta} \\ &= \varnothing \cup Z_1 \cup Z_2 \cup Z_1 \cup \varnothing = \widecheck{D}; \\ \alpha &= \alpha_1 \circ \overline{\beta} \\ &= \left(Y_4^{\alpha_1} \times Z_4\overline{\beta}\right) \cup \left(Y_3^{\alpha_1} \times Z_3\overline{\beta}\right) \cup \left(Y_2^{\alpha_1} \times Z_2\overline{\beta}\right) \cup \left(Y_1^{\alpha_1} \times Z_1\overline{\beta}\right) \cup \left(Y_0^{\alpha_1} \times \widecheck{D}\overline{\beta}\right) \\ &= \left(Y_4^{\alpha_1} \times Z_2\right) \cup \left(Y_3^{\alpha_1} \times \widecheck{D}\right) \cup \left(Y_2^{\alpha_1} \times Z_1\right) \cup \left(Y_1^{\alpha_1} \times \widecheck{D}\right) \cup \left(Y_0^{\alpha_1} \times \widecheck{D}\right) \\ &= \left(Y_2^{\alpha_1} \times Z_1\right) \cup \left(Y_4^{\alpha_1} \times Z_2\right) \cup \left(\left(Y_3^{\alpha_1} \cup Y_1^{\alpha_1} \cup Y_0^{\alpha_1}\right) \times \widecheck{D}\right) \\ &= \left(Y_1^{\alpha} \times Z_1\right) \cup \left(Y_2^{\alpha} \times Z_2\right) \cup \left(Y_0^{\alpha} \times \widecheck{D}\right). \end{split}$$

5. Let $V(X^*, \alpha) = \{Z_1, Z_3, \breve{D}\}$. Then binary relation α has representation of the form $\alpha = (Y_1^{\alpha} \times Z_1) \cup (Y_3^{\alpha} \times Z_3) \cup (Y_0^{\alpha} \times \breve{D})$. In this case suppose that

$$\overline{\beta}_1 = \begin{pmatrix} P_0 & P_1 & P_2 & P_3 & P_4 \\ \emptyset & Z_3 & Z_1 & Z_3 & \emptyset \end{pmatrix}$$

and $\bar{\beta}_2$ are mapping of the set $X \setminus \bar{D}$ on the set $D \setminus \{Z_3, Z_1\}$. Then

$$\overline{\beta} = (P_0 \times \varnothing) \cup (P_1 \times Z_3) \cup (P_2 \times Z_1) \cup (P_3 \times Z_3) \cup (P_4 \times \varnothing) \cup \bigcup_{t' \in X \setminus \overline{D}} (\{t'\} \times f(t')),$$

$$\alpha_1 = (Y_4^{\alpha_1} \times Z_4) \cup (Y_3^{\alpha_1} \times Z_3) \cup (Y_2^{\alpha_1} \times Z_2) \cup (Y_1^{\alpha_1} \times Z_1) \cup (Y_0^{\alpha_1} \times \overline{D}),$$
(14)

where $Y_4^{\alpha_1}, Y_3^{\alpha_1}, Y_2^{\alpha_1}, Y_1^{\alpha_1} \notin \{\emptyset\}$, $Y_4^{\alpha_1} = Y_1^{\alpha}$, $Y_2^{\alpha_1} = Y_3^{\alpha}$ and $Y_3^{\alpha_1} \cup Y_1^{\alpha_1} \cup Y_0^{\alpha_1} = Y_0^{\alpha}$, then it is easy to see, that $\alpha_1, \overline{\beta} \in B$ since $V(D, \alpha_1) = V(D, \overline{\beta}) = D$. From the formal equality and equalities (14) and (5) we have:

