

Unrelated Parallel-Machine Scheduling Problems with General Truncated Job-Dependent Learning Effect

Jibo Wang¹, Chou-Jung Hsu^{2*}

¹School of Science, Shenyang Aerospace University, Shenyang, China ²Department of Industrial Management, Nan Kai University of Technology, Taiwan Email: wangjibo75@163.com, ^{*}jrsheu@nkut.edu.tw

Received 22 November 2015; accepted 5 January 2016; published 12 January 2016

Abstract

In this paper, we consider scheduling problems with general truncated job-dependent learning effect on unrelated parallel-machine. The objective functions are to minimize total machine load, total completion (waiting) time, total absolute differences in completion (waiting) times respectively. If the number of machines is fixed, these problems can be solved in $O(n^{m+2})$ time respectively, where *m* is the number of machines and *n* is the number of jobs.

Keywords

Scheduling, Unrelated Parallel Machines, Truncated Job-Dependent Learning

1. Introduction

In modern planning and scheduling problems, there are many real situations where the processing time of jobs may be subject to change due to learning effect. An extensive survey of different scheduling models and problems with learning effects could be found in Biskup [1]. More recently, Janiak *et al.* [2] studied a single processor problem with a S-shaped learning model. They proved that the makespan minimization problem is strongly NP-hard. Lee [3] considered scheduling jobs with general position-based learning curves. For some single machine and a two-machine flowshop scheduling problems, they presented the optimal solution respectively. Lee [4] considered single-machine scheduling jobs with general learning effects and past-sequence-dependent setup time. For some single machine scheduling problems, they presented the optimal solution respectively. Lee and Wu [5], and Wu and Lee [6] considered scheduling jobs with learning effects. They proved that some single machine and flowshop scheduling problems can be solved in polynomial time respectively. Lee *et al.* [7] considered a single-machine scheduling problem with release times and learning effect. Lee *et al.* [8] considered a makespan minimization uniform parallel-machine scheduling problem with position-based learning curves. Lee and Chung [9], Sun *et al.* [10] [11], and Wang *et al.* [12] considered flow shop scheduling problems with the arning effects. Wu *et al.* [13], Wu *et al.* [14], Wu *et al.* [15] and Wang *et al.* [16] considered scheduling problems with the

^{*}Corresponding author.

How to cite this paper: Wang, J.B. and Hsu, C.-J. (2016) Unrelated Parallel-Machine Scheduling Problems with General Truncated Job-Dependent Learning Effect. *Journal of Applied Mathematics and Physics*, **4**, 21-27. <u>http://dx.doi.org/10.4236/jamp.2016.41004</u>

truncated learning effect.

Recently, Wang *et al.* [17] considered several scheduling problems on a single machine with truncated job-dependent learning effect, *i.e.*, the actual processing time of job J_j is $p_{jr}^A = p_j \max\{r^{a_j}, b\}$ if it is scheduled in the *r*th position of a sequence, where $a_j \le 0$ is the job-dependent learning index of job J_j , and *b* is a truncation parameter with 0 < b < 1. In this paper, we study scheduling problems with general truncated job-dependent learning effect on unrelated parallel-machine. The objective is to minimize total machine load, total completion (waiting) time, total absolute differences in completion (waiting) times respectively.

2. Problems Description

There are *n* independent jobs $N = \{J_1, J_2, \dots, J_n\}$ to be processed on *m* unrelated paralle-machine $M = \{M_1, M_2, \dots, M_m\}$. Let (n_1, n_2, \dots, n_m) denote a job-allocation vector, where n_i denotes the number of jobs assigned to machine M_i , and $\sum_{i=1}^m n_i = n$. In this paper, we assume that the actual processing time of job J_j scheduled on machine M_i is

$$p_{ijr}^{A} = p_{ij} \max\{f_{ij}(r), b\}, \quad i = 1, 2, ..., m; \ r, j = 1, 2, ..., n,$$
(1)

