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Abstract

Making use of a linear operator Z7(a,c), which is defined here by means of the Hadamard product (or

convolution), we introduce some new subclasses of multivalent functions and investigate various inclusion
properties of these subclasses. Some radius problems are also discussed.
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1. Introduction and Definitions

Let A(p) denote the class of functions f(z) of the
form

f(2)=2"+2a,,2"" (peN={1.23.-). (1)
=
which are analytic in the open unit disk
U={z:ze(C and |z|<1}.

We define the Hadamard product (or convolution) of
two analytic functions

/(2)=

M

a,z" and g(z)= ibkzk ,
=0

k=0

(f*g)(z)= gakbkzk (ze D).

For aeR, ceR/Z; (Z;:={+,~2,-1,0}) H. Saitoh
[13] introduced a linear operator

L, (a,c):A(p)—)A(p)

defined by
L,(ac)f(z)=¢,(a.c;z)* f(z) (zeU;feA(p))
()
where
b (a.ciz)=Y G 3)

k=0 (C)k
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and (z), is the Pochhammer symbol defined, in terms
of the Gamma function, by

_F(T+k)_ 1 (k=0)
(7), ——‘{,(Hl)...(ﬁk_n (k eN).

r(r)
The operator L, (a,c) is an extension of the Carlson-

Shaffer operator (see [2]). In [3], Cho et al. introduced
the following family of linear operators

I, (a,c): A(p)—> A(p) analogous to L, (a,c) (see
also [14]):

7/ (0c) /(=)= (w:2)* £ (2)

4
(a,ceR/Zg;/1>—p;ze[U;fe.A(p)). @)

where ¢; (a,c;z) is the function defined in terms of the
Hadamard product (or convolution) by the following
condition

Zﬂ

where ¢, is given by (3). If f(z) is given by (1),
then from (3), (4) and (5), we deduce that

9, (a,c;z)*¢; (a,c;z)= , 5)

Z, (a.c) f(2)
— P < (Z+p)k (c)k k+p (6)
=z +;T]{k!ak+pz (ZGU).
It is easily seen from (6) that
I (p+1.0) £ ()= f(2) and I;(p,l)f(z)—zflfz)
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’

Z(I]f(a-i-l,c)f(z)) R
- T} (0.6) /() (a=P) T} (a+1.¢) 1 ()
and
2(T7 (ae) £ (2)) ®
=(A+p)I)" (a,c) f(z)-AZ] (a.c) f(2).
Clearly, from (7) and (8), we have
Z(Il(a+1 c) ( ))
I (a+1 c) ( )
)

)

77 () f (2 .

‘:’R‘{z; (asl, c)f(z)J PR
and
Z(I:(a+1,c)f(z))’ ~o
Z, (a.c) f(2) (10
T+ a,c)f( ) N 2 N
@Re( (a,c f( )J P (/1_0).

When a=n+p(neN;=Nu{0}) and c=1=1,

the linear operator Z, (n+ p,1)=1, was introduced

n+p-12
and studied by Liu and Noor [5] (see also [9] and [10]).
Moreover, when p=1, Z/(n+1,1)=1Z, was first
introduced and studied by Noor [8] which is known as
Noor Integral operator.

Let 7, (a) be the class of functions h(z) analytic

in the unit disk U satisfying the properties h(O) =
and
Reh(z)-a

do<km, (11)
-«

J~2n
0

where z=re”, k>2 and 0<a<l. For =0, the
class P, (0)=7P, was introduced in [11]. For =0,
k=2, we have the well known class P of functions
with Rek(z)>0 and the class k=2 gives us the
class P(a) of functions with Reh(z)>a . Also we
can write, for h(z)e P, (a) as

(o)=L,

where x(¢) is a function with bounded variation on
[0,27] such that

J, du(2)

0 1-ze

=2 and [ 7|du(r)<k. (13)
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From (11) and (12) it can be seen that A e B, () if
and only if there exist #,,h, € P(ar) such that

h(z)—(§+%)hl(z)—(%—%jhz(z). (14)

It is known [7] that the class 7, () is a convex set.
We also note that /(z)e B, («) if and only if there
exists g € P, such that

h(z)=(l—a)q(z)+a. (15)

