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Abstract 
We study the following model: Y X= +  . The aim is to estimate the distribution of X when only 

nY Y1 , ,  are observed. In the classical model, the distribution of   is assumed to be known, and 
this is often considered as an important drawback of this simple model. Indeed, in most practical 
applications, the distribution of the errors cannot be perfectly known. In this paper, the author 
will construct wavelet estimators and analyze their asymptotic mean integrated squared error for 
additive noise models under certain dependent conditions, the strong mixing case, the β-mixing 
case and the ρ-mixing case. Under mild conditions on the family of wavelets, the estimator is 
shown to be ( )pL p ∞1  -consistent and fast rates of convergence have been established. 
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1. Introduction 
In practical situations, direct data are not always available. One of the classical models is described as follows:  

i i iY X= +   

where iX  stands for the random samples with unknown density Xf  and i  denotes the i.i.d. random noise 
with density g. To estimate the density Xf  is a deconvolution problem. Among the nonparametric methods of 
deconvolution, one can find estimation by model selection (e.g. Comte, Rozenhole and Taupin [1]), wavelet 
thresholding (e.g. [2]), kernel smoothing (e.g. Carroll and Hall, [3]), spline deconvolution or spectral cut-off (e.g. 
Johannes [4]) and Meister [5] basically on the effect of noise misspecification. However, a problem frequently 
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encountered is that the proposed estimator is not everywhere positive, and therefore is not a valid probability 
density. 

Sometimes, this problem can be circumvented by repeated observations of the same variable of interest, each 
time with an independent error. This is the model of panel data (see for example Li and Vuong [6], Delaigle, 
Hall and Meister [7], or Neumann [8] and references therein). On the other hand, there are many application 
fields where it is not possible to do repeated measurements of the same variable. So, information about the error 
distribution can be drawn from an additional experiment: a training set is used by experimenters to estimate the 
noise distribution. Think of   as a measurement error due to the measuring device, then preliminary calibration 
measures can be obtained in the absence of any signal X (this is often called the instrument line shape of the 
measuring device). 

Odiachi and Prieve [9] study the effect of additive noise in Total Internal Reflection Microscopy (TIRM) ex-
periments. This is an optical technique for monitoring Brownian fluctuations in separation between a single mi-
croscopic sphere and a flat plate in aqueous medium. See Carroll and Hall [3], Devroye [10], Fan [11], Liu and 
Taylor [12], Masry [13], Stefanski and Carroll [14], Zhang [15], Hesse [16], Cator [17], Delaigle and Gijbels [18] 
for mainly kernel methods and Koo [19] for a spline method, Efromovich [20] for particular strategy in supers-
mooth case and Meister (2004), on the effect of noise misspecification. 

In this paper, we extend Geng and Wang [21] (Theorems 4.1 and 4.2) for certain dependent. More precisely, 
we prove that the linear wavelet estimator attains the standard rate of convergence i.e. the optimal one with ad-
ditive noise for more realistic and standard dependent conditions as plynomial strong mixing dependence, the 
β-mixing dependence and ρ-mixing dependence. The properties of wavelet basis allow us to apply sharp proba-
bilistic inequalities which improve the performance of the considered linear wavelet estimator. 

The organization of the paper is as follows. Assumptions on the model are presented in Section 2. Section 3 is 
devoted to our linear wavelet estimator and a general result. Applications are set in Section 5, while technical 
proofs are collected in Section 6. 

2. Estimation Procedure 
The Fourier transform of ( )1f L R∈  is defined as follows: 

( ) ( ) ( )exp df x f x itx x= −∫

 
It is well known that ( ) ( ) ( )Xf y f t g t= 

  for ( ) 0g t ≠ . Let N be a positive integer. We assume that there 
exist constants 0c >  and 1δ >  such that, for any x,  

( )
( ) 221

cg x
x

δ
+

                                     (1) 

One can easily find an example  

( ) { }1 2exp ,g x x x R= − ∈
 

which is the Laplace density and ( ) 2

1
1

g x
x

=
+

 , which satisfies (2.1) with 2δ = . 

