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Abstract 
We investigate the scaling of entanglement entropy for one spatial XXZ spin chain by using matrix 
product states to approximate ground states. The entanglement entropy scales logarithmically 
with a coefficient that is determined by the associated conformal field theory, the quantum phase 
transitions occurred between Large-D and Halde phase, Halde phase and Neel phase. The scaling 
relation-ship is given in this paper. 
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1. Introduction 
The study of quantum condensed matter systems is benefiting from an infusion of ideas related to quantum in-
formation and quantum entanglement. Quantum entanglement plays an important role in distinguishing the na-
ture between the quantum systems and classical systems. It also connects quantum information theory to the tra-
ditional quantum many-body systems. More recently, entanglement has emerged on the nearby stage of quantum 
many-body physics, especially for systems that exhibit quantum phase transitions [1]-[6], where it can play the 
role of a diagnostic of quantum correlations. Quantum phase transitions [7] are transitions between qualitatively 
distinct phases of quantum many-body systems, driven by quantum fluctuations. However, quantum many body 
systems are very hard to study due to the exponential growth of their Hilbert space with the number of constitu-
ents. By employing the matrix product states to approximate ground states [8] [9], the entanglement entropy for 
one dimensional spin system is obtained. It is thus obvious that the matrix product states with matrices of finite 
size cannot describe exactly the behavior of an infinite system at the critical point but we may try to find the ex-
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act amount of entanglement which is captured. 
The important information is embeded in the way a state approaches the thermodynamic limit and one can 

extract it by using the celebrated finite size scaling technique [10]. This technique amounts to study even larger 
systems in a gapless phase and extract universal properties through the dependence of the physical observables 
on the truncation dimension of the matrix. 

The rest of this paper is organised as follows. In Section 2, we recall the physics of spin-1 models with long- 
range interactions. Section 3 discusses the entanglement entropy and the scaling relationship of the spin-1 model 
and shows our simulation results for the one-dimensional spin-1 model. Finally, Section 4 contains our conclu-
sions. 

2. The One Dimensional Spin-1 XXZ Model with Uniaxial  
Single-Ion-Type Anisotropy 

One-dimensional antiferromagnetic spin chains have been the subject of recent investigations by numerous 
groups. The Hamiltonian for spin-1 XXZ model with uniaxial single-ion-type anisotropy [11] is given as 
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where J = 1 to fix the energy scale, ( ), ,S x y zα α =  spin-1 operator, D represents uniaxial single-ion aniso-
tropy, Jz is the controlable parameter. The ground-state phase diagram of the spin-1 model consists of the Hal-
dane phase, the large-D phase, XY phases, the ferromagnetic phase, and the Neel phase [12] [13]. For the integ-
er spin, there is a gap between the first excited state and the ground state. 

A gapful phase to gapful phase transition happened between the Haldane phase and large-D phase; the type of 
the quantum phase transition between the Neel phase and Haldane phase is the Ising transition. The central 
charge, which is associated with the universality class of the quantum phase transition, for the Ising transition is 
0.5. Employing invariance under translations and parallelizability of local updates, matrix product states can si-
mulate infinite systems directly, without resorting to costly, less accurate extrapolations. We obtain the approx-
imate ground states of different truncation dimension for the spin-1 model by using matrix product states. 

3. The Entanglement Entropy and Scaling Relationship for One  
Dimensional Spin-1 XXZ Model  

The entanglement entropy is a measure of a bipartite entanglement present in a quantum state, whose behavior is, 
in many occasions, universal [14]. For a bipartite system AB that consists of the system A and the environment 
B. The reduced density matrix of the system A is Aρ . The entanglement entropy 2logA A AS trρ ρ= − , which is 
used to measure the bipartite entanglement between A and B. ρ  is become the 2λ  in the representation of 
ground state by the matrix product state, λ  is a diagonal matrix. For all one-dimensional gapped quantum spin 
systems, the entanglement entropy saturates to a constant independently of the size of the block [15]. The entan-
glement obeys the scaling law logS χ∞  [16] [17], χ  is the truncation dimension of the matrix product state. 
It is clear that the entanglement entropy of half of the infinite chain with the other half will diverge as χ  goes 
to infinity. The known results [16]-[18] shown that it can be used to characterize both quantum criticality and 
topological phases in a variety of quantum many-body systems. 

For the spin-1 model, the parameter Jz = 1, the quantum phase transitions between the Large-D phase and the 
Haldane phase are investigated by the entanglement entropy, which is shown in Figure 1. The critical points 
given by the truncation dimension are shown as: χ = 20, 30, 40, 50, 60; D = 1.119, 1.073, 1.056, 1.039, 1.026, 
respectively. The entanglement entropy between the Haldane phase and the Neel phase is shown in Figure 2. 
The critical points given by the truncation dimension are shown as: χ = 20, 30, 40, 50, 60; D = 0.810, 0.849, 
0.876, 0.891, 0.900, respectively. The peak given by different truncation dimension is the pseudo-critical point, 
which is drawing near the critical point of the system. 

The entanglement entropy scales logarithmically when the system becomes quantum-critical. The scaling re-
lationship [19]-[22] between the entanglement and the correlation length is given as 

logS ξ∞  

where κξ χ∞ , ,χ κ  is the truncation dimension of the matrix product state and the free parameter, respec-
tively. The scaling relationship is given as  



H. L. Wang, C. H. Xiang 
 

 
50 

 
Figure 1. The entanglement entropy between the Large-D phase and the Haldane 
phase with Jz = 1. The critical points given by the truncation dimension are shown as: 
χ = 20, 30, 40, 50, 60; D = 1.119, 1.073, 1.056, 1.039, 1.026, respectively.             

 

 
Figure 2. The entanglement entropy between the Haldane phase and the Neel phase 
with Jz = 1. The critical points given by the truncation dimension are shown as: χ = 20, 
30, 40, 50, 60; D = 0.810, 0.849, 0.876, 0.891, 0.900, respectively.                    

 
logS a bχ= +  

The free parameters a and b can be obtained by fitting the entanglement entropy of the critical point given by 
the matrix product state and the corresponding truncation dimension. The fitting results for the quantum phase 
transitions between the Large-D phase and the Haldane phase and the quantum phase transition between the 
Haldane phase and the Neel phase are shown in Figure 3 and Figure 4. The scaling relationship between entan-
glement entropy S and truncation dimension χ for the quantum phase transition between the Large-D phase and 
the Haldane phase is given with a = 0.226, b = 0.509. The scaling relationship between entanglement entropy S 
and truncation dimension χ for the quantum phase transition between the Haldane phase and the Neel phase is 
given with a = 0.185, b = 0.753. 

4. Conclusion 
We investigate the scaling of entanglement entropy for one spatial XXZ spin chain by using matrix product 
states to approximate ground states. The entanglement entropy scales logarithmically with a coefficient that is 
determined by the associated conformal field theory, the quantum phase transitions occurred between Large-D  
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Figure 3. The scaling relationship between entanglement entropy S and 
truncation dimension χ is shown with a = 0.226, b = 0.509.               

 

 
Figure 4. The scaling relationship between entanglement entropy S and 
truncation dimension χ is shown with a = 0.185, b = 0.753.               

 
and Halde phase, Halde phase and Neel phase. We have shown that the entanglement entropy is an efficient 
quantity in characterizing the Ising transitions and the Gaussian transitions in one dimension. The scaling plays 
crucial roles on identifying a quantum system with a physically different classical system. We hope that our re-
sults will be useful in studying the quantum spin system in one dimension. 
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