$$\begin{split} Z_4\overline{\beta} &= \left(P_0 \cup P_2\right)\overline{\beta} = P_0\overline{\beta} \cup P_2\overline{\beta} = \varnothing \cap Z_1 = Z_1; \\ Z_3\overline{\beta} &= \left(P_0 \cup P_1 \cup P_2 \cup P_4\right)\overline{\beta} = P_0\overline{\beta} \cup P_1\overline{\beta} \cup P_2\overline{\beta} \cup P_4\overline{\beta} = \varnothing \cup Z_3 \cup Z_1 \cup \varnothing = \overline{D}; \\ Z_2\overline{\beta} &= \left(P_0 \cup P_1 \cup P_3 \cup P_4\right)\overline{\beta} = P_0\overline{\beta} \cup P_1\overline{\beta} \cup P_3\overline{\beta} \cup P_4\overline{\beta} = \varnothing \cup Z_3 \cup Z_3 \cup \varnothing = Z_3; \\ Z_1\overline{\beta} &= \left(P_0 \cup P_2 \cup P_3 \cup P_4\right)\overline{\beta} = P_0\overline{\beta} \cup P_2\overline{\beta} \cup P_3\overline{\beta} \cup P_4\overline{\beta} = \varnothing \cup Z_1 \cup Z_3 \cup \varnothing = \overline{D}; \\ \overline{D}\overline{\beta} &= \left(P_0 \cup P_1 \cup P_2 \cup P_3 \cup P_4\right)\overline{\beta} = P_0\overline{\beta} \cup P_1\overline{\beta} \cup P_2\overline{\beta} \cup P_3\overline{\beta} \cup P_4\overline{\beta} \\ &= \varnothing \cup Z_3 \cup Z_1 \cup Z_3 \cup \varnothing = \overline{D}; \\ \alpha &= \alpha_1 \circ \overline{\beta} \\ &= \left(Y_4^{\alpha_1} \times Z_4\overline{\beta}\right) \cup \left(Y_3^{\alpha_1} \times Z_3\overline{\beta}\right) \cup \left(Y_2^{\alpha_1} \times Z_2\overline{\beta}\right) \cup \left(Y_1^{\alpha_1} \times Z_1\overline{\beta}\right) \cup \left(Y_0^{\alpha_1} \times \overline{D}\overline{\beta}\right) \\ &= \left(Y_4^{\alpha_1} \times Z_1\right) \cup \left(Y_3^{\alpha_1} \times \overline{D}\right) \cup \left(Y_2^{\alpha_1} \times Z_3\right) \cup \left(Y_1^{\alpha_1} \cup Y_0^{\alpha_1}\right) \times \overline{D}\right) \\ &= \left(Y_4^{\alpha_1} \times Z_1\right) \cup \left(Y_3^{\alpha_1} \times Z_3\right) \cup \left(\left(Y_3^{\alpha_1} \cup Y_1^{\alpha_1} \cup Y_0^{\alpha_1}\right) \times \overline{D}\right) \\ &= \left(Y_4^{\alpha_1} \times Z_1\right) \cup \left(Y_3^{\alpha_1} \times Z_3\right) \cup \left(\left(Y_3^{\alpha_1} \cup Y_1^{\alpha_1} \cup Y_0^{\alpha_1}\right) \times \overline{D}\right) \\ &= \left(Y_1^{\alpha_1} \times Z_1\right) \cup \left(Y_3^{\alpha_1} \times Z_3\right) \cup \left(Y_0^{\alpha_1} \times \overline{D}\right). \end{split}$$

6. Let $V(X^*, \alpha) = \{Z_2, Z_3, \breve{D}\}$. Then binary relation α has representation of the form $\alpha = (Y_2^{\alpha} \times Z_2) \cup (Y_3^{\alpha} \times Z_3) \cup (Y_0^{\alpha} \times \breve{D})$. In this case suppose that

$$\overline{\beta}_1 = \begin{pmatrix} P_0 & P_1 & P_2 & P_3 & P_4 \\ \varnothing & Z_3 & Z_2 & Z_3 & \varnothing \end{pmatrix}$$

and $\overline{\beta}_2$ are mapping of the set $X\setminus D$ on the set $D\setminus \{Z_3,Z_2\}$. Then

$$\overline{\beta} = (P_0 \times \varnothing) \cup (P_1 \times Z_3) \cup (P_2 \times Z_2) \cup (P_3 \times Z_3) \cup (P_4 \times \varnothing) \cup \bigcup_{t' \in X \setminus \overline{D}} (\{t'\} \times f(t'))$$