By using the linear operator Z7 (a,c), we now define
some subclasses of A4 ( p) as follows:

Definition 1: Let a>p, ceR/Z;, A>-p, u>0,
720, k>2 and 0<a<1.A function f(z)eA(p)
is said to be in the class Hj (k,a,c,a, B, p1,m) if and
only if it satisfies

{(1— )L_Il(““ C)fEZ)T

a+ lc)g z)

<
ofZ <a,c;f<z>J[I;(a+1,c>f<z>]”'}ea(m,

(a,c g(z) I: (a-l—l,c)g(z)

(16)
where g(z)e A(p) satisfies the condition

{ Z; (a)g(2)

Iﬁ(aﬂac)g(Z)}ep(ﬁ) (O<p<lizel).(17)

We note that g is starlike univalent in U when
a=c=p=A4=1 in(16).

Definition 2: Let a,c e R/Zg , A20, u>0, =0,
k>2 and 0<a<l1.A function f(z)e A(p) is said
to be in the class Q) (k,a,c,a,f,u,n7) if and only if it
satisfies

(18)
where g(z)e A(p) satisfies the condition

{Iﬁ“ (a:c) f(2)

77 (ac)g(2)

In this manuscript, we investigate several inclusion
and other properties of functions in the classes
Hj (k,a,c,a, B, p1,m) and Q[f (k,a,c,a, B, p1,n) which
are introduced above. Furthermore, some radius pro-
blems are also considered.

}e P(B) (0<pB<l;zel). (19)
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2. Main Results

In order to establish our results, we require the following
lemmas.

Lemma 1: [6] Let u=u, +iu, and v=v, +iv, and
let W(u,v) be a complex-valued function satisfying the
conditions:

1) ¥(u,v) iscontinuous inadomain D c C?,

2) (1,0)eD and ¥(1,0)>0.

3) ReW(iu,,»,)<0 whenever (iu,,)eD and

<—(1+u3)/2.

If p(z) is analytic in U, with p(0)=1, such that
(p(z),zp’(z))eD and Re(p(z),zp’(z))>0 for zeU,
then Re p(z)>0.

Lemma 2: [12] If h(z) is analytic in U with
p(0)=1 , and if n is a complex number satisfying
Ren>0(n#0), then
Re {h(z)+nzh'(z)} >a (0<a<l) implies

Re h(z)>a(1—a)(2p1—l), (20)
where p, is given by
o de
S v

which is an increasing function of Re7n and
1/2< p, <1. The estimate (20) cannot be improved in
general.

Lemma 3: [4] Let q(z) be analytic in U with
q(O) =1 and Re q(z) >0 (zeU). Then, for
|z| =r<l1,

1- <| | 1+r
1+r 7\2 1-r
and
, 2Req(z
/(=) < 2202

We begin by proving the following.
Theorem 1: Let n>0.1If

fe H; (k,a,c,a, B, 1,m), then
T (a+1 g
(MJ eP (7).
Ip (a+1,c)g(z)
where

_ 2aou+né

, 21
2au+no @1

and ge A(p) satisfies the condition (16) and
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Re A, (z) I; (a,c)g(z)
=2 ()= B ()
|h0(z)| () 7, (a+1,¢)g(z)
Proof. Let [ e™, (k,a,c,a,f,u,77) and set
I;“(a+l,c)f(z) ”= ~
Firaia) @

where h(z) is analytic in U with A(0)=1 and we
write

h@)=(§+%}h(ﬂ—(§—%)@(ﬂ. 24

A simple computation using (23) and (24) gives
; (a +1,c) f (z)
(1- T (ailolal(a)
7, (a+1,c)g(z)

)
Le)
7, (a.c) ](Ij (a+1,¢) f(2) o
+n7 /1 ~ -
7, ac Ip a+l,c)g z)

(E—%}{(l-ym<z>+7—a+—’7<1a;2z’j)(2>}

Now we form the functional ¥ (u,v) by choosing
u=h(z)=u +iu, and v=zh (z)=v, +iv,. Thus

n(1-y)v
aphy(z) .

The conditions 1) and 2) of Lemma 1 are clearly
satisfied. Therefore, we show that the condition 3) of
Lemma 1 is satisfied.

