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Abstract 
In this paper, necessary optimality conditions for a class of Semi-infinite Variational Problems are 
established which are further generalized to a class of Multi-objective Semi-Infinite Variational 
Problems. These conditions are responsible for the development of duality theory which is an ex-
tremely important feature for any class of problems, but the literature available so far lacks these 
necessary optimality conditions for the stated problem. A lemma is also proved to find the topo-
logical dual of ( )( )L I


2 ,  as it is required to prove the desired result. 
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1. Introduction 
A Semi-infinite Programming Problem (SIP) [1]-[3] is an optimization problem in which the index set of in-
equality constraints is an arbitrary and not necessarily finite set. It has wide variety of applications in various 
fields like economics, engineering, mathematical physics and robotics. While browsing the literature, we ob-
serve that much attention has been paid to SIP which is static in nature in the sense that time does not enter into 
consideration. Whereas in practical problems we come across situations where time plays an important role and 
hence cannot be neglected. 

Semi-infinite Programming Problem is tightly interwoven with Variational Problem [4]-[9]. Both these sub-
jects have undergone independent development, hence mutual adaptation of ideas and techniques have always 
been appreciated. 
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In this article, we propose Semi-infinite Variational Problem for which necessary optimality conditions are 
established. These optimality conditions are further extended to Multi-objective Semi-infinite Variational Prob-
lem (MSVP). We also clarify, with proper reasoning, certain points which were left for later validation in [9]. 

Necessary optimality conditions are important because these conditions lay down foundation for many com-
putational techniques in optimization problems as they indicate when a feasible point is not optimal. At the same 
time these conditions are useful in the development of numerical algorithms for solving certain optimization 
problems. Further, these conditions are also responsible for the development of duality theory on which there 
exists an extensive literature and a substantial use of which (duality theory) has been made in theoretical as well 
as computational applications in many diverse fields. While browsing the literature, we found that necessary op-
timality conditions were not proved for the class of semi-infinite variational problems. 

The paper is organized as follows: In section 2 some basic definitions and preliminaries are given. Section 3 
deals with necessary optimality conditions for semi-infinite variational problem; single objective as well as multi- 
objective. In section 4, we prove a lemma which is required to prove necessary optimality conditions of section 
3, for semi-infinite variational problem. 

2. Definitions and Preliminaries 
Let E be a topological vector space over the field of real numbers and E′  denotes the topological dual space of 
E. For a set C E⊂ , the topological polar cone C′  of C is ( ){ }| 0, for all .C E c c Cξ ξ′ ′= ∈ ≥ ∈  Let r and n 
be two positive integers. For a given real interval [ ],I a b= , let : nx I →   be a piecewise smooth state function 
with its derivative x . For notational convenience we write ,x x  in place of ( ) ( ),x t x t . Let { }1, 2, ,M r=  , 

: ,i n nf I i M× × → ∈    and : ,j n ng I j× × → ∈     be continuously differentiable functions with re-
spect to each of their argument. We also denote the partial derivative of ,if i M∈  with respect to ,t x  and x  
by , ,i i i

t x xf f f


 respectively. Analogously, we write the partial derivative of ,ig i∈ . For the sake of notational 
convenience we write ( )j

xf t  for ( ) ( )( ), ,j
xf t x t x t  and ( )j

xf t


 for ( ) ( )( ), ,j
xf t x t x t


  for 1, 2, , .j r=  . 
For any ( )T1 2, , , nx x x x=  , ( )T1 2, , , ny y y y=   in n-dimensional Euclidean space n ,  
1) i ix y x y= ⇔ =  for all 1, 2, , .i n=   
2) i ix y x y< ⇔ <  for all 1, 2, , .i n=   
3) i ix y x y⇔ ≤  for all 1, 2, , .i n=   
4) x y x y≤ ⇔   and .x y≠  
Let n

+  and int n
+  denote the non negative and positive orthant of n  respectively. Let X be the space of 

piecewise smooth state functions : nx I →   which equipped with the norm x x Dx
∞ ∞

= + , where the 
differential operator D is given by 

( ) ( ) ( )d .
t

a
u Dx x t x a u s s= ⇔ = + ∫  Therefore, d

d
D

t
=  except at discontinuities. 