where $p_{ij} \ge 0$ denotes the normal (basic) processing time of job J_j (j = 1, 2, ..., n) on machine M_i , r is the position of a sequence, b is a truncation parameter with 0 < b < 1, $f_{ij}(r)$ is the general case of positional learning for job J_j on machine M_i , special $f_{ij}(r) = r^{a_{ij}}$ is the polynomial learning index for job J_j on machine $M_i (a_{ij} < 0)$, $f_{ij}(r) = b_{ij}^{r-1}$ is the exponential learning index for job J_j on machine $M_i (0 < b_{ij} < 1)$. Let C_{ij} and $W_{ij} = C_{ij} - p_{ij}$ be the completion and waiting time for job J_j on machine M_i respectively. The goal is to determine the jobs assigned to corresponding each machine and the corresponding optimal schedule so that the following objective functions is to be minimized: the total machine load $\sum_{i=1}^{m} C_{imax}^i$, the total completion (waiting) times $\sum_{i=1}^{m} \sum_{j=1}^{n_i} C_{ij} \left(\sum_{i=1}^{m} \sum_{j=k}^{n_i} W_{ij} \right)$, the total absolute differences in completion (waiting) times $\sum_{i=1}^{m} \sum_{j=k}^{n_i} |C_{ik} - C_{ij}| \left(\sum_{i=1}^{m} \sum_{j=k}^{n_i} |W_{ik} - W_{ij}| \right)$, where C_{max}^i denotes the makespan of machine M_i . Using the three-field notation [18] the problems can be denoted as Rm|Y|Z, where Y denote the model (1), $Z \in \left\{ \sum_{i=1}^{m} C_{max}^i, \sum_{i=1}^{m} \sum_{j=1}^{n_i} C_{ij}, \sum_{i=1}^{m} \sum_{j=1}^{n_i} \sum_{j=1}^{n_i} \sum_{j=k}^{n_i} |C_{ij}, \sum_{i=1}^{m} \sum_{j=k}^{n_i} \sum_{j=k}^{n_i} |C_{ij}, \sum_{i=1}^{m} \sum_{j=k}^{n_i} \sum_{j=k}^{n_i} |W_{ij}, \sum_{i=1}^{m} \sum_{j=k}^{n_i} |C_{ik} - C_{ij}| \right\}$.

3. Main Results

Let p_{ij} denote the actual processing time of a job when it is scheduled in position j on machine M_i , then $f_{i[j]}(j)$, $J_{i[j]}$, $C_{i[j]}$, $W_{i[j]}$ are defined similarly.

Lemma 1. For a given permutation $\pi_i = (J_{i[1]}, J_{i[2]}, ..., J_{i[n_i]})$ on machine M_i ,

$$\sum_{i=1}^{m} C_{\max}^{i} = \sum_{i=1}^{m} \sum_{j=1}^{n_{i}} p_{i[j]} \max\left\{f_{i[j]}(j), b\right\}$$

$$\sum_{i=1}^{m} \sum_{j=1}^{n_{i}} C_{ij} = \sum_{i=1}^{m} \sum_{j=1}^{n_{i}} (n_{i} - j + 1) p_{i[j]} \max\left\{f_{i[j]}(j), b\right\}$$

$$\sum_{i=1}^{m} \sum_{j=1}^{n_{i}} W_{ij} = \sum_{i=1}^{m} \sum_{j=1}^{n_{i}} (n_{i} - j) p_{i[j]} \max\left\{f_{i[j]}(j), b\right\}$$

$$\sum_{i=1}^{m} \sum_{j=k}^{n_{i}} \left|C_{ik} - C_{ij}\right| = \sum_{i=1}^{m} \sum_{j=1}^{n_{i}} (j - 1)(n_{i} - j + 1) p_{i[j]} \max\left\{f_{i[j]}(j), b\right\} \quad (\text{Kanet [19]})$$

$$\sum_{i=1}^{m} \sum_{k=1}^{n_{i}} \sum_{j=k}^{n_{i}} \left|W_{ik} - W_{ij}\right| = \sum_{i=1}^{m} \sum_{j=1}^{n_{i}} j(n_{i} - j) p_{i[j]} \max\left\{f_{i[j]}(j), b\right\} \quad (\text{Bagchi [20]}).$$