We consider an orthonormal wavelet basis generated by dilations and translations of a father Daubechies-type 
wavelet and a mother Daubechies-type wavelet of the family db2N (see [22]) Further details on wavelet theory 
can be found in Daubechies [22] and Meyer [23]. For any 0j  , we set { }0, , 2 1j

jΛ = −  and for jk ∈Λ , 
we define φ  and ψ  as father and mother wavelet: 

( ) ( ) ( )/2 22 2 , ( ) 2 2j j j j
jk jkx x k x x kφ φ ψ ψ= − = −

 
With appropriated treatments at the boundaries, there exists an integer τ  such that, for any integer l τ ,  

{ }{ }, ,, ; , 0, , 1 ,l k l j k jk j N L Kφ ψΓ = ∈Λ ∈ − − ∈Λ  

forms an orthonormal basis of [ ]2 0,1L . For any integer l τ  and [ ]2 0,1f L∈ , we have the following wave-
let expansion:  
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( ) ( ) ( ) [ ], , , , , 0,1
l j

l k l k j k j k
k j l k

f x x x xα φ β ψ
∞

∈Λ = ∈Λ

= + ∈∑ ∑∑
 

where , ,l k l kfα φ= ∫  and , ,j k j kfβ ψ= ∫ . Furthermore we consider the following wavelet sequential definition 

of the Besov balls. We say ( ),
s
p rf B M∈ , with 0, , 1s p r>  , and 0M >  if there exists a constant 0C > , 

such that  

( ) ( )

1
11

1 2 1 1 2 1
, ,2 2

j

rrpp
ppp j s p

k j k
k j k

C
τ

τ
τ

τ
α β

∞
− + −

∈Λ = ∈Λ

       +             

∑ ∑ ∑ 

 
with the usual modifications if 1p =  or 1r = . Note that, for particular choices of ,s p  and ( );, s

p rr B M  
contains the classical Holder and Sobolev balls. See, e.g., Meyer [23] and Hardle, Kerkyacharian, Picard and  
Tsybakov [24]. We define the linear wavelet estimator ( ),x nf x  by  

( ) ( ), , ,
ˆ ˆ

l
x n l k l k

k
f x xα φ

∈Λ

= ∑                                  (2) 

where 

( ) ( ), ,
1

1ˆ
n

l k l il k
i

H x Y
n

α φ
=

= ∑                                  (3) 

( )( ) ( ) ( )
1 ( )exp d

2π 2l lt

tH y ity t
g
φφ =
−∫




                            (4) 

Such an estimator is standard in nonparametric estimation via wavelets. For a survey on wavelet linear esti-
mators in various density models, we refer to [25]. Note that by Plancherel formula, we have 

( ) ( ) ( )
( ) ( ), , ,

1 1d d
2π 2πl k l k l k

f t
f t t t t t

g t
α φ φ= =∫ ∫



  



 
In 1999, Pensky and Vidakovic [26] investigate Meyer wavelet estimation over Sobolev spaces and ( )2L R  

risk under moderately and severely ill-posed noises. Three years later, Fan and Koo [2] extend those works to 
Besov spaces, but the given estimator is not computable since it depends on an integral in the frequency domain 
that cannot be calculated in practice. It should be pointed out that, by using different method, Lounici and Nickl 
[27] study wavelet optimal estimation over Besov spaces ,

sB∞ ∞  and L∞  risk under both noises. In [3], wavelet 
optimal estimation is provided over and risk under moderately ill-posed noise. Furthemore in 2014, Li and Liu 
[28] considered the wavelet estimation for random samples with moderately ill-posed noise. 

Our work is related to the paper of Geng and Wang [21], since our estimator is similar and we borrow a useful 
Lemma from that study. Geng and Wang [21] prove that, under mild conditions on the family of wavelets, the 
estimators are shown to be ( )1pL p ∞  -consistent for additive noise model. We extend thier result to cer-
tain class of dependent observation and prove that the mean integrated squred error of linear wavelet estimator 
developed by [29] attains the standard rate of convergence i.e. the optimal one in the i.i.d. case. 