Consider the following Multi-objective Semi-infinite Variational Problem (MSVP): 

( ) ( ) ( )( )1MSVP Minimize , , d , , , , d
b b r
a a

f t x x t f t x x t∫ ∫ 
  

subject to  

( ), , 0, , , ,ig t x x i t I x X∈ ∈ ∈                                        (1) 

( ) ( )0, 0.x a x b= =                                                  (2) 

( ) ( ){ }| 0, 0X x X x a x b= ∈ = =  with the norm defined as above is a Banach space.  
Let ( ) ( ) ( ){ }0 | , , 0, , , 0, 0iX x X g t x x i t I x a x b= ∈ ∈ ∈ = =

  be the set of all feasible solutions of (MSVP). 
Definition 1 A point 0x X∈  is said to be an efficient solution for (MSVP) if there is no other 0x X∈  such 

that 

( ) ( )
( ) ( )

, , d , , d , ,

, , d , , d , .

b bi i
a a

b bj j
a a

f t x x t f t x x t for all i M and

f t x x t f t x x t for at least one j M

≤ ∈

< ∈

∫ ∫

∫ ∫
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3. Necessary Optimality Conditions 
Let us first prove necessary optimality conditions for the following single objective Semi-infinite Variational 
Problem (SVP): 

( ) ( )SVP Minimize , , d
b

a
t x x tφ∫   

subject to 

( ), , 0, , , ,ig t x x i t I x X∈ ∈ ∈                              (3) 

( ) ( )0, 0.x a x b= =                                        (4) 

where : n nIφ × × →    is continuously differentiable function with respect to each of its argument. 
The problem (SVP) may be rewritten as Cone Constrained Problem (CCP):  

( ) ( )CCP Minimize xΦ  

subject to  

( ) , .G x K x X− ∈ ∈                                        (5) 

where : XΦ →   is defined as  

( ) ( ){ }, , d , .
b

a
x t x x t x XφΦ = ∈∫                                (6) 

( ) ( ) ( ){ }
( ){ }

22

2

, : such that is measurable and d

: such that is measurable and d ,

b

a

b

a

L I f I f f t t

f I f f t t

µ= → < ∞

= → < ∞

∫

∫

 



 

where µ  is Lebesgue measure. 

( )( ) ( ) ( ){ }2 2, | , , ,i i

i
L I f f f L I i

∈
= = ∈ ∈




    

( ) ( )( ) ( ){ }2 , | 0, , ;i i

i
K L I t i t Iγ γ γ

∈
= = ∈ ∈ ∈




    

( )( )2: ,G X L I→


  is defined as  

( )( ) ( ) ( ), , , , , .
i iG x t g t x x i t I x X= ∈ ∈ ∈                      (7) 

Theorem 2 Let x  be an optimal solution of (SVP). Then there exist τ +∈  and piecewise smooth func-
tions : , 0i iIλ λ→ ≠  for finitely many i∈  such that  

( ) ( ) ( ) ( ) ( ) ( )d , ,
d

i i i i
x x x x

i i
t t g t t t g t t I

t
τφ λ τφ λ

∈ ∈

 + = + ∈  
∑ ∑ 

 

      (8) 

( ) ( ), , d 0,
b i i
a

i
t g t x x tλ

∈

=∑∫ 


                                (9) 

( )( ) ( ), 0, 0 . ., , .i i

i
t a e t I iτ λ λ λ

∈
= ≠ ∈ ∈


                 (10) 

Proof. Since x  is an optimal solution of (SVP), so is of (CCP). Therefore there exist τ +∈  and 
y K ′∈  (topological polar cone of K) [10] such that 

( ) ( ) 0,x yG xτ ′ ′Φ + =                                    (11) 

( ) 0.yG x =                                            (12) 
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where ( )x′Φ  and ( )G x′  are Frechet derivatives of Φ  and G at x .  
Also for every v X∈ ,  

( ) ( )( ) ( ) ( ) ( ) ( ){ }d
b

x xa
x v t v t t v t tφ φ′Φ = +∫ 



                               
(13) 