If the vector $(n_1, n_2, ..., n_m)$ is given, let X_{jir} be a 0/1 variable such that $X_{jir} = 1$ if job $J_j (j = 1, 2, ..., n)$ is assigned at position $r(r = 1, 2, ..., n_i)$ on machine $M_i (i = 1, 2, ..., m)$, and $X_{jir} = 0$, otherwise. Then, the problem Rm|Y|Z (where $\sum_{i=1}^{m} \sum_{k=1}^{n_i} \sum_{j=k}^{n_i} |C_{ik} - C_{ij}|, \sum_{i=1}^{m} \sum_{k=1}^{n_i} \sum_{j=k}^{n_i} |W_{ik} - W_{ij}|$) can be solved by the following

assignment problem:

min
$$Z = \sum_{i=1}^{m} \sum_{r=1}^{n_i} \sum_{j=1}^{n} \lambda_{ir} p_{ij} \max\left\{ f_{ij}(r), b \right\} X_{jir}$$
 (2)

s.t.

$$\sum_{i=1}^{m} \sum_{r=1}^{n_i} X_{jir} = 1, \ j = 1, 2, ..., n,$$
(3)

$$\sum_{i=1}^{n} X_{jir} = 1, \ i = 1, 2, ..., m, \ r = 1, 2, ..., n_i,$$
(4)

$$X_{jir} = 0$$
 or 1, $j = 1, 2, ..., n, i = 1, 2, ..., m, r = 1, 2, ..., n_i$, (5)

where $\lambda_{ir} = 1$ for $\sum_{i=1}^{m} C_{\max}^{i}$, $\lambda_{ir} = (n_i - r + 1)$ for $\sum_{i=1}^{m} \sum_{k=1}^{n_i} C_{ik}$, $\lambda_{ir} = (n_i - r)$ for $\sum_{i=1}^{m} \sum_{k=1}^{n_i} W_{ik}$, $\lambda_{ir} = (r-1)(n_i - r + 1)$ for $\sum_{i=1}^{m} \sum_{k=1}^{n_i} \sum_{j=k}^{n_i} |C_{ik} - C_{ij}|$, $\lambda_{ir} = r(n_i - r)$ for $\sum_{i=1}^{m} \sum_{k=1}^{n_i} \sum_{j=k}^{n_i} |W_{ik} - W_{ij}|$.

Now, the question is how many vectors $(n_1, n_2, ..., n_m)$ exist. Obviously n_i may be 0, 1, 2, ..., n(i = 1, 2, ..., m). So if the numbers of jobs assigned to the first m-1 machines is given, the number of jobs assigned to the last machine is then determined uniquely $(\sum_{i=1}^{m} n_i = n)$. Therefore, the upper bound of $(n_1, n_2, ..., n_m)$ is $(n+1)^{m-1}$. Based on the above analysis, we have the following result.

Theorem 1. For a given constant m, Rm|Y|Z can be solved in $O(n^{m+2})$ time, where

$$Z \in \left\{ \sum_{i=1}^{m} C_{\max}^{i}, \sum_{i=1}^{m} \sum_{j=1}^{n_{i}} C_{ij}, \sum_{i=1}^{m} \sum_{j=1}^{n_{i}} W_{ij}, \sum_{i=1}^{m} \sum_{k=1}^{n_{i}} \sum_{j=k}^{n_{i}} \left| C_{ik} - C_{ij} \right|, \sum_{i=1}^{m} \sum_{k=1}^{n_{i}} \sum_{j=k}^{n_{i}} \left| W_{ik} - W_{ij} \right| \right\}$$