3. Optimality Results 
The main result of the paper is the upper bound for the mean integrated square error of the wavelet estimator 
( )f x , which is defined as usual by 

( )( ) ( ) ( )( )2
d

R
MISE f x E f x f x x= −∫   

We refer to [24] and [30] for a detailed coverage of wavelet theory in statistics. The asymptotic performance 
of our estimator is evaluated by determining an upper bound of the MISE over Besov balls. It is obtained as 
sharp as possible and coincides with the one related to the standard i.i.d. framework. 
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Theorem 3.1. Consider φ  as Meyer scaling function, ( ) ( ) ( )
221 , 0g t t

δ
β

−
+    and f̂  in (2). We 

suppose 
a) there exists constants ( )0,1γ ∈  and 0C >  such that 

( ) ( ) ( ) ( )( )
2 1

2
0, ,

0 0
, 2 ,

l n
l

l l il k l k
k m

Cov H x Y H x Y C δφ φ
−

= =
∑∑                         (5) 

b) for any m Z∈ , let ( )
0 , ,

my yh x y  be the joint distribution of ( )0 , mY Y , then there exists a constant 0C >  
such that 

( ) [ ]
( ) ( ) ( ) ( )

02
,

, 0,1

sup sup , , sup
my y X

m Z xx y

h x y h x h y C f x C
∈ ∈

−    

Let ( ),
s
p rf B M∈ , with 0s > , , 1p r  , with ( )1 2 2 12 sl n δ+ += . Then there exists a constant 0C >  such 

that 

( )( ) ( )2 2 2 1s sMISE f x Cn δ− + +≤  

Naturally, the rate of convergence in Theorem 4.1 is obtained to be as sharp as possible. 

4. Applications 
The three following subsections investigate separately the strong mixing case, the ρ-mixing case and the β-mixing 
case, which occur in a large variety of applications. 

4.1. Application to the Strong Mixing Dependence 
We define the m-th strong mixing coefficient of ( )i i Z

V
∈

 by 

( )
( ) ( ) ( )

,0 ,,
sup

m
m

A B
p AB p A p B

σ σ
α

−∞ ∞∈ ×
= −

 
where ,0σ−∞  is the σ-algebra generated by the random variables (or vectors) 1 0, ,V V−  and ,mσ ∞  is the 
σ-algebra generated by the random variables (or vectors) 1, ,m mV V +  . We say that ( )i i Z

V
∈

 is strong mixing if 
and only if lim 0m mα→∞ = . 

Applications on strong mixing can be found in [15] [31] and [32]. Among various mixing conditions used in 
the literature, α-mixing has many practical applications. Many stochastic processes and time series are known to 
be α-mixing. Under certain weak assumptions autoregressive and more generally bilinear time series models are 
strongly mixing with exponential mixing coefficients. The α-mixing dependence is reasonably weak; it is satis-
fied by a wide variety of models including Markov chains, GARCH-type models and discretely observed dis-
cussions. 

Proposition 4.1. Consider the strong mixing case as defined above. Suppose that there exist two constants 
( )0,1γ ∈ , 0C >  such that, for any integer m, 

1
,

m
m Cγ γα

∞

=
∑ 

 
then 

( ) ( ) ( ) ( )( )
2 1

2
0, ,

0 0
, 2 .

l n
l

l l il k l k
k m

Cov H x Y H x Y C δφ φ
−

= =
∑∑ 

 

4.2. Application to the ρ-Mixing Dependence 

Let ( )i i Z
Y

∈
 be a strictly stationary random sequence. For any m Z∈ , we define the m—the maximal correla-

tion coefficient of ( )i i Z
V

∈
 by ρ-mixing: 

( )
( ) ( ) ( )

( )
2 2

,0 ,,
sup ,

m
m

U V L L
corr U V

σ σ
ρ

−∞ ∞∈ ×

=  
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where ,0σ−∞  is the σ-algebra generated by the random variables (or vectors) 1 0, ,Y Y−  and ,mσ ∞  is the σ- 
algebra generated by the random variables (or vectors) 1, ,m mY Y +  . We say ( )i i Z

Y
∈

 is ρ-mixing if and only if 
lim 0m mρ→∞ = . 

Proposition 4.2. Consider the ρ-mixing case as defined above. Furthermore, there exist two constants 0C >  
such that, for any integer m, 

( )
1

,m
m

Cρ
∞

=
∑   

then 

( ) ( ) ( ) ( )( )
2 1

2
0, ,

0 0
, 2 .

l n
l

l l il k l k
k m

Cov H x Y H x Y C δφ φ
−

= =
∑∑   

4.3. Application to the β-Mixing Dependence 
Let ( )i i Z

Y
∈

 be a strictly stationary random sequence. For any m Z∈ , we define the m-th β-mixing coefficient 
of ( )i i Z

Y
∈

 by, 

( ) ( )
( ) ( ) ( )

,0 ,,

1 sup
2 Y Y

i i mi I i J

m i j i j
i I j JA B

P A B P A P B
σ σ

β
−∞ ∞∈ ∈ ∈ ∈∈ ×

= ∩ −∑∑  

where the supremum is taken over all finite partitions ( )i i I
A

∈
 and ( )i i J

B
∈

 of Ω , which are respectively, 

,0
Yσ−∞  and ,

Y
mσ ∞  are measurable, ,0

Yσ−∞  is the -algebra generated by 1 0, ,Y Y  and ,
Y
mσ ∞  is the one generated 

by 1, ,m mY Y +  . We say that ( )i i Z
Y

∈
 is β-mixing if and only if lim 0m mβ→∞ = . 