 ( )( ) ( ) ( ) ( ) ( ) ( ) ( ) , , .
i i i

x xG x v t g t v t g t v t i t I′ = + ∈ ∈


 
                       

(14) 

Since y K ′∈ ,  

( )( )( )2 , .y L I
′

⇒ ∈



  

 

By Lemma 1 (proved in Section 4)  

( ) ( )2, , , 0, for finitely many .i i i

i
y y y L I y i

∈
= ∈ ≠ ∈


   

Let { }| 0 .iS i y= ∈ ≠  For ( )2, , ,ii S y L I∈ ∈   by Riesz representation theorem [11] there exist  
( )2 ,i L Iλ ∈   such that  

( ) ( ) ( ) ( )2d , for all , ,
bi i
a

y h t h t t h L Iλ= ∈∫                                 (15) 

for i S∉ , choose 0iλ = , therefore for any ( )( )2 ,v L I∈


 ,  

( ) ( ) ( )d .
b i i
a

i
y v t v t tλ

∈

= ∑∫


                                              (16) 

Substituting ( )v G x=  in (16) and using (12), we arrive at (9). 
Now it follows from (11)  

( )( ) ( )( ) 0, for all .x h yG x h h Xτ ′ ′Φ + = ∈                                  (17) 

(13) along with (16) implies  

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) d 0, for all .
b ii

x xa
i

t h t t h t t G x h t t h Xτφ τφ λ
∈

 ′+ + = ∈  
∑∫ 




        (18) 

On using (14), we get  

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) d 0, for all .
b i i i i

x xx xa
i i

t h t t h t t g t h t t g t h t t h Xτφ τφ λ λ
∈ ∈

 + + + = ∈  
∑ ∑∫  

 

 
    (19) 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) d 0, for all .
b i i i i

x x x xa
i i

t t g t h t t t g t h t t h Xτφ λ τφ λ
∈ ∈

    ⇒ + + + = ∈    
    

∑ ∑∫  



 
      (20) 

Integrating by parts the following function and using boundary condition of h,  

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )dd d .
d

b bi i i i
x x x xa a

i i
t t g t h t t t y t g t h t t

t
τφ λ τφ

∈ ∈

    + = − +    
    

∑ ∑∫ ∫   



 
      (21) 

Using above equation in (20), we get  

( ) ( ) ( ) ( ) ( ) ( ) ( )d d 0, for all .
d

b i i i i
x x x xa

i i
t t g t t y t g t h t t h X

t
τφ λ τφ

∈ ∈

    + − + = ∈    
    

∑ ∑∫  

 
     (22) 

By fundamental theorem of calculus of variation [12]  

( ) ( ) ( ) ( ) ( ) ( )d , .
d

i i i i
x x x x

i i
t t g t t y t g t t I

t
τφ λ τφ

∈ ∈

   + = + ∈   
   

∑ ∑ 

 
                    (23) 
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Claim 1: ( ) 0 . ., , .i t a e t I i Sλ ≥ ∈ ∈  
Without loss of generality assume that { }1,2, , .S s=   
Since y K ′∈ ,  

( ) 0, for all ,y y y K⇒ ≥ ∈                                                       (24) 

( ) ( ) ( ) ( )2d 0, for all , such that 0, , .
b i i i i
a

i S
t y t t y L I y t t I i Sλ

∈

⇒ ≥ ∈ ≥ ∈ ∈∑∫               (25) 

In particular  

( ) ( ) ( ) ( )1 1 1 2 1d 0, for all , such that 0, .
b

a
t y t t y L I y t t Iλ ≥ ∈ ≥ ∈∫                        (26) 

Claim 2: ( ) 0Aµ = , where ( ){ }1| 0 .A t I tλ= ∈ <   

Let if possible ( ) 0Aµ > , then ( )1 d 0.
A

t tλ <∫  

Define ( )1 1
ˆ

0 .
t A

y t
t A
∈

=  ∉
 

Then ( )1ˆ 0, ,y t t I≥ ∈  but ( ) ( ) ( )1 1 1ˆ d d 0,
b

a A
t y t t t tλ λ= <∫ ∫  a contradiction. 