$$\alpha_1 = (Y_4^{\alpha_1} \times Z_4) \cup (Y_3^{\alpha_1} \times Z_3) \cup (Y_2^{\alpha_1} \times Z_2) \cup (Y_1^{\alpha_1} \times Z_1) \cup (Y_0^{\alpha_1} \times \overline{D}),$$
(15)

where $Y_4^{\alpha_1}, Y_3^{\alpha_1}, Y_2^{\alpha_1}, Y_1^{\alpha_1} \notin \{\emptyset\}$, $Y_4^{\alpha_1} = Y_2^{\alpha}$, $Y_2^{\alpha_1} = Y_3^{\alpha}$ and $Y_3^{\alpha_1} \cup Y_1^{\alpha_1} \cup Y_0^{\alpha_1} = Y_0^{\alpha}$, then it is easy to see, that $\alpha_1, \overline{\beta} \in B$ since $V(D, \alpha_1) = V(D, \overline{\beta}) = D$. From the formal equality and equalities (15) and (5) we have:

$$\begin{split} Z_4\overline{\beta} &= \left(P_0 \cup P_2\right)\overline{\beta} = P_0\overline{\beta} \cup P_2\overline{\beta} = \varnothing \cup Z_2 = Z_2; \\ Z_3\overline{\beta} &= \left(P_0 \cup P_1 \cup P_2 \cup P_4\right)\overline{\beta} = P_0\overline{\beta} \cup P_1\overline{\beta} \cup P_2\overline{\beta} \cup P_4\overline{\beta} = \varnothing \cup Z_3 \cup Z_2 \cup \varnothing = \overline{D}; \\ Z_2\overline{\beta} &= \left(P_0 \cup P_1 \cup P_3 \cup P_4\right)\overline{\beta} = P_0\overline{\beta} \cup P_1\overline{\beta} \cup P_3\overline{\beta} \cup P_4\overline{\beta} = \varnothing \cup Z_3 \cup Z_3 \cup \varnothing = Z_3; \\ Z_1\overline{\beta} &= \left(P_0 \cup P_2 \cup P_3 \cup P_4\right)\overline{\beta} = P_0\overline{\beta} \cup P_2\overline{\beta} \cup P_3\overline{\beta} \cup P_4\overline{\beta} = \varnothing \cup Z_2 \cup Z_3 \cup \varnothing = \overline{D}; \\ \overline{D}\overline{\beta} &= \left(P_0 \cup P_1 \cup P_2 \cup P_3 \cup P_4\right)\overline{\beta} = P_0\overline{\beta} \cup P_1\overline{\beta} \cup P_2\overline{\beta} \cup P_3\overline{\beta} \cup P_4\overline{\beta} \\ &= \varnothing \cup Z_3 \cup Z_2 \cup Z_3 \cup \varnothing = \overline{D}; \\ \alpha &= \alpha_1 \circ \overline{\beta} \\ &= \left(Y_4^{\alpha_1} \times Z_4\overline{\beta}\right) \cup \left(Y_3^{\alpha_1} \times Z_3\overline{\beta}\right) \cup \left(Y_2^{\alpha_1} \times Z_2\overline{\beta}\right) \cup \left(Y_1^{\alpha_1} \times Z_1\overline{\beta}\right) \cup \left(Y_0^{\alpha_1} \times \overline{D}\overline{\beta}\right) \\ &= \left(Y_4^{\alpha_1} \times Z_2\right) \cup \left(Y_3^{\alpha_1} \times \overline{D}\right) \cup \left(Y_2^{\alpha_1} \times Z_3\right) \cup \left(Y_1^{\alpha_1} \times \overline{D}\right) \cup \left(Y_0^{\alpha_1} \times \overline{D}\right) \\ &= \left(Y_4^{\alpha_1} \times Z_2\right) \cup \left(Y_2^{\alpha_1} \times Z_3\right) \cup \left(\left(Y_3^{\alpha_1} \cup Y_1^{\alpha_1} \cup Y_0^{\alpha_1}\right) \times \overline{D}\right) \\ &= \left(Y_4^{\alpha_1} \times Z_2\right) \cup \left(Y_3^{\alpha_1} \times Z_3\right) \cup \left(\left(Y_3^{\alpha_1} \times \overline{D}\right) \cup \left(Y_0^{\alpha_1} \times \overline{D}\right)\right) \\ &= \left(Y_2^{\alpha_2} \times Z_2\right) \cup \left(Y_3^{\alpha_1} \times Z_3\right) \cup \left(Y_1^{\alpha_2} \times \overline{D}\right). \end{split}$$