Proof. As discussed above, to solve the problem Rm|Y|Z, polynomial number (*i.e.*, $(n+1)^{m-1}$) of assignment problems need to be solved. Each assignment problem is solved in $O(n^3)$ time (by using the Hungarian method). Hence, the time complexity of the problem Rm|Y|Z can be solved in $O(n^{m+2})$ time, where

$$Z \in \left\{ \sum_{i=1}^{m} C_{\max}^{i}, \sum_{i=1}^{m} \sum_{j=1}^{n_{i}} C_{ij}, \sum_{i=1}^{m} \sum_{j=1}^{n_{i}} W_{ij}, \sum_{i=1}^{m} \sum_{k=1}^{n_{i}} \sum_{j=k}^{n_{i}} \left| C_{ik} - C_{ij} \right|, \sum_{i=1}^{m} \sum_{k=1}^{n_{i}} \sum_{j=k}^{n_{i}} \left| W_{ik} - W_{ij} \right| \right\}.$$

Note that if the number of machines m is fixed, then the problem Rm|Y|Z can be solved in polynomial time. Based on the above analysis, we can determine the optimal solution for the problem Rm|Y|Z via the following algorithm:

Algorithm 1

Step 1. For each possible vector $(n_1, n_2, ..., n_m)$, solve the assignment problem (2)-(5). Then, obtain the optimal schedule and the corresponding objective function Z.

Step 2. The optimal solution for the problem is the one with the minimum value of the objective function Z,

where
$$Z \in \left\{ \sum_{i=1}^{m} C_{\max}^{i}, \sum_{i=1}^{m} \sum_{j=1}^{n_{i}} C_{ij}, \sum_{i=1}^{m} \sum_{j=1}^{n_{i}} W_{ij}, \sum_{i=1}^{m} \sum_{k=1}^{n_{i}} \sum_{j=k}^{n_{i}} \left| C_{ik} - C_{ij} \right|, \sum_{i=1}^{m} \sum_{k=1}^{n_{i}} \sum_{j=k}^{n_{i}} \left| W_{ik} - W_{ij} \right| \right\}.$$

The following example illustrates the working of Algorithm 1 to find the optimal solution for the problem $Rm|Y|\sum_{i=1}^{m}\sum_{i=1}^{n_i}C_{ii}$.

Example 1. There are n = 5 jobs and $f_{ij}(r) = r^{a_{ij}}$, The number of machines is m = 2 and $p_{11} = 15$, $p_{12} = 11$, $p_{13} = 14$, $p_{14} = 3$, $p_{15} = 9$, $p_{21} = 12$, $p_{22} = 10$, $p_{23} = 9$, $p_{24} = 16$, $p_{25} = 8$, $a_{11} = -0.23$, $a_{12} = -0.32$, $a_{13} = -0.25$, $a_{14} = -0.35$, $a_{15} = -0.26$, $a_{21} = -0.32$, $a_{22} = -0.21$, $a_{23} = -0.31$, $a_{24} = -0.24$, $a_{25} = -0.29$, b = 0.7 are given.

Solution. When $n_1 = 0$, $n_2 = 5$, the positional weights on machine M_2 are $\theta_{21} = 5$, $\theta_{22} = 4$, $\theta_{23} = 3$, $\theta_{24} = 2$, $\theta_{25} = 1$. Then values $\theta_{ir} p_{ij} \max\{r^{a_{ij}}, b\}$ are given in **Table 1** (the bold value is the optimal solution of

the assignment problem (2)-(5)). We solve the assignment problem (2)-(5) to $\sum_{i=1}^{m} \sum_{j=1}^{n_i} C_{ij} = 339.65119.$