Hence Claim 2 holds, that is, ( )1 0 . ., .t a e t Iλ ≥ ∈  
Using the same argument ( ) 0 . ., , 2, , .i t a e t I i sλ ≥ ∈ =   Hence claim 1 also holds. 
The relations (16) are generally valid only if ( ) ( )( )i

i
λ λ

∈
⋅ = ⋅


 is Schwarz distribution. Condition (8) is a  

linear first order differential equation for ( )λ ⋅ , therefore for given x , equation (8) is solvable for piecewise 
smooth function ( )λ ⋅  [9] [13]. 

Theorem 3 (Necessary Optimality Conditions) Let x  be a normal efficient solution for (MSVP). Then there 
exist ( )1 2, , , r rτ τ τ ∈   and piecewise smooth functions : , 0i iIλ λ→ ≠  for finitely many i∈  such 
that the following conditions hold:  

( ) ( ) ( ) ( ) ( ) ( )
1 1

d , ,
d

r r
i i i i i i i i

x x x x
i i i i

f t t g t f t t g t t I
t

τ λ τ λ
= ∈ = ∈

 + = + ∈  
∑ ∑ ∑ ∑ 

 

                     (27) 

( ) ( ), , d 0,
b i i
a

i
t g t x x tλ

∈

=∑∫ 


                                                     (28) 

1
0, 1, ( ) 0 . ., , .

r
i i

i
t a e t I iτ τ λ

=

≥ = ∈ ∈∑                                             (29) 

Proof. This theorem can be proved by using Theorem 2 and proceeding on the similar lines of ([14], Theorem 
3.4). 

The following example illustrates the validity of Theorem 3.  
Example 4 Consider the problem (P1):  

( ) ( ){ } ( ){ }( )1 12 2

0 0
P1 Minimize 2 d , 2 4 dt x t t x t t− −∫ ∫   

Subject to  

( ) ( ) [ ], , 0,1 ,
2
kx t x t k t I− + ≤ ∈ ∈ =                                               (30) 

( ) ( ) 10 0, 1 .
2

x x= =                                                             (31) 

where :x I →   is a piecewise smooth state function. It is trivial that ( ) ,
2
tx t t I= ∈  is a normal efficient 
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solution for (P1). It can be verified that there exist 21 1,
2 2

τ  = ∈ 
 

  and smooth functions  

( ): , 0,k kI tλ λ→ =  for ,k t I∈ ∈  such that (27), (28) and (29) hold.  
The following example illustrates that a feasible solution of (MSVP) fails to be a normal efficient solution if it 

does not satisfy any one of the necessary optimality conditions (27), (28) or (29).  
Example 5 Consider the problem (P2):  

( ) ( ) ( ){ } ( ){ }( )1 1

0 0
P2 Minimize d , dx t x t t x t t t+ +∫ ∫  

Subject to  

( ) ( ) [ ]2 2 2 , , 0,1 ,x t x t k k t I+ ≤ ∈ ∈ =                                (32) 

( ) ( )0 0, 1 0.x x= =                                                (33) 

where :x I →   is a piecewise smooth state function. Then ( ) 0,x t t I= ∈  is feasible solution for (P2). But 
not a normal efficient solution, since it not satisfied condition (27) for any ( )1 2 2,τ τ +∈  and for any piecewise 
smooth functions : , 0i iIλ λ→ ≠  for finitely many , .i t I∈ ∈   

4. Topological Dual of ( )( )L I


2 ,  
Let us summarizes some basic concepts and tools to find topological dual of ( )( )2 ,L I


 . 

1) ( )( )2 ,L I


  is a Riesz space ([15], p. 313) as it is partially ordered by the pointwise ordering f g≥  in 
( )( )2 ,L I


  if and only if i if g≥  in ( )2 ,L I  , for each i∈ . Its lattice operations are given pointwise  

( ) ( ) ( ) ( ){ } ( ) ( ){ }( )1 1 2 2max , , max , ,f g t f t g t f t g t∨ = 

              
 (34) 

( ) ( ) ( ) ( ){ } ( ) ( ){ }( )1 1 2 2min , , min , , .f g t f t g t f t g t∧ =                 (35) 

2) ( ) ( )( ){ }2 , | 0, for finitely manyi i

i
D f f L I f i

∈
= = ∈ ≠ ∈




   is also a Riesz space. 