7. Let $V(X^*, \alpha) = \{Z_4, Z_3, Z_1, \breve{D}\}$. Then binary relation α has representation of the form $\alpha = (Y_4^\alpha \times Z_4) \cup (Y_3^\alpha \times Z_3) \cup (Y_1^\alpha \times Z_1) \cup (Y_0^\alpha \times \breve{D})$. In this case suppose that

$$\overline{\beta}_1 = \begin{pmatrix} P_0 & P_1 & P_2 & P_3 & P_4 \\ \varnothing & Z_3 & Z_4 & Z_1 & \varnothing \end{pmatrix}$$

and $\overline{\beta}_2$ are mapping of the set $X \setminus \widecheck{D}$ on the set $D \setminus \{Z_4, Z_3, Z_1\}$. Then

$$\overline{\beta} = (P_0 \times \varnothing) \cup (P_1 \times Z_3) \cup (P_2 \times Z_4) \cup (P_3 \times Z_1) \cup (P_4 \times \varnothing) \cup \bigcup_{t' \in X \setminus \overline{D}} (\{t'\} \times f(t')),$$

$$\alpha_1 = (Y_4^{\alpha_1} \times Z_4) \cup (Y_3^{\alpha_1} \times Z_3) \cup (Y_2^{\alpha_1} \times Z_2) \cup (Y_1^{\alpha_1} \times Z_1) \cup (Y_0^{\alpha_1} \times \overline{D}),$$
(16)

where $Y_{\underline{4}}^{\alpha_1}, Y_3^{\alpha_1}, Y_2^{\alpha_1}, Y_1^{\alpha_1} \notin \{\emptyset\}$, $Y_4^{\alpha_1} = Y_4^{\alpha}$, $Y_3^{\alpha_1} = Y_3^{\alpha}$, $Y_1^{\alpha_1} = Y_1^{\alpha}$ and $Y_2^{\alpha_1} \cup Y_0^{\alpha_1} = Y_0^{\alpha}$, then it is easy to see, that $\alpha_1, \overline{\beta} \in B$ since $V(D, \alpha_1) = V(D, \overline{\beta}) = D$. From the formal equality and equalities (16) and (5) we have:

