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Abstract 
 
Let  be a polynomial in  :P P t    \ 0,1 .X  In this paper, we consider the number of polynomial 

solutions of Diophantine equation      2: 4 2 4 4 = 0E X P P Y P X P P Y2 2 2     . We also obtain some 

formulas and recurrence relations on the polynomial solution  ,n nX Y .E

= 1ax by

2 2bxy y dx ey   
2 2 =

 of   
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1. Introduction 
 
A Diophantine equation is an indeterminate polynomial 
equation that allows the variables to be integers only. 
Diophantine problems have fewer equations than un- 
known variables and involve finding integers that work 
correctly for all equations. In more technical language, 
they define an algebraic curve, algebraic surface or more 
general object, and ask about the lattice points on it. The 
word Diophantine refers to the Hellenistic mathematician 
of the 3rd century, Diophantus of Alexandria, who made 
a study of such equations and was one of the first 
mathematicians to introduce symbolism into algebra. The 
mathematical study of Diophantine problems Diophantus 
initiated is now called Diophantine analysis. A linear 
Diophantine equation is an equation between two sums 
of monomials of degree zero or one. While individual 
equations present a kind of puzzle and have been 
considered throughout history, the formulation of general 
theories of Diophantine equations was an achievement of 
the twentieth century. For example, the equation 

 is known the linear Diophantine equation. In 
general, the Diophantine equation is the equation given 
by 

= 0fax c  

The equation x Dy N D, with given integers  
and  and unknowns N x  and , is called Pell’s 
equation If  is negative, it can have only a finite 
number of solutions. If  is a perfect square, say 

, the equation reduces to  

y

  =

D

2=D a
D

x ay x ay N 

1D

 

and again there is only a finite number of solutions. The 
most interesting case of the equation arises when   
be a positive non-square. 

Although J. Pell contributed very little to the analysis 
of the equation, it bears his name because of a mistake 
by Euler. 

Pell’s equation  was solved by Lagrange 
in terms of simple continued fractions. Lagrange was the 
first to prove that  has infinitly many 
solutions in integers if  is a fixed positive 
non-square integer. If the lenght of the periode of 

2 2 = 1x Dy

2 2 = 1x Dy
1D 

D
l 2 1= vkx P

 
is , all positive solutions are given by   and 

2 1vk=y Q   if k is odd, and by 1vkx = P =y Q  and 1vk  
if  is even, where  and k = 1, 2,v    n n  denotes 
the nth convergent of the continued fraction expansion of 

P Q

.D =x P (2 1)( 1)= ,v ky Q  

: = 1,2,y v
 Incidentally, (2 1)( 1)v k   and  

v  2 2 =, are the positive solutions of x Dy 1 
l

2 2 = 1x Dy 

, : = 1, 2,v vx y v

 
provided that  is odd. 

There is no solution of  other than 

    given by  1 1 =
v

v vx D y x D y 

,

,  

where 1 1x y  is the least positive solution called the 
fundamental solution, which there are different method 
for finding it. The reader can find many references in the 
subject in the book [1]. 

We recall that there are many papers in which are 
considered different types of Pell's equation. Many 
authors such as Tekcan [2], Kaplan and Williams [3], 
Matthews [4], Mollin, Poorten and Williams [5], 
Stevenhagen [6] and the others consider eome specific 
Pell equations and their integer solutions. In [2,7], It 
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considered the equation  
x D

2 2

 and the equa- 
tion  and he obtained some formulas for 
its integer solutions. He mentioned two conjecture which 
was proved by A. S. Shabani [8]. In [9], we extend the 
work in [2,7] by considering the Pell equation 

2 2 = 9,y 

2=x Dy
k

k D  1


2 2 = 1P DQ

D P Q
D

D
 P Q 1,

 D t

1[ ,..., ]

 when  be a positive non-square 
and , we obtain some formulas for its integer 
solutions. 

