
Journal of Applied Mathematics and Physics, 2016, 4, 79-85 
Published Online January 2016 in SciRes. http://www.scirp.org/journal/jamp 
http://dx.doi.org/10.4236/jamp.2016.41012  

How to cite this paper: Sous, A.J. and Alhaidari, A.D. (2016) Energy Spectrum for a Short-Range 1/r Singular Potential with a 
Non-Orbital Barrier Using the Asymptotic Iteration Method. Journal of Applied Mathematics and Physics, 4, 79-85.  
http://dx.doi.org/10.4236/jamp.2016.41012  

 
 

Energy Spectrum for a Short-Range 1/r 
Singular Potential with a Non-Orbital 
Barrier Using the Asymptotic Iteration 
Method 
Abdullah J. Sous1, Abdulaziz D. Alhaidari2 
1Faculty of Technology and Applied Sciences, Al-Quds Open University, Tulkarm, Palestine 
2Saudi Center for Theoretical Physics, Jeddah, Saudi Arabia 

 
 
Received 21 December 2015; accepted 19 January 2016; published 22 January 2016 

 
Copyright © 2016 by authors and Scientific Research Publishing Inc. 
This work is licensed under the Creative Commons Attribution International License (CC BY). 
http://creativecommons.org/licenses/by/4.0/ 

    
 

 
 

Abstract 
Using the asymptotic iteration method, we obtain the S-wave solution for a short-range three-pa- 
rameter central potential with 1/r singularity and with a non-orbital barrier. To the best of our 
knowledge, this is the first attempt at calculating the energy spectrum for this potential, which 
was introduced by H. Bahlouli and A. D. Alhaidari and for which they obtained the “potential pa-
rameter spectrum”. Our results are also independently verified using a direct method of diagona-
lizing the Hamiltonian matrix in the J-matrix basis. 
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1. Introduction 
In previous work [1], we used the Asymptotic Iteration Method (AIM) to find the energy spectrum for the 
hyperbolic single wave potential, which was introduced by Bahlouli and Alhaidari [2] [3]. In the present work, we 
apply the same technique in [1] to the short-range three-parameter central potential, which was introduced by the 
same authors [3] [4] as 
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where 0V  is the potential strength and the range parameter λ is positive with an inverse length units. The di-
mensionless parameter γ is in the open range 0 1γ< < . This potential is short-range with 1 r  singularity at the 
origin. It is also interesting to note that, at short distance and with 0 1γ< < , there is a clear resemblance of this 
potential with 0 0V >  to the attractive Coulomb potential [5] with non-zero angular momentum (see Figure 1). 
However, the potential valley here is not due to the centrifugal force attributed to the angular momentum. 
Moreover, it does not have the long-range behavior of the Coulomb potential [3] [4]. In [4], Alhaidari argued that 
in contrast to the Coulomb potential the number of bound states for this potential is finite and that it could be used 
as a more appropriate model for the description of an electron interacting with an extended molecule whose 
electron cloud is congregated near the center of the molecule. The authors of [2]-[4] found the “potential para-
meter spectrum” (PPS) for the hyperbolic single wave potential and for potential (1). The concept of a PPS was 
introduced for the first time in the solution of the wave equation in [6] where for a given energy the problem 
becomes exactly solvable for a discrete set (finite or infinite) of values of the potential parameters. If the map that 
associates the parameter spectrum with the energy is invertible, then in principle one could obtain the energy 
spectrum for a given choice of potential parameters [6]. 

The calculation of energy eigenvalues is one of the basic problems of elementary quantum mechanics. Many 
techniques have been suggested to obtain the energy spectrum associated with a given potential. We will not try to 
give an overview here but one may consult [7]-[15] and references therein for the description of the AIM, which 
has been used successfully in the past. In this work, we will use this method to solve the time-independent S-wave 
(zero angular momentum) Schrödinger equation with potential (1) in order to find the energy spectrum. 