$$\begin{split} Z_4\overline{\beta} &= \left(P_0 \cup P_2\right)\overline{\beta} = P_0\overline{\beta} \cup P_2\overline{\beta} = \varnothing \cup Z_4 = Z_4; \\ Z_3\overline{\beta} &= \left(P_0 \cup P_1 \cup P_2 \cup P_4\right)\overline{\beta} = P_0\overline{\beta} \cup P_1\overline{\beta} \cup P_2\overline{\beta} \cup P_4\overline{\beta} = \varnothing \cup Z_3 \cup Z_4 \cup \varnothing = Z_3; \\ Z_2\overline{\beta} &= \left(P_0 \cup P_1 \cup P_3 \cup P_4\right)\overline{\beta} = P_0\overline{\beta} \cup P_1\overline{\beta} \cup P_3\overline{\beta} \cup P_4\overline{\beta} = \varnothing \cup Z_3 \cup Z_1 \cup \varnothing = \overline{D}; \\ Z_1\overline{\beta} &= \left(P_0 \cup P_2 \cup P_3 \cup P_4\right)\overline{\beta} = P_0\overline{\beta} \cup P_2\overline{\beta} \cup P_3\overline{\beta} \cup P_4\overline{\beta} = \varnothing \cup Z_4 \cup Z_1 \cup \varnothing = Z_1; \\ \overline{D}\overline{\beta} &= \left(P_0 \cup P_1 \cup P_2 \cup P_3 \cup P_4\right)\overline{\beta} = P_0\overline{\beta} \cup P_1\overline{\beta} \cup P_2\overline{\beta} \cup P_3\overline{\beta} \cup P_4\overline{\beta} \\ &= \varnothing \cup Z_3 \cup Z_4 \cup Z_1 \cup \varnothing = \overline{D}; \\ \alpha &= \alpha_1 \circ \overline{\beta} \\ &= \left(Y_4^{\alpha_1} \times Z_4\overline{\beta}\right) \cup \left(Y_3^{\alpha_1} \times Z_3\overline{\beta}\right) \cup \left(Y_2^{\alpha_1} \times Z_2\overline{\beta}\right) \cup \left(Y_1^{\alpha_1} \times Z_1\overline{\beta}\right) \cup \left(Y_0^{\alpha_1} \times \overline{D}\overline{\beta}\right) \\ &= \left(Y_4^{\alpha_1} \times Z_4\right) \cup \left(Y_3^{\alpha_1} \times Z_3\right) \cup \left(Y_1^{\alpha_1} \times Z_1\right) \cup \left(\left(Y_2^{\alpha_1} \cup Y_0^{\alpha_1}\right) \times \overline{D}\right) \\ &= \left(Y_4^{\alpha_1} \times Z_4\right) \cup \left(Y_3^{\alpha_1} \times Z_3\right) \cup \left(Y_1^{\alpha_1} \times Z_1\right) \cup \left(\left(Y_2^{\alpha_1} \cup Y_0^{\alpha_1}\right) \times \overline{D}\right) \\ &= \left(Y_4^{\alpha_1} \times Z_4\right) \cup \left(Y_3^{\alpha_1} \times Z_3\right) \cup \left(Y_1^{\alpha_1} \times Z_1\right) \cup \left(\left(Y_2^{\alpha_1} \cup Y_0^{\alpha_1}\right) \times \overline{D}\right) \\ &= \left(Y_4^{\alpha_1} \times Z_4\right) \cup \left(Y_3^{\alpha_1} \times Z_3\right) \cup \left(Y_1^{\alpha_1} \times Z_1\right) \cup \left(\left(Y_2^{\alpha_1} \cup Y_0^{\alpha_1}\right) \times \overline{D}\right) \\ &= \left(Y_4^{\alpha_1} \times Z_4\right) \cup \left(Y_3^{\alpha_1} \times Z_3\right) \cup \left(Y_1^{\alpha_1} \times Z_1\right) \cup \left(\left(Y_2^{\alpha_1} \cup Y_0^{\alpha_1}\right) \times \overline{D}\right) \\ &= \left(Y_4^{\alpha_1} \times Z_4\right) \cup \left(Y_3^{\alpha_1} \times Z_3\right) \cup \left(Y_1^{\alpha_1} \times Z_1\right) \cup \left(\left(Y_2^{\alpha_1} \cup Y_0^{\alpha_1}\right) \times \overline{D}\right). \end{split}$$

References

- Diasamidze, Ya. and Makharadze, Sh. (2013) Complete Semigroups of Binary Relations. Cityplace Kriter, Country-Region Turkey, 520 p.
- [2] Davedze, M.Kh. (1968) Generating Sets of Some Subsemigroups of the Semigroup of All Binary Relations in a Finite Set. *Proc. A. I. Hertzen Leningrad State Polytechn. Inst.*, **387**, 92-100. (In Russian)
- [3] Davedze, M.Kh. (1971) A Semigroup Generated by the Set of All Binary Relations in a Finite Set. XIth All-Union Algebraic Colloquium, Abstracts of Reports, Kishinev, 193-194. (In Russian)
- [4] Davedze, M.Kh. (1968) Generating Sets of the Subsemigroup of All Binary Relations in a Finite Set. *Doklady AN BSSR*, **12**, 765-768. (In Russian)
- [5] Givradze, O. (2010) Irreducible Generating Sets of Complete Semigroups of Unions $B_X(D)$ Defined by Semilattices of Class $\sum_{2}(X,4)$. Proceedings of the International Conference "Modern Algebra and Its Aplications", Batumi.
- [6] Givradze, O. (2011) Irreducible Generating Sets of Complete Semigroups of Unions $B_X(D)$ Defined by Semilattices of Class in Case, When $X = \overline{D}$ and $|\overline{D} \setminus Z_3| > 1$. Proceedings of the International Conference "Modern Algebra and Its Aplications", Batumi.