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ABSTRACT 

Quantum molecular dynamics (QMD) is used to 
investigate multifragmentation resulting from an 
expanding nuclear matter. Equation of state, the 
structure of nuclear matter and symmetric nu-
clear matter is discussed. Also, the dependence 
of the fragment mass distribution on the initial 
temperature (Tinit) and the radial flow velocity (h) 
is studied. When h is large, the distribution 
shows exponential shape, whereas for small h, 
it obeys the exponentially falling distribution 
with mass number. The cluster formation in an 
expanding system is found to be different from 
the one in a thermally equilibrated system. The 
used Hamiltonian has a classical kinetic energy 
term and an effective potential term composed 
of four parts. 
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1. INTRODUCTION 

Multifragmentation has been a long-standing topic in 
nuclear physics. In particular, a fragment mass distribu- 
tion has been extensively investigated both theoretically 
and experimentally as a phenomenon which might have 
some connection with nuclear phase transition [1-6]. 
Among the theoretical approaches, the statistical model 
[7] is a familiar one which predicts the fragment mass 
distribution. 

According to this model, the exponentially falling dis- 
tribution with mass number is derived under the condi- 
tion that each fragment can be regarded as a thermally 
equilibrated droplet. This exponentially falling distribu- 
tion with mass number behavior has attracted many au-  

thors’ interest because the exponentially falling distribu- 
tion with mass number is a signature of a second order 
phase transition [8-13].  

In order to investigate the relation between the cluster 
formation and the fragment mass distribution, many 
heavy ion collision experiments have been conducted 
[3-6]. In these experiments, two types of fragment mass 
distribution have been observed. The exponentially fal- 
ling distribution with mass number is one of them and is 
originating from a spectator region where thermal equi- 
librium is often assumed [3,4]. On the other hand, in a 
participant region, the source of fragments undergoes 
strong compression and each nucleon has large collec- 
tive momentum at its decompression stage. Thus, we 
cannot regard this source of fragments as thermal equili- 
brated object that the statistical model assumes. In this 
region, the mass distribution does not obey the power 
law but obeys an exponential distribution and the shape 
of which strongly depends on the collision energy [5,6]. 

There are several factors to prevent the direct under- 
standing of cluster formation in heavy ion collision ex- 
periments. The finiteness of heavy ion collision is a 
source of complication. For instance, the surface effect 
during fragment formation might affect the distribution 
significantly. Moreover, it is doubtful whether thermal 
equilibrium is achieved even in a spectator region. To 
check the basic mechanism of fragmentation, therefore, 
it is desirable to adopt a model which does not assume a 
thermal equilibrium and is free from the complication 
arising from the finiteness of the system. 

The analysis of nuclear matter is useful to avoid the 
complication coming from finiteness. Instability of nu- 
clear matter against multifragmentation has been studied 
based on the Boltzmann-Langevin approach [14], clas-
sical molecular dynamics [11], kinetic equation [1], and 
linear response theory [15]. These are simulations of an 
infinite system studying under what condition the insta-
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bility against the multifragmentation occurs at high ex-
citation. These studies, however, have not taken into 
account the collective expansion of the system explicitly. 
In [16], the effect of collective expansion has been 
treated in the framework of Boltzmann-Langevin ap-
proach and the fragmentation is discussed for a finite 
system. The instability to multifragmentation is also 
treated in the quantal RPA approach [17]. 

The aim of this work is to investigate multifragmenta- 
tion by using an expanding nuclear matter. When the 
matter expands slowly, it simulates a spectator region 
where each nucleon moves slowly. On the other hand, 
the rapid expansion simulates a participant region where 
the system has a rapid collective motion. The rate of 
expansion is controlled by only one parameter (h). By 
changing h we can investigate both spectator and par- 
ticipant regions. In the case of h = 0, the system is just in 
a static thermal equilibrium state with temperature (T). 
Such a system is similar to what is assumed in the statis- 
tical model. Our main purpose is to know how the frag- 
ment mass distribution depends on the expansion veloc- 
ity and the temperature. 

The used quantum molecular dynamics (QMD) and 
the nuclear matter at the saturation density 0 and a 
temperature Tinit. 