The paper has the following structures. In Section 2, we briefly present an overview of the AIM and apply it to 
obtain the energy spectrum for potential (1). In Section 3, we find the eigen-energies where we make a comparison 
between the results obtained by the AIM and those obtained by the potential parameter spectrum method (PPSM). 
Additionally, we confirm our results independently by diagonalizing the Hamiltonian matrix, which is calculated 
in the J-matrix basis [16] [17]. 

2. Basics of the AIM and Its Application to Potential (1) 
In this section, we present the basic concepts of the AIM. For more details, we refer the reader to [7]-[15]. The 
method could be used to solve a second-order homogeneous linear differential equations of the form 

( ) ( ) ( ) ( ) ( )0 0y x k x y x z x y x′′ ′= +                            (2) 

where ( )0k x  and ( )0z x  are continuously differentiable functions over the defined interval of the coordinate 
x and the prime stands for the derivative with respect to x. According to the asymptotic aspect of the method and 
for sufficiently large n we have 
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where the function ( )xφ  is independent of n and where 
 

 
Figure 1. The potential function of Equation (1) for 0.3γ =  (solid), 

0.5γ =  (dashed), 0.75γ =  (dashed-dotted), 0.9γ =  (dotted).        
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( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )1 1 0 1 1 0 1n n n n n n nk x k x z x k x k x z x z x z x k x− − − − −′ ′= + + = +            (4) 

The general solution of Equation (2) is obtained as 

( ) ( ) ( ) ( )( )2 1 0exp d exp 2 d d
x x t

y x t t C C k tφ τ φ τ τ
     = − + +    
     

∫ ∫ ∫                 (5) 

The energy eigenvalues, E, of the Schrödinger equation corresponding to Equation (2) are obtained using the 
iteration terminating condition by means of Equation (3) that reads 

( ) ( ) ( ) ( ) ( )1 1n n n n nx k x z x z x k x− −∆ = −                          (6) 

If the problem is analytically solvable (exact solution) then ( ) 0n x∆ = . In this case, the AIM gives the ei-
genvalues and eigenfunctions in explicit algebraic form. However, in this case there are a limited number of po-
tentials and the condition ( ) 0n x∆ =  is satisfied at every point x in the defined interval. That is, ( )n x∆  is in-
dependent of x and the eigenvalues are determined from the n roots of the condition ( ) 0n x∆ = . In case of ap-
proximation, ( )n x∆  depends on both x and E. So, we have to determine a proper initial point 0x x=  value 
for solving ( ) 0n x∆ =  with respect to E. Ideally, the solution should be independent of the choice of 0x . 
However, an acceptable range of stability of the calculated energy eigenvalue may be found near the minimum 
value of the potential or the maximum value of the asymptotic wave function [14] [15]. Next, we apply the me-
thod to the problem with the potential function (1). 

Inserting potential (1) in the time-independent radial Schrödinger’s equation results in the following second 
order linear differential equation 

( ) ( )
2

02 2

11 d e 0
2 d 2 e 1
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rV E r
r r
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γ ψ

−+ −
− + + − = − 
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                       (7) 

where �  is the angular momentum quantum number and we have adopted the atomic units 1m= =� . Defin-
ing the new variable 1 2e rx λ−= − , whose range is between −1 and +1, transforms this equation for S-wave 
( 0=� ) into the desired Equation (2) where we can apply the AIM with 
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                                    (8) 
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Using these seed functions together with the quantization condition (6) in the iteration, we can calculate the 
energy eigenvalues. Since the problem is not exactly solvable, we have to select a proper 0x . In this work, we 
observed that the best initial point is 0 0x = , which corresponds to the middle of the x interval. Therefore, at the 
end of the iterations when a stable result is reached, the energy spectrum is obtained by substituting 0x = . 

3. Results and Discussion 

The calculation of the energy eigenvalues for potential (1) is not as easy as that for the hyperbolic single wave 
potential, which we have studied in [1]. This is because the present potential has 1 r  singularity at the origin. 
In this work, we take the value of the parameter γ between zero and one. If γ is less than zero or larger than one 
then the potential is not too interesting since it will not have the potential valley or potential hill (see Figure 1) 
and will only be similar to the well-known Hulthen or Yukawa potentials [18]. The necessary but not sufficient 
conditions for the existence of bound states for this potential are as follows: 
1) If γ is between zero and one, then any value of 0V  positive or negative could in principle support bound 

states. 
2) If γ is greater than one or less than zero, then the sign of 0V  must be the same as that of γ. 