3) Order dual of ( )( )2 ,L I


  is a Riesz space ([15], Theorem 8.24).  
4) ( )( )2 ,L I   is a Frechet lattice, as it is Banach lattice ([15], p. 348). Since countable cartesian product of 

Frechet lattice is Frechet lattice ([16], Theorem 5.18) which imply ( )( )2 ,L I


  is Frechet lattice equipped 
with the product topology. 

5) Given ( )( )2 ,k L I∈


  define the n-tail of ( )i

i
k k

∈
=


 by  

( ) ( )1 20, , 0, , , .n n nk k k+ +=                                         (36) 

Motivated by the topological dual of   ([15], Theorem 16.3), we now find the topological dual of 
( )( )2 ,L I


  in the following lemma.  

Lemma 1 The topological dual of ( )( )2 ,L I


  is  

            
( ) ( )( ){ }2 , | 0, for finitely many .i i

i
D f f L I f i

∈
= = ∈ ≠ ∈




   

Proof. For any h D∈ , define, 

( ) ( ) ( ), d .
b i i

h a
i

k k h k t h t t
∈

Ψ = = ∑∫


                                 (37) 

Clearly hΨ  is a continuous linear functional on ( )( )2 ,L I


 . 
For the converse, assume that ( )( )2: ,L IΨ →


   is continuous linear functional. The continuity of Ψ  at 

zero element of ( )( )2 ,L I


  guarantees that there exist 0δ >  and 0l >  such that ( )( )2 ,k L I∈


  and 
ik δ<  for 1,2, ,i l=   imply ( ) 1kΨ < . 

So for each ( )( ) ( )( ) ( )( )2 , , 1l lk L I n k nk∈ Ψ = Ψ <


  for each n, hence ( )( ) 0lkΨ = . 
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For each i∈  define ( ) ( )( )2 2: , ,ie L I L I→


   as  

( )


th place

0,0, , , , 0,0 .i

i

e f f
 
 =
 
 

                                    (38) 

Then ( )2: ,i
oe L IΨ →   is a continuous linear functional. 

By Riesz representation theorem, for 1, 2, ,i l=   there exist ( )2 ,i L Iλ ∈   such that  

( ) ( ) ( ) ( )2d , for all , .
bi i

o a
e t t t L Iα α λ αΨ = ∈∫                        (39) 

Now let ( )1 2 3, , , , , 0, , 0 ,lh Dλ λ λ λ= ∈   

note that ( ) ( ) ( ) ( )
1 1

d , ,
l l bi i i i

o a
i i

k e k k t t t k hλ
= =

Ψ = Ψ = =∑ ∑∫  for each ( )( )2 , .k L I∈


  

That is hΨ = Ψ  and h is uniquely determined. 
Now, if 0,h ≥  then ( ) 0h kΨ ≥ , for all 0k ≥   
Conversely, proceeding similarly as in claim 1 of Theorem 2, it can be shown that 
if ( ) 0h kΨ ≥ , for all 0k ≥  then 0h ≥ .  

This infers hh →Ψ  is a lattice isomorphism from D onto ( )( )( )2 ,L I
′

 .  

Hence ( )( )( )2 ,D L I
′

=


  ([15], Theorem 9.11). 

5. Conclusion 
In this paper, we have developed necessary optimality conditions for a Semi-Infinite Variational Problem. These 
optimality conditions are further extended to Multi-objective Semi-infinite Variational Problem (MSVP) as 
Theorem 3. The results proved in this article are significant for the growth of optimality and duality theory for 
the class of semi-infinite variational problems. An example is presented to demonstrate the validity of the theo-
rem proved. Another example illustrates that a feasible solution of (MSVP) fails to be a normal efficient solution 
if it does not satisfy any one of the necessary optimality conditions stated in the theorem. Vital part of the result 
depends on the topological dual of ( )( )2 ,L I


  which was proved as a lemma in the last section. 
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