Full details can be found in e.g. [29] [31] [33] and [34]. 
Proposition 4.3. Consider the β mixing case as defined above. Furthermore, there exist two constants 0C >  

such that, for any integer m, 

( )
1

.m
m

Cβ
∞

=
∑   

then 

( ) ( ) ( ) ( )( )
2 1

2
0, ,

0 0
, 2 .

l n
l

l l il k l k
k m

Cov H x Y H x Y C βφ φ
−

= =
∑∑ 

 

5. Proofs 
In this section, we investigate the results of Section 3 under the assumptions of Section 4. 

Moreover, C denotes any constant that does not depend on l, k and n. 
Proof of Theorem 3.1. Since we set [ ]( )2 0;1f L∈ , we have 

( ) ( )( ) ( )
2 2 2

, , ,
ˆ ˆd

l j
l k l k j k

k j l k
E f x f x x α α β

∞

∈Λ = ∈Λ

 − = − + 
  ∑ ∑ ∑∫  

Following the lines of Geng and Wang [21], with Plancherel formula, it is easy to say ,ˆl kα  is the unbiased 
estimation of ,l kα , furthermore 

( ) ( ) ( )( ) ( ) ( ) ( ) ( )( ), 1 22, , ,
1 1

1 2ˆ ,
n n

l k l l l i l jl k l k l k
i j

Var Var H x Y Cov H x Y H x Y S S
n n

α φ φ φ
= =

= + = +∑∑        (7) 

where 

( ) ( )( )1 ,

1
l l k

S Var H x Y
n

φ=  

and 



N. Hosseinioun 
 

 
12 

( ) ( ) ( ) ( )( )2 2 , ,
1 1

2 ,
n n

l i l jl k l k
i j

S Cov H x Y H x Y
n

φ φ
= =

= ∑∑
 

( ) ( )( ) ( ) ( ) ( ) ( )( ) ( )

( )
( ) ( ) ( )

2 2

, , ,

2
22 2

d

2π d 1 2 d 2
2

l l l Yl k l k l k

l l
lR

Var H x Y E H x Y H x y f y y

t
t t t t

g t

δ δ

φ φ φ

φ
φ

∞

−∞
=

+
−

∫

∫ ∫








  
              (8) 

on the other hand, it follows from the stationarity of ( )i i Z
Y

∈
 that 

( ) ( ) ( ) ( )( )

( ) ( ) ( ) ( ) ( )( )
( ) ( ) ( ) ( )( )

, ,
1 1

0, ,
1

0 1 2, ,
1

,

,

,

n n

l i l jl k l k
i j

n

l l ml k l k
m

n

l l ml k l k
m

Cov H x Y H x Y

n m Cov H x Y H x Y

n Cov H x Y H x Y T T

φ φ

φ φ

φ φ

= =

=

=

= −

= +

∑∑

∑

∑

                      (9) 

where 

( ) ( ) ( ) ( )( )
12

1 0, ,
1

,
lm

l l ml k l k
m

T n Cov H x Y H x Yφ φ
−=

=

= ∑
 

( ) ( ) ( ) ( )( )2 0, ,
2

,
l

n

l l ml k l k
m

T n Cov H x Y H x Yφ φ
=

= ∑
 

For upper bound of 1T , one can only consider the change of variables 2 jy x k= − , and we obtain 

( ) ( ) ( ) ( )( )
( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( )( )

0, ,

0 0 0 0, ,

2

,

,

, d d

d

l l ml k l k

m m l l m ml k l k

l l k

Cov H x Y H x Y

f y y f y f y H y H y y y

H y y

φ φ

φ φ

φ

−∫∫

∫




 