In Table 1, we compare the energy spectrum obtained using the AIM outlined above and those obtained by 
the PPSM for 0 5V = , 0.2λ =  and for several values of γ between zero and one. The Table shows good 
agreement between the two results. However, the PPSM results are in better agreement with the direct method of 
diagonalization of the Hamiltonian matrix in the J-matrix basis (HDM). In the Appendix, we show how this di-
agonalization procedure is carried out. Table 2 shows also another good agreement between the results obtained  
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Table 1. Energy spectrum with 0 5V =  and 0.2λ =  for various values of γ obtained using the three methods mentioned in 
the text.                                                                                                   

0.6γ =  0.4γ =  0.2γ =  method n 

-0.5368000468
 

-0.5368000468 
-0.5368000468 

-0.1794066345
 

-0.1794066345 
-0.1794066345 

−0.02600017100 
−0.0260054988 
−0.0260054988 

AIM 
PPSM 
HDM 

0 

−0.3182343338
 

−0.3182343338 
−0.3182343338 

−0.07260826273
 

−0.0726083684 
−0.0726083684 

−0.001138151383
 

−0.0002851232 
−0.0002791687 

AIM 
PPSM 
HDM 

1 

−0.1627941441
 

−0.1627941432 
−0.1627941432 

−0.01483611943
 

−0.0146815305 
−0.0146815305 

 
AIM 

PPSM 
HDM 

2 

−0.06232692757
 

−0.0623301374 
−0.0623301374 

  
AIM 

PPSM 
HDM 

3 

−0.01131548300
 

−0.0103706012 
−0.0103705985 

  
AIM 

PPSM 
HDM 

4 

 
Table 2. Energy spectrum with 0.6γ =  and 0.5λ =  for various values of 0V . The results of the three independent methods 
are in good agreement.                                                                                    

0 60V =  0 40V =  0 20V =  method n 

−6.886516026 
−6.8865160257 
−6.8865160257 

−4.417015612
 

−4.4170156123 
−4.4170156123 

−2.017967507 
−2.0179675071 
−2.0179675071 

AIM 
PPSM 
HDM 

0 

−4.825915095 
−4.8259150953 
−4.8259150953 

−2.815063004
 

−2.8150630039 
−2.8150630039 

−1.008842615
 

−1.0088426139 
−1.0088426139 

AIM 
PPSM 
HDM 

1 

−3.184708114 
−3.1847081143 
−3.1847081143 

−1.617682362
 

−1.6176823617 
−1.6176823617 

−0.3740938860
 

−0.3740996421 
−0.3740996421 

AIM 
PPSM 
HDM 

2 

−1.920830979 
−1.9208309792 
−1.9208309792 

−0.7773062284
 

−0.7773055229 
−0.7773055229 

−0.06098871935
 

−0.0568940453 
−0.0568940452 

AIM 
PPSM 
HDM 

3 

−0.9991295725 
−0.9991291965 
−0.9991291965 

−0.2548982339
 

−0.2553793984 
−0.2553793984 

 
AIM 

PPSM 
HDM 

4 

−0.3895811680
 

−0.3897965892 
−0.3897965892 

−0.04015268525
 

−0.0200363806 
−0.0200357906 

 
AIM 

PPSM 
HDM 

5 

−0.08198118960
 

−0.0672459224 
−0.0672459104 

  
AIM 

PPSM 
HDM 

6 

 
by the two methods but now γ is fixed while 0V  is varied. 
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Appendix: Diagonalization of the Hamiltonian Matrix in the J-Matrix Basis 

The Hamiltonian of the problem is ( )H T V r= + , where the kinetic energy operator is ( )2