When $n_1 = 1$, $n_2 = 4$, the positional weights on machine M_1 and M_2 are $\theta_{11} = 1$, $\theta_{21} = 4$, $\theta_{22} = 3$, $\theta_{23} = 2$, $\theta_{24} = 1$. Then values $\theta_{ir} p_{ij} \max \{r^{a_{ij}}, b\}$ are given in **Table 2**. We solve the assignment problem

ur i y	ur y ()		i 1, 2, 2		
$ij \setminus ir$	$ heta_{\scriptscriptstyle 21}$	$ heta_{\scriptscriptstyle 22}$	$ heta_{\scriptscriptstyle 23}$	$ heta_{_{24}}$	$\theta_{\scriptscriptstyle 25}$
$J_{_{21}}$	60	38.45135	25.32933	16.80000	8.40000
$J_{_{22}}$	50	34.58149	23.81912	14.94849	7.13208
$m{J}_{_{23}}$	45	29.03910	19.20685	12.60000	6.30000
$m{J}_{_{24}}$	90	54.19170	36.87501	22.94328	11.20000
$J_{_{25}}$	40	27.09585	18.43750	11.20000	5.60000

Table 1. The $\theta_{ir} p_{ij} \max \{ r^{a_{ij}}, b \}$ values of Example 1. for $n_1 = 0, n_2 = 5$.

Table 2. The $\theta_{ir} p_{ij} \max \{r^{a_{ij}}, b\}$ values of Example 1 for $n_1 = 1, n_2 = 4$.

$ij \setminus ir$	$ heta_{_{11}}$	$ heta_{_{21}}$	$\theta_{_{22}}$	$ heta_{\scriptscriptstyle 23}$	$\theta_{_{24}}$
$J_{_{i1}}$	15	48	28.83852	16.88622	8.40000
$J_{_{i2}}$	11	40	25.93612	15.87942	7.13208
$J_{_{i3}}$	14	36	21.77933	12.80457	6.30000
$m{J}_{_{i4}}$	3	64	40.64377	24.58334	11.20000
$m{J}_{_{i5}}$	9	32	19.62965	11.63469	5.60000

(2)-(5) to obtain that the optimal schedule on machine M_1 is $[J_4]$, and on machine M_2 is $[J_5, J_3, J_2, J_1]$. The objective function is $\sum_{i=1}^{m} \sum_{j=1}^{n_i} C_{ij} = 81.05875$.

When $n_1 = 2$, $n_2 = 3$, the positional weights on machine M_1 and M_2 are $\theta_{11} = 2$, $\theta_{12} = 1$, $\theta_{21} = 3$, $\theta_{22} = 2$, $\theta_{23} = 1$. Then values $\theta_{ir} p_{ij} \max\{r^{a_{ij}}, b\}$ are given in **Table 3**. We solve the assignment problem (2)-(5) to obtain that the optimal schedule on machine M_1 is $[J_4, J_2]$, and on machine M_2 is $[J_5, J_3, J_1]$. The objective function is $\sum_{i=1}^{m} \sum_{j=1}^{n_i} C_{ij} = 61.77443$.

When $n_1 = 3$, $n_2 = 2$, the positional weights on machine M_1 and M_2 are $\theta_{11} = 3$, $\theta_{12} = 2$, $\theta_{13} = 1$, $\theta_{21} = 2$, $\theta_{22} = 1$. Then values $\theta_{ir} p_{ij} \max \{r^{a_{ij}}, b\}$ are given in **Table 4**. We solve the assignment problem (2)-(5) to obtain that the optimal schedule on machine M_1 is $[J_4, J_5, J_2]$, and on machine M_2 is $[J_3, J_1]$. The objective function is $\sum_{i=1}^{m} \sum_{j=1}^{n_i} C_{ij} = 59.38394$.

When $n_1 = 4$, $n_2 = 1$, the positional weights on machine M_1 and M_2 are $\theta_{11} = 4$, $\theta_{12} = 3$, $\theta_{13} = 2$, $\theta_{14} = 1$, $\theta_{21} = 1$. Then values $\theta_{ir} p_{ij} \max \{r^{a_{ij}}, b\}$ are given in **Table 5**. We solve the assignment problem (2)-(5) to obtain that the optimal schedule on machine M_1 is $[J_4, J_5, J_2, J_1]$, and on machine M_2 is $[J_3]$. The objective function is $\sum_{i=1}^{m} \sum_{j=1}^{n_i} C_{ij} = 69.93119$.