2

In [10], A. Dubickas and J. Steuding are interested in 
the polynomial solutions of the Pell equation given by  

 

where  is a fixed polynomial,  and  are 
polynomials in the same variables as  and with 
coefficients in the same field or ring as those of . The 
solutions  and  are called trivial. 
All other solutions are called non-trivial. The main 
difficulty in solving polynomial Pell equations is to 
determine whether non-trivial solutions exist or not. In 
case, if there is at least one non-trivial solution, all 
solutions are obtained as powers of the smallest non-trivial 
solution. They prove this for polynomials  in one 
variable with coefficients in  The proof is purely 
algebraic and extends without change to arbitrary 
polynomials in several variables 

, = 1, 0 0



sD t  over 
every field  of characteristic  

t


 24 4 = 0t t y

 2 16 0t  

 :P P t [ ] \{0,1}.X

  4 2

= 0

P t X 

 ,n

2.
In [11,12], the number of integer solutions of Dio- 

phantine equation 
 and 

Diophantine equation 
 over  

is considered, where   

   2 2 2 4 2x t t y t x    

   2 2 2 16 4x t t y t x    
2.t 

16 =t y

 
2. Main Results 
 

Let  be a polynomial in  In this 
paper, we consider the number of polynomial solutions 
of Diophantine equation 

    
    

22 2

2

:

4 4

E X P t P t Y

P t P t Y

 

 
   (1) 

We also obtain some formulas and recurrence relations 
on the polynomial solution nX Y .E

E

E
E

=

=

 of  
Note that the resolution of  in its present form is 

difficult, that is, we can not determine how many 
solutions  has and what they are. So, we have to 
transform  into an appropriate Diophantine equation 
which can be easily solved. To get this let  

:
X U H

Y V K
T


 

               (2) 

be a translation for some H  and 

By applying the transformation  to  we get T ,E

         

         

2 2 2

2

: :

4 2 4 4

= 0

T E E U H P t P t V K

P t U H P t P t V K

    

     



 

 

(3) 

In (3), we obtain 2 2 4U H P t 

       
 and 

  2 2
2 2 4 4V KP t KP t P t P t     So we get 

 = 2 1H P t  and  Consequently for = 2.K
 = 2 1X U P t  = 2,Y V 

   

 and  we have the Dio- 
phantine equation 

 22 2: 1E U P t P t V

.K   

          (4) 

which is a Pell equation. 
Now, we try to find all polynomial solutions ,U Vn n  

of  T E  and then we can retransfer all results from 
 T E E .T

E

E

 to  by using the inverse of  
Theorem 2.1: Let  be the Diophantine equation in 

(3), then 
1) The fundamental solution of  is 

    1 1, = 2 1,2U V P t   

2) Define the sequence ,n nU V

 

     
 

1

1

12
1

1

2 1

2

2 1 2 2
, 2

2 2 1

n

n

n

U P t

V

U UP t P t P t
n

V VP t



    
   

   


      

 by 

 

             

(5) 

 ,U V EThen n n

3) The solutions 
 is a solution of  

 ,n nU V

      

  

2

1 1

1 1

= 2 1 2 2

= 2 2 1

n n n

n n n

U P t U P t P t V

V U P t V

 satisfy the recurrence 
relations  

 

 

      
  

2n 

   (6) 

for  
 4) The solutions ,n nU V

 

 satisfy the recurrence 
relations  

  
   

1 2 3

1 2 3

= 4 3

= 4 3

n n n n

n n n n

U P t U U U

V P t V V U

  

  

   


  

4n 
n

   (7) 

for  
 ,n nU V  can be given by  5) The -th solution 
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1

= 1;2, 2 2, , 2, 2n

n n times

U
P t P t P t

V



  


2,2 , 1n


   
  



  2 1,2P t 
E

   22 = 1P t

= 1n
  1,2

,n

  2 = 1.nP t V

1.n 

 

 

 

 

  
 

1

1

1

1

1

2

1

1

2

1

2

1

2

1

n

n

n

n

n n

n n

UP t

V

UP t

V

U

V

P t V

V



   
       
 
 



  
      

  
   
  
 
 

  
  

2

2

2

1

1

n

n n

P t V

P t V

 
  

  

 1 1,n nU V  E

 

 