2 2

11 d
2 d 2

T
r r

+
= − +

� �
 

and V(r) is the potential in (1). Diagonalization of the matrix representation of this Hamiltonian in a given basis is 
difficult for two reasons. First, it’s due to the singular behavior at the origin, which goes like 21 r  for T and like 
1 r  for V. Second, it’s the long-range behavior of T, which dictates that we need to deal with infinite dimensional 
matrices. On the other hand, if we manage to transfer the 1 r  singularity from V and add it to T by writing 

( ) ( )ZV r U r
r

= + , where ( )
0

lim
r

Z V r
r →
= , then ( )0 1VZ γ

λ
= −  and we can write ( )0H H U r= +  where the 

reference Hamiltonian 0
ZH T
r

= + . Consequently, the new potential U(r) is regular everywhere (see Figure A1)  

and thus it could be approximated very well by its matrix elements in a finite subset of a square integrable basis. 
Then, what remains is to have a full account for the matrix representation of the reference Hamiltonian 0H . 
However, 0H  is just the Coulomb Hamiltonian, which is known to have an exact tridiagonal matrix representa-
tion in the square integrable Laguerre basis with the following elements [16] [17] 

( ) ( ) ( )1 2 2 1e r
n n nr a r L rµχ µ µ+ − += � �                            (A1) 

where ( )nL zν  is the associated Laguerre polynomial of order n in z and µ is a length scale parameter. The nor-

malization constant is chosen as ( ) ( )1 2 2na n n= Γ + Γ + +� . This gives an infinite tridiagonal symmetric 
matrix representation for the reference Hamiltonian whose elements read as follows 

( ) ( ) ( ) ( )
2

0 , , 1 , 1
4 1 11 2 1 1 2 2

4 2 2n m n m n mnm

ZH n n n n nµ δ δ δ
µ + −

  
= + + + + + + + + + +  

  
� � �    (A2) 

As noted above, the potential U(r) is easily accounted for by its matrix elements in a finite subset of the basis 
(A1). Increasing the size of this subset will improve the accuracy of the results. These matrix elements are ob-
tained by evaluating the integral 

( ) ( ) ( )

( ) ( ) ( )
0

2 1 2 1 2 1
0

d

e d

nm n m

y
n m n m

U r U r r r

a a y L y L y yU y y

µ χ χ

µ

∞

∞ + − + +

=

=   

∫

∫ � � �
                (A3) 

where y rµ= . The evaluation of this integral is performed using the Gauss quadrature approximation scheme 
associated with the Laguerre polynomials [19], which gives 

( )
1

0

N

nm nk mk k k
k

U Uω ω µ
−

=

 ≅ Λ Λ  ∑                           (A4) 

 

 
Figure A1. The potential function V(r) in Equation (1) before re-
moving the singularity (solid curve) and then after removing it as 
U(r) (dashed curve). We took 0.8γ = .                                
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for adequately large integer N. kω  and { } 1

0

N
nk n

−

=
Λ  are the N eigenvalues and corresponding normalized eigen-

vectors of the N × N tridiagonal basis overlap matrix whose elements are 

( ) ( ) ( ) ( ), , 1 , 12 1 2 1 1 2 2n m n m n m n mn n n n nχ χ δ δ δ+ −= + + − + + − + + +� � �          (A5) 

In an ideal situation where N is infinite the physical results should be independent of the choice of value of the 
numerical scale parameter µ. Nonetheless, for finite calculation we should be able to find a range of values of µ 
within which the results are stable and accurate to the desired number of significant digits. Increasing the size of 
the representation N will increase this range, which we refer to as the plateau of stability. Thus, this parameter is 
analogous to the 0x  parameter in the AIM noted in Section 2 above. For a given set of physical parameters, we 
add (A2) to (A4) giving the matrix elements of the total Hamiltonian which could be diagonalized numerically for 
a proper value of the numerical scale parameter µ chosen from within the plateau of stability and for large enough 
matrix size N. 

Table 1 and Table 2 show an excellent agreement of the results obtained by this diagonalization method (HDM) 
for 0=�  with the PPSM and shows good to fair agreement with the AIM results. The agreement is less pro-
nounced for the highest energy states. In the HDM, we used a basis size of N = 100. 
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