When $n_1 = 5$, $n_2 = 0$, the positional weights on machine M_1 and are $\theta_{11} = 5$, $\theta_{12} = 4$, $\theta_{13} = 3$, $\theta_{14} = 2$, $\theta_{15} = 1$. Then values $\theta_{ir} p_{ij} \max \{r^{a_{ij}}, b\}$ are given in **Table 6**. We solve the assignment problem (2)-(5) to obtain that the optimal schedule on machine M_1 is $[J_4, J_5, J_2, J_3, J_1]$. The objective function is $\sum_{i=1}^{m} \sum_{j=1}^{n_i} C_{ij} = 98.58071$.

	()				
$ij \setminus ir$	$ heta_{_{11}}$	$ heta_{_{21}}$	$ heta_{\scriptscriptstyle 22}$	$ heta_{\scriptscriptstyle 23}$	$ heta_{\scriptscriptstyle 24}$
J_{i1}	30	12.78952	36	19.22568	8.44311
$J_{_{i2}}$	22	8.81177	30	17.29074	7.93971
$oldsymbol{J}_{i3}$	28	11.77255	27	14.51955	6.40228
$m{J}_{_{i4}}$	6	2.35375	48	27.09585	12.29167
$m{J}_{i5}$	18	7.51579	24	13.08643	5.81735

Table 3. The $\theta_{ir} p_{ij} \max \{r^{a_{ij}}, b\}$ values of Example 1 for $n_1 = 2, n_2 = 3$.

Table 4. The $\theta_{i_r} p_{i_j} \max \left\{ r^{a_{i_j}}, b \right\}$ values of Example 1 for $n_1 = 3, n_2 = 2$.

<i>ij</i> \ <i>ir</i>	$ heta_{_{11}}$	$\theta_{_{21}}$	$ heta_{\scriptscriptstyle 22}$	$ heta_{_{23}}$	$ heta_{_{24}}$
	45	25.57905	11.65074	24	9.61284
$J_{_{i2}}$	33	17.62354	7.739517	20	8.64537
$J_{_{i3}}$	42	23.54510	10.63770	18	7.25978
$m{J}_{_{i4}}$	9	4.70751	2.10000	32	13.54792
J_{i5}	27	15.03158	6.76380	16	6.54322

Table 5. The $\theta_{ir} p_{ij} \max \{r^{a_{ij}}, b\}$ values of Example 1 for $n_1 = 4, n_2 = 1$.

$ij \setminus ir$	$ heta_{_{11}}$	$ heta_{\scriptscriptstyle 21}$	$ heta_{\scriptscriptstyle 22}$	$ heta_{_{23}}$	$ heta_{\scriptscriptstyle 24}$
J _{i1}	60	38.36857	23.30147	10.90479	12
$m{J}_{_{i2}}$	44	26.43531	15.47903	7.70000	10
$m{J}_{_{i3}}$	56	35.31765	21.2754	9.89950	9
$oldsymbol{J}_{i4}$	12	7.06126	4.20000	2.10000	16
$m{J}_{_{i5}}$	36	22.54737	13.52761	6.30000	8

Table 6. The $\theta_{i_r} p_{i_j} \max \left\{ r^{a_{i_j}}, b \right\}$ values of Example 1 for $n_1 = 5, n_2 = 0$.

$ij \setminus ir$	$ heta_{_{21}}$	$ heta_{_{22}}$	$ heta_{_{23}}$	$ heta_{_{24}}$	$\theta_{_{25}}$
$J_{_{11}}$	75	51.15809	34.95221	21.80959	10.50000
$J_{_{12}}$	55	35.24707	23.21855	15.40000	7.70000
$J_{_{13}}$	70	47.09020	31.91310	19.79899	9.80000
$m{J}_{_{14}}$	15	9.41501	6.30000	4.20000	2.10000
J_{15}	45	30.06317	20.29141	12.60000	6.30000

Hence, the optimal schedule on machine M_1 is $[J_4, J_5, J_2]$, and on machine M_2 is $[J_3, J_1]$. The optimal objective function is $\sum_{i=1}^{m} \sum_{j=1}^{n_i} C_{ij} = 59.38394$.