On the basis of QMD, a series of simulations is car-
ried out. There are four steps in the calculation.  

1) The nuclear matter at the saturation density 0 and 
a temperature Tinit is prepared by Metropolis sampling 
method.  

2) To this thermal matter with Tinit , a radial flow ve-
locity (h) is imposed. 

3) The time evolution of the system is calculated from 
0 to 0.0010 by QMD.  

4) A fragment mass distribution is calculated at 
0.0010.  

The Hamiltonian has a classical kinetic energy term 
and an effective potential term composed of four parts: 
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where i is the nucleon spin and i is the isospin [i =1/2 
for protons and –1/2 for neutrons], i is an overlap of 
one body density i for ith nucleon with other nucleons 
defined as 
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and the explicit form of i is given by 
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where L is the squared width of the wave packet, L = 
1.95 fm2. This wave packet with fixed width is charac-
teristic of the QMD model. It has the advantage of deal-
ing with the many body correlation directly but imposes 
considerable restrictions on the instability of the nuclear 
matter. 

We approximate the fermionic nature of the system by 
introducing the Pauli potential between two identical 
nucleons [18,19], instead of antisymmetrization. The 
nuclear potential Vnucl has several components: The 
first two terms are Skyrme type nuclear interactions. The 
term with Cs0 is a symmetry potential where Ci is 1 for 
protons and 0 for neutrons. The last two terms with Cex(1) 
and Cex(2) are momentum dependent potentials originat-
ing from the exchange term of the Yukawa interaction. 
The term Vsurface stands for a surface interaction to de-
scribe the fragment property. The values of the parame-
ters in the interaction are fitted to give good agreements 
with the nuclear matter saturation properties, the real 
part of optical potential, the rms radii of nuclei, and their 
binding energies. 

The incompressibility constant K at the saturation 
point is simulated to the following parabolic form  
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Equation of state and the structure of nuclear matter. 
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In this section we study properties of nuclear matter at 
several conditions. It is desirable to use a cell large 
enough to include several periods of structure and to 
avoid the spurious effects of the boundary condition on 
the structure of matter. Though our calculation with typi- 
cally 1024 particles in a cell is not fully satisfactory in 
this respect, we consider it is enough for semi qualitative 
discussions at the beginning of this study. Actually, the 
global quantities, e.g., the ground state energy of the 
system, are well saturated at this number of particles in a 
cell.  

In Figure 1, we show the energy per nucleon of the 
infinite system as a function of the particle number (NA) 
in a cell for four average densities from  = 0.4 0 to 2.2 
0. For all densities, the energy of the system has al- 
ready approached the asymptotic value above 256 parti- 
cles within 100 KeV/ nucleon. In this study we simulate 
an infinite system by the periodic boundary condition 
mainly with 1024 or 2048 particles in a cell, and inves- 
tigate the ground state properties of nuclear matter. 

Figure 2 shows the energy per nucleon as a function 
of the average density. The solid squares indicate the 
energy of ‘‘uniform’’ nuclear matter while open squares 
are the results of energy-minimum configurations. 

The ‘‘uniform’’ matter energy is calculated as follows: 
First we distribute nucleons randomly and cool the sys- 
tem only with the Pauli potential. The Pauli potential is 
repulsive and does not spoil the uniformity of the system. 
Then we impose the other effective interactions and cool 
only in the momentum space, fixing the positions of 
particles. The system turns out to be approximately uni- 
form with this procedure. Note that simulated ‘‘uniform’’ 
matter is not exactly the same as ideal nuclear matter 
since the latter is continuous and completely uniform. 
Both cases of uniform and energy-minimum configura- 
tions have almost the same energy per nucleon for the 
higher densities as is seen in this figure. Below the satu- 

 

 

Figure 1. Particle number (NA) dependence of the en-
ergy per nucleon (E/A) of the infinite system for four 
average densities from  = 0.40 to 2.20. 

 

Figure 2. The energy per nucleon of symmetric nuclear 
matter [E/A = 0.5] at zero temperature as a function of the 
average densities. 
 

ration density 0, the energy per nucleon of the energy- 
minimum configuration is lower than the uniform case. 
The deviation amounts to about 5 MeV. As we see in the 
following, this is due to the structure change of matter 
from uniform to nonuniform such as a clusterized one. 