(8) 
Proof.  
1) It is easily seen that  is the 

fundamental polynomial solution of  since 
 1 1, =U V

    2 2
2 1P t P t    

2) We prove it using the method of mathematical 
induction. Let , by (5) we get 
 , =U V 2P t1 1  which is the fundamental solu- 
tion and so is a solution of . Now, we assume that the 
Diophantine equation (4) is satisfied for  that is 

E

  22: nE U P t   We try to show that this 

equation is also satisfied for  Applying (5), we 
find that 

   
 

   
 

   
 

   
 

    
 

2
1

1

2

2

2

2

2 1 2

2 2

2 1 2 2

2 2

2 1 2
  

2 2

2 1 2
=

2 2

2 1 2
=

2 2

n

n

U P t P t

V P t

P t P t P t

P t

P t P t

P t

P t P t P t

P t

P t U P t

U P t





   
 

 

 
  

  




 
 

 

 

   (9) 

Hence, we conclude that  

    
    

    
    

22 2
1 1

2

2

22 2

= 2 1 2

  2 2

= =

n n

n

n n

U P t P t V

P t U P t

P t P t U

U P t P t V

  

 

  

 

 

So  is also solution of   

3) Using (9), we find that  

     1 12 nt P t V 

2n 

= 4,n

  

2

1 1

= 2 1 2

= 2 2 1

n n

n n n

U P t U P

V U P t V 

  

  

 

for   
4) We prove it using the method of mathematical 

induction. For  we get  

 
   
     

1

2

2

2 2

3

= 2 1

= 8 8 1

= 32 48 18 1

U P t

U P t P t

U P t P t P t



 

  

       4 3 2

4 = 128 256 160 32 1U P t P t P t P t

 

and  

   

       
        

  
  
         

  
   

4 3 2

4

3 2

2 2 2

3 2 1

128 256 160 32 1

4 3 32 40 10

2 1

= 4 3

32 48 18 1 8 8 1

2 1

= 4 3

U P t P t P t P t

P t P t P t P t

P t

P t

P t P t P t P t P t

P t

P t U U U

    

     
 



 

Hence 

        
 

  
 

   1 2 3= 4 3n n n nU P t U U USo     

= 4.n
,n

 is satisfied 

for  Let us assume that this relation is satisfied for 
 that is,  

    1 2 3= 4 3n n n nU P t U U U         (10) 

Then using (9) and (10), we conclude that  

    1 1 2= 4 3n n n nU P t U U U     

completing the proof. 
Similarly, we prove that 

  1 2 3= 4 3 , 4n n n nV t V V V n      

= 1n

 

5) We prove it using the method of mathematical 
induction. For , we have  

     

 

1

1

2 1 2 2 1 1
= = 1

2 2 2

= 1;2

P t P tU
P t

V

P t

  
  

  

E

 

which is the fundamental solution of . Let us assume 
that the n-th solution  ,n nU V  is given by  

     
1

= 1;2,2 2, , 2,2 2,2n

n n times

U
P t P t P t

V


 
       
 



 1 1, .n nU y 



and we show that it holds for  

U  sing (6) , we have  
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2

1

1

2 1 2 2 2 1 2 1 1

2 2 1 2 2 1

1
1

1
2

1

n n n n nn

n n n n n

n

n

P t U P t P t V P t U U P t P t VU

V U P t V U P t V

P t

U
P t

V





       
 

   

  


 

1 nP t V 

 

as 

opyright © 2011 SciRes.    

     

 

1 1

1
    

1
2

1
1

2 2
2

  2 ( ) 2

1
     

1
2

2 ( ) 2

n

P t P t P t
V

P t

P t

P t

     



 

 

 




 
 

1

1
1

1
2 ( ) 2

2

nU

P t  

 

we get  

 

 

 

 

     

1

1

1
1

2
1

2 2
1

2
2 2

= 1;2, 2 2, , 2, 2 2

n

n times

P t
V

P t

P t

P t P t P t



 




 


 
 

    


1

1
1

1
2 2

2

, 2

nU

P t



 

 
 
  

E

E
.