Acknowledgements

Hsu was supported by the Ministry Science and Technology of Taiwan under Grant MOST 104-2221-E-252-002-MY2.

References

- Biskup, D. (2008) A State-of-the-Art Review on Scheduling with Learning Effects. European Journal of Operational Research, 188, 315-329. <u>http://www.sciencedirect.com/science/article/pii/S0377221707005280</u> <u>http://dx.doi.org/10.1016/j.ejor.2007.05.040</u>
- [2] Janiak, A., Janiak, W., Rudek, R. and Wielgus, A. (2009) Solution Algorithms for the Makespan Minimization Problem with the General Learning Model. *Computers and Industrial Engineering*, 56, 1301-1308. <u>http://www.sciencedirect.com/science/article/pii/S0360835208001654</u> <u>http://dx.doi.org/10.1016/j.cie.2008.07.019</u>
- [3] Lee, W.-C. (2011) Scheduling with General Position-Based Learning Curves. *Information Sciences*, 181, 5515-5522. http://www.sciencedirect.com/science/article/pii/S0020025511004130 http://dx.doi.org/10.1016/j.ins.2011.07.051
- [4] Lee, W.-C. (2011) A note on Single-Machine Scheduling with General Learning Effect and Past-Sequence-Dependent Setup Time. Computers and Mathematics with Applications, 62, 2095-2100. <u>http://www.sciencedirect.com/science/article/pii/S0898122111005384</u> <u>http://dx.doi.org/10.1016/j.camwa.2011.06.057</u>
- [5] Lee, W.-C. and Wu, C.-C. (2009) Some Single-Machine and m-Machine Flowshop Scheduling Problems with Learning Considerations. *Information Sciences*, **179**, 3885-3892. <u>http://www.sciencedirect.com/science/article/pii/S0020025509003235</u> <u>http://dx.doi.org/10.1016/j.ins.2009.07.011</u>
- [6] Wu, C.-C. and Lee, W.-C. (2009) Single-Machine and Flowshop Scheduling with a General Learning Effect Model. Computers & Industrial Engineering, 56, 1553-1558. <u>http://www.sciencedirect.com/science/article/pii/S036083520800260X</u> <u>http://dx.doi.org/10.1016/j.cie.2008.10.002</u>
- [7] Lee, W.-C., Wu, C.-C. and Hsu, P.-H. (2010) A Single-Machine Learning Effect Scheduling Problem with Release Times. Omega—The International Journal of Management Science, 38, 3-11. <u>http://www.sciencedirect.com/science/article/pii/S0305048309000024</u> <u>http://dx.doi.org/10.1016/j.omega.2009.01.001</u>
- [8] Lee, W.-C., Yeh, W.-C. and Chuang, M.C. (2012) Uniform Parallel-Machine Scheduling to Minimize Makespan with Position-Based Learning Curves. *Computers & Industrial Engineering*, 63, 813-818. <u>http://www.sciencedirect.com/science/article/pii/S0360835212001283</u> <u>http://dx.doi.org/10.1016/j.cie.2012.05.003</u>
- [9] Lee, W.-C. and Chung, Y.-H. (2013) Permutation Flowshop Scheduling to Minimize the Total Tardiness with Learning Effects. *International Journal of Production Economics*, **141**, 327-334. <u>http://www.sciencedirect.com/science/article/pii/S0925527312003623</u> <u>http://dx.doi.org/10.1016/j.ijpe.2012.08.014</u>
- [10] Sun, L.-H., Cui, K., Chen, J.-H., Wang, J. and He, X.-C. (2013) Research on Permutation Flow Shop Scheduling Problems with General Position-Dependent Learning Effects. *Annals of Operations Research*, 211, 473-480. <u>http://link.springer.com/article/10.1007/s10479-013-1481-6</u> <u>http://dx.doi.org/10.1007/s10479-013-1481-6</u>
- [11] Sun, L.-H., Cui, K., Chen, J.-H., Wang, J. and He, X.-C. (2013) Some Results of the Worst-Case Analysis for Flow Shop Scheduling with a Learning Effect. *Annals of Operations Research*, 211, 481-490. <u>http://link.springer.com/article/10.1007/s10479-013-1368-6</u> <u>http://dx.doi.org/10.1007/s10479-013-1368-6</u>
- [12] Wang, X.-Y., Zhou, Z., Zhang, X., Ji, P. and Wang, J.-B. (2013) Several Flow Shop Scheduling Problems with Truncated Position-Based Learning Effect. *Computers & Operations Research*, 40, 2906-2929. <u>http://www.sciencedirect.com/science/article/pii/S0305054813001743</u> <u>http://dx.doi.org/10.1016/j.cor.2013.07.001</u>