From the left, the open squares are the results with 
soft [K = 210 MeV] and hard EOS [K = 380 MeV] ob- 
tained by the damping equation of motion searching the 
energy-minimum configuration in the full phase space. 
The solid squares indicate results obtained from the spa- 
tially uniform distribution. The kinetic energy of the 
electron is not included. We use 1024 particles in a cell 
for all cases. 

If a system is finite and has high temperature and/or 
pressure, it expands spontaneously. However, an infinite 
matter cannot expand without an initial collective mo- 
tion even if it has high temperature and pressure. There- 
fore, we give a collective momentum to each constituent 
nucleon so that the matter could expand homogeneously. 
This collective momentum is expressed in terms of one 
parameter h as 

1 3
0

coll i
i Fp h p


R

            (8) 

where iR  is the position of i th particle [the center of 
wave packet] measured from the center of the primitive 
cell and pF is the Fermi momentum at 0. The distance is 
normalized by using 0

–1/3. The nearest neighbor pair of 
nucleons, on average, have a relative momentum hpF 
under this condition. Time evolution from 0 to 0.0010 
by QMD. 

The time evolution of the nuclear matter with a given 
temperature Tinit and radial flow velocity with [h,Tinit] 
by QMD has been followed by Shinpei Chikazumi, et al. 
[20]. Figure 3(a) shows a snapshot of an initial state at  
= 0. Figure 3(b) shows a part of the whole system at  
= 0.050 during the expansion. The expansion is stopped 
when the average density reaches  = 0.0010 shown in 
Figure 3(c). In this procedure, the normal periodic  
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Table 1. Effective interaction parameter set. 

 K = 210 MeV[soft] K = 380 MeV[hard] 

 [MeV] –121.9 –21.21 

 [MeV] 197.3 97.93 

 1.33333 1.66667 

Cs0 [MeV] 25.0 25.0 

Cex(1) [MeV] –258.5 –258.54 

Cex(2) [MeV] 375.6 375.6 

1 [MeV] 2.35 2.35 

2 [MeV] 0.4 0.4 

VSF [MeV] 20.68 20.68 

CP [MeV] 115.0 115.0 

p0 [MeV] 120.0 120.0 

q0 [fm] 2.5 2.5 

L [fm2] 1.95 2.05 

 

(a)  = 1.0000         (b)  = 0.050        (c)  = 0.0010 

Figure 3. Snapshots of expanding nuclear matter at different 
densities. (a) An initial state with  = 1.00, (b) An intermedi-
ate state at  = 0.050 during the expansion. (c). 

 
boundary condition is not applicable to the expanding 
matter. Therefore, we introduce an extended periodic 
boundary condition. 

2. FRAGMENT MASS DISTRIBUTION 

The matter leave to expand until the average density 
becomes small enough so that each fragment can be 
identified. All the fragments are isolated when the aver-
age distance between nearest neighbor pair reaches 
about 5 fm at 0.050. However, we noticed that the in-
trinsic expansion of fragments is not yet stopped at  = 
0.050 especially when h is large. Therefore, we set the 
final density equal to 0.0010. At this density, all the 
fragments are stabilized so that we can identify them 
only by their positions.  

We show our main result of the fragment mass dis- 
tribution. The distribution strongly depends on the radial 
flow velocity h whereas the initial temperature has little 
effect on the distribution. First, we concentrate on the 
distribution for Tinit = 30 MeV and investigate how the 
radial flow affects the distribution.  