 

could be transformed into the Diophantine equation  
via the transformation T  Also, we showed that 

 = 2 1X U P t  = 2.
E E .T

D

E

 and Y V  So, we can retransfer 
all results from  to  by applying the inverse of  
Thus, we can give the following main theorem: 

Theorem 2.2: Let  be the Diophantine equation in 
(1). Then  

1) The fundamental (minimal) solution of  is 

completing the proof.  
  As we reported above, the Diophantine equation   

    1 1, = 4 2, 4X Y P t 

 

 

2) Define the sequence 

     1
, = 2 1, 2n n n nn

X Y U P t V


     

where  ,n nY  ,n n defined in (5). Then X X Y

.E

 is a 

solution of  So it has infinitely many integer 

solutions  , .n nX Y    

3) The solutions  ,n nX Y  satisfy the recurrence 
relations (see (11)) 

4) The solutions  ,n nX Y  satisfy the recurrence 
relations (see (12)) 

  = 2 1,P t t   Then Example 2.3: Let 

   1 1, = 4 1,2U V t   is the fundamental solution of  

 2 2 2: 4 2 = 1E U t t V 

22
2

2
2

4 1 32 16 14 1 8 4
=

22 4 1 128 64 5

U t t tt t t

V t t t

         
                

2 3 22
3

2
3

4 1 256 192 36 14 1 8 4

22 4 1 128 64 5

U t t t tt t t

V t t t

          
               

           

   

2 2

1 1

1 1

= 2 1 2 2 8 10 2

= 2 2 8 6

n n n

n n n

X P t X P t P t Y P t P t

Y X P Y P t

 

 

    


 
2

       
    

2

1 2 3

1 2 3

= 4 3 16 24 8

= 4 3 16 16

n n n n

n n n n

X P t X X X P t P t

Y P Y Y Y P t

  

  

      


    
4

 

and some other solutions are 

 

 
 
 

 

 1t

 

 

      for n         (11)

 t
           for n         (12)
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2

4 1

2 60 1

7

t t

t

 
 
 

 
  

252 92 1

9

t t

t

 
   

  
32

4

4

4 3

3 2

4 1 8 4

22 4 1

2048 2048 63

1024 768 156

U tt t t

V t

t t

t t

    
   

   
  

 
 

 

32
5

5

5 4 3

4 3 2

4 14 1 8 4

22 4 1

16192 20480 8896 15

8096 8192 2656 304

U tt t t

V t

t t t

t t t

      
          
   


  

 

Further  

 1

1

= 2
U

V

4 1
;2 =

2

t
t


 

 
232 16 1

16 4

t t

V t

 


2

2

= 2 ;2, 4 , 2 =
U

t t  

 
3 2192 36 1

64 5

t t t

t t
3

2
3

256
= 2 ;2,4 ,2,4 ,2 =

128

U
t t t

V

  
 

 

 4

4

4 3

3 2

= 2 ;2, 4 , 2,4 ,2,4 , 2

2048 2048
 =

1024 768

t t t t
V

t t

t t

 
 

2632 60 1

156 7

U

t t

t

 


 

 5

2

2

552 92 1

304 9

U

t t

t t

  
 

     2 2 2 2: 4 2 4 2 16 8 = 0E X t t Y t X t t Y     

2
2 32 20 2

16 6

X t t

t

    
 

 
3 2256 192 40 2

64 7

t t t

t t

   
 

  
4 3 2048 632 64 2

156 9

t t t t

t

    
 

 
3 2

2

896 1552 96 2

2656 304 11

t t t

t t

   
 

  

2 2x D

2 2x m

5

5 4 3

4 3

= 2 ;2,4 ,2,4 , 2, 4 , 2, 4 , 2

16192 20480 8896 1
      =

8096 8192 2656

t t t t t
U

t t t

t t

 
 

 

It can be concluded now, that the fundamental solution 
of  

 

is  Some other solutions are  8 2,4 .t 

2Y
 

 

3X 
 

 

2
3 128Y 

4 2048 2X 
 

 

3 2
4 1024 768Y t t   

5 4
5

4 3

16192 20480 8

8096 8192

X t t

X t t

   
 

 

 

5 
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