- [13] Wu, C.-C., Yin, Y. and Cheng, S.-R. (2011) Some Single-Machine Scheduling Problems with a Truncation Learning Effect. Computers & Industrial Engineering, 60, 790-795. <u>http://www.sciencedirect.com/science/article/pii/S0360835211000362</u> <u>http://dx.doi.org/10.1016/j.cie.2011.01.016</u>
- [14] Wu, C.-C., Yin, Y. and Cheng, S.-R. (2013) Single-Machine and Two-Machine Flowshop Scheduling Problems with Truncated Position-Based Learning Functions. *Journal of the Operation Research Society*, 64, 147-156. <u>http://www.palgrave-journals.com/jors/journal/v64/n1/abs/jors201246a.html</u> <u>http://dx.doi.org/10.1057/jors.2012.46</u>
- [15] Wu, C.-C., Yin, Y., Wu, W.-H. and Cheng, S.-R. (2012) Some Polynomial Solvable Single-Machine Scheduling Problems with a Truncation Sum-of-Processing-Times Based Learning Effect. *European Journal of Industrial Engineering*, 6, 441-453. <u>http://www.inderscienceonline.com/doi/abs/10.1504/EJIE.2012.047665</u>
 http://dx.doi.org/10.1504/ejie.2012.047665
- [16] Wang, J.-B., Wang, X.-Y., Sun, L.-H. and Sun, L.-Y. (2013) Scheduling Jobs with Truncated Exponential Learning Functions. *Optimization Letters*, 7, 1857-1873. <u>http://link.springer.com/article/10.1007/s11590-011-0433-9</u> <u>http://dx.doi.org/10.1007/s11590-011-0433-9</u>
- [17] Wang, X.-R., Wang, J.-B., Jin, J. and Ji, P. (2014) Single Machine Scheduling with Truncated Job-Dependent Learning Effect. Optimization Letters, 8, 669-677. <u>http://link.springer.com/article/10.1007/s11590-012-0579-0</u> <u>http://dx.doi.org/10.1007/s11590-012-0579-0</u>
- [18] Graham, R.L., Lawler, E.L., Lenstra, J.K. and Rinnooy Kan, A.H.G. (1979) Optimization and Approximation in Deterministic Sequencing and Scheduling: A Survey. *Annals of Discrete Mathematics*, 5, 287-326. <u>http://www.sciencedirect.com/science/article/pii/S016750600870356X</u> <u>http://dx.doi.org/10.1016/S0167-5060(08)70356-X</u>
- [19] Kanet, J.J. (1981) Minimizing Variation of Flow Time in Single Machine Systems. *Management Science*, 27, 1453-1459. <u>http://pubsonline.informs.org/doi/abs/10.1287/mnsc.27.12.1453</u> http://dx.doi.org/10.1287/mnsc.27.12.1453
- [20] Bagchi, U.B. (1989) Simultaneous Minimization of Mean and Variation of Flow-Time and Waiting Time in Single Machine Systems. *Operations Research*, 37, 118-125. <u>http://pubsonline.informs.org/doi/abs/10.1287/opre.37.1.118</u> <u>http://dx.doi.org/10.1287/opre.37.1.118</u>