By (6) and inequality obtained in Lemma 6 in [2], we have, 

( ) ( ) ( ) ( )( ) ( )2 1
0, ,
, 2l

l l ml k l k
Cov H x Y H x Y δφ φ −

 
Therefore 

( )2 1 2
1 2 2 2lj lT Cn Cnδ δ−                                 (10) 

It follows from (5) that 
2

2 2 lT Cn δ                                      (11) 

Therefore, combining (7) to (11), we obtain 

( )2 2
, ,

1ˆ 2 2
l

l l
l k l k

k
C

n
δα α

∈Λ

−∑                                (12) 

On the other hand, as we define ( ),
s
p rf B M∈  and since for 2p  , ( ) ( ), ,

s s
p r pB M B M∞⊆ , then there ex-

ists a constant 0C > , such that 

2 2
, 2

l

ls
j k

j l k
Cβ

∞
−

= ∈Λ
∑∑                                   (13) 

It follows from (13) and (14) and the assumption on 2l  that 
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( )( ) ( )2 2 2 1s sMISE f x Cn δ− + +≤  

Now the proof of Theorem 3.1 is complete. 
Proof of Proposition 5.1. We apply the Davydov inequality for strongly mixing processes (see [29]); for any 
( )0,1q∈ , we have 

( ) ( ) ( ) ( )( ) ( ) ( )
( )

[ ]
( ) ( ) ( ) ( )

12 1

0 0, , ,

2 12 2
0 0, ,

0,1

,

sup 2 2

q
l l m m ll k l k l k

q l l
m l l ml k l k

x

Cov H x Y H x Y C E H x Y

C H x Y E H x Y C

γγ

γ γ
δ γ γ

φ φ α φ

α φ φ α

−−

−

∈

 
 
 

        



 
             (14) 

Since we have [ ] ( ) ( ) ( )

( )
1 2

00,1 2,

1sup 2
1 2

l
lx l k l

H x Y C
y k

δφ +
∈

+ −
  and 

( ) ( ) ( ) ( )
( )

2 2 2 2
0 0 2, ,

1d 2 d 2 .
1

l dl
l ll k l k

E H x Y C H x Y y C u C
u

δ δφ φ
+

∫ ∫               (15) 

therefore  

( ) ( ) ( ) ( )( )0, ,
2

2 2 2 2

12 2

,

2 2 2 2 2 .

l

i l

n

l l ml k l k
m

n n
l l l l l

m
m lm m

Cov H x Y H x Y

C C m C m Cδ γ γ δ γ γ δ γ γ δ

φ φ

α α α

=

∞

== =

∑

∑ ∑ ∑   
                  (16) 

Now the proof is finished by (14), (15) and (16). 
Proof of Proposition 5.2. Applying the covariance inequality for ρ-mixing processes (see Doukahn [32]), we 

have  

( ) ( ) ( ) ( )( )
( ) ( )( ) ( ) ( )( )

0, ,

1 2 1 22 2

0, ,

,

2

l l il k l k

i l l il k l k

Cov H x Y H x Y

E H x Y E H x Y

φ φ

ρ φ φ   
   
   

,
 

( ) ( ) ( ) ( )( ) 2
0, ,
, 2 lm

l l i il k l k
Cov H x Y H x Y Cφ φ ρ  

Hence by the same technique we use in (8), we obtain  

( ) ( ) ( ) ( )( ) ( )2 2
0, ,

12

, 2 2
l

n m
l l

l l ml k l k
im

Cov H x Y H x Y C i Cβ βφ φ ρ
==

∑ ∑   

Proof of Proposition 5.3. Since ( )i i Z
S

∈
 is β-mixing, for any bounded function g ([25], equation line 12, p. 

479 and Lemma 4.2 with 1p = ) implies that  

( ) ( )( ) ( ) ( ) ( )1 2
0 0

0
, 2 d

n

m s
m

C g S g S b x g x f x x
=
∑ ∫  

where b is a function such that ( ) ( )1

00
ds mmb x f x x Cβ∞

=
<∑∫  . Following the lines of Geng and Wang [21], we 

obtain  

( ) ( ) ( ) ( )( )

( ) ( ) ( ) ( )( ) ( ) ( )

2 1

0, ,
0 0

2 1 2 2 2
,

0

,

2 2

l

l

n

l l il k l k
k m

l l
s l sl k

k

Cov H x Y H x Y

b x f x H x b x f x Cδ δ

φ φ

φ

−

= =

−

=

∑∑

∑∫ ∫  
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