Figure 4 shows the distributions calculated for h = 0.1, 

0.5, 1.0, 2.0 with the initial temperature Tinit = 30 MeV. 
In this figure, all the distributions follow straight lines 
except for h = 0.1. These straight lines in the semi loga- 
rithmic scale mean that the number of large fragments 
decreases exponentially as fragment size increases. This 
exponential shape can be understood as the manifesta- 
tion of random distribution[21]. When h is large enough 
to suppress the interaction, the final distribution is sim- 
ply an enlarged copy of the initial configuration. Under 
this limit, the particles are randomly distributed irrespec- 
tive of the interaction because the initial configuration is 
prepared at saturation density and the particles are ran- 
domly distributed under any temperature. The value of h 
directly corresponds to the radial flow velocity in the 
participant region. Actually, this kind of heavy ion colli- 
sion is investigated by a simulation of a finite system 
with a radial flow velocity [22]. Figure 5 shows the 
same quantity as Figure 4 in double-logarithmic scale. 
In our method, we can discuss most clearly the effect of 
radial flow because our system is an infinite expanding 
nuclear matter which is free from any finite size effect of 
the parent nucleus. 

 

 

Figure 4. The fragment mass distribution obtained in our 
QMD simulation in case of semi logarithmic scale. 

 

 

Figure 5. The fragment mass distribution obtained in our 
QMD simulation in case of double logarithmic scale. 
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When h is small, the interaction must play an impor- 
tant role in fragmentation. In this case, h = 0.1 follows a 
straight line whereas the others do not. The straight line 
in double-logarithmic scale refers to the so-called expo- 
nentially falling distribution with mass number. The ex- 
ponentially falling distribution with mass number has 
been discussed in many works in connection with critical 
phenomena. Usually, the exponentially falling distribu- 
tion with mass number is thought to be a manifestation 
that the system undergoes a second order phase transi- 
tion. In the model assuming thermal equilibrium, the 
power law appears only when the second order phase 
transition happens. However, we must remember that the 
expanding system is completely in nonequilibrium. 

Even when h = 0.1, the system does not have enough 
time to reach thermal equilibrium where the temperature 
can be determined. Therefore this exponentially falling 
distribution with mass number we obtained must be ex-
plained in a different way. 

3. EXPANDING FRAGMENTATION VS. 
ISOTHERMAL FRAGMENTATION 

It is significant to compare two types of the power law, 
i.e., dynamical and isothermal ones. The isothermal frag- 
mentation can be investigated by Metropolis sampling 
method. Like creating initial configuration, we prepare 
1000 samples with a fixed temperature T at  = 0.050 
instead of  = 0. From investigation of isothermal pres- 
sure, we have already known that the critical tempera- 
ture is around 8 MeV. Figure 6 shows how fragment 
mass distribution depends on the temperature T = 5, 8, 
18 MeV at  = 0.050. For T = 5 MeV, the distribution 
shows the U-shape where large fragments and small 
fragments exist but there is no middle size fragments. T 
= 8 MeV is just a critical temperature in which the 
power law appears. The exponent , i.e., the slope of 
distribution, is around 2.5 which is consistent with the 
Fisher’s droplet model. As the temperature increases  

 

Figure 6. The comparison between isothermal fragmentation and expanding fragmentation. 
The three figures [[i], [ii], and [iii]] are isothermal distributions [t = 5, 8 and 18 MeV] at  = 
0.050. The two figures [[iv] and [v]] are the distributions obtained by the expansion [h = 
0.10]. 
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beyond the critical temperature Tc = 8 MeV, the distribu- 
tion deviates from the exponentially falling distribution 
with mass number and becomes an exponential shape. In 
the bottom figure [T = 18 MeV], thermal motion com- 
pletely overcomes attractive interaction. Therefore, a 
random distribution appears like the rapid expansion 
case. 

4. CONCLUTIONS 

In this paper we have presented the QMD approach 
for studying multifragmentation resulting from an ex- 
panding nuclear matter. We can reproduce well the finite 
nuclear properties for various mass ranges by inclusion 
of the Pauli and surface potential. We have investigated 
the EOS of nuclear matter by simulating an infinite sys- 
tem with the used QMD. The fragmentation during ex- 
pansion can be classified according to the speed of ex- 
pansion h. Also, the symmetric nuclear matter is dis- 
cussed.  

Our QMD model contains a further possibility for the 
simulation of the dynamical evolution of infinite nuclear 
matter such as supernova explosions, the glitch of the 
neutron star, and the initial stage of the universe. An 
intensive and systematic study of nuclear matter with the 
present model will be important since it contains fewer 
assumptions than the foregoing models as to the struc- 
ture of matter. 
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