By virtue of (25), we have

Y(u,v)=(1-y)u+y-a+ (25)

1-y7)R
Re ‘P(iuz,vl)zy_a_g_wv

a”|h0(z)|2
1-y)o
PN [ Untd LN
au
where & is given by (22). Thus, for v, < (1 12 ) /2
we obtain
1- 1+u?)s 2
Re‘l"(iuz,vl)gy_a_n( 7/)( u2) =A+Bu2’
2ap 2C
where
APM
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A=2au(y—a)-ns(1-y),
B=-n5(1-y) and C=apu.

Since B<0, C>0 and 4<0 by (21), we get
Re W (iu,,v,)<0 . Hence, by applying Lemma 1, it
follows that # € P(i=1,2;zeU) which implies that
h € P, . The proof of Theorem 1 is thus completed.

Remark: If we put a=n+p and c=4=1 in
Theorem 1, we have the result due to Noor and Arif [9,
Theorem 3.1].

Theorem 2: Let 7>0. If [ eQ) (k,a,c,a,B,11,1),

T/ (a,
then [—’;(a <)/(2)
7, (a.c)g(2)

_ 2apu(A+p)+ns

2u(A+p)+ns
and ge A ( p) satisfies the condition (18) and

_ Re A, (z)
| hy (Z)|2 ’

Z, (a.c)g(z)
)

Proof Let fe Q; (k,a,c,a,B,p1,m) and set

(Iﬁ (a:¢) f(2)

Z; (ac)g(2)

where /(z) isanalyticin U with 4(0)=1. Then, by
using same techniques as in the proof of Theorem 1, we
obtain the desired result.
We note that y =a when £ =0 in Theorem 1.
Corollary 1: Let n21. If feH, (k,a,c,a,0,1,7),
then

1%
J ePB.(7), where

hy(2)

]ﬂ=(1—7)h(2)+7»

Z, (a.c) f(2)

7, (a.c)g(z)

Proof. 1t is clear that, for 7>1,
7, (a.0)f(2)
Z; (ac)g(2)

eB(a) (zel).
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This implies that
7 (a,0) /()
77 (ac)g(2)
_1{(1_ )IP (a+1,c)f§z)+ 1 (a,c)fgz)}

7 n
7, (a+1,c)g z) I;(a,c)g z)

(IL]MAP@%]I;

n

Since 7, (a) is a convex set (see [7]), by using

Theorem 1 and Definition 1, we observe that
B,P,eP,(a) and
Iﬂ.
P (a’c)f(z) Epk (a) ,

7 (ac)g(2)

which completes the proof of Corollary 1.
Making use of Theorem 2 and Definition 2, we can
prove the following result.

Corollary 2: Let n>1. If feQ[f (k,a,c,a,0,1,7),
then
I;” (a,c) f(z)
77" (a,c)2(z)
Next, by using Lemma 2, we prove the following.
Theorem 3: Let 1 be a complex number satisfying

Ren>0 andlet a>0, ceR/Zg, A20 and pu>0.
If feA(p) satisfies the condition

{(1_77)[1; (a—i—l;c)f(z)]

z

ePk(a) (zeU).

z z?P

T (aai)f(Z)(Iﬁ(aHaC)f(Z)] ‘ }P (@),

then

(—I’f (a+l’c)f(z)J# eF (o) (zel)

zP

where

Ren 1
0'=0:+(1—a)(2,01—1) with p1=j01£1+tayJ dar

(26)
The value of o is best possible and cannot be
improved.
Proof- If we set
APM
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ko1 k1

=h(z)= (Trgj’h (Z)_(Z_Ejhz (2).

then h(0)=1 and h is analytic in U. By applying
(7), we have

(l—n)(zj (a+1,c)f(z)j#

ZP

+7

P P

17 (a,c)f(z)[l'; (a+1,c)f(z)]“

z z

— 77 ’
h(z)+ » zh (z) eP, (a).

Therefore, by virtue of Lemma 2, we see that
h e P(c)(i=1,2), where o is given by (26). Hence
we conclude that he P, (a) , which evidently proves
Theorem 3.

By using (8) instead of (7) in Theorem 3, we have the
following.

Theorem 4: Let n be a complex number satisfying
Ren >0 and let a,ceR/Za , 20 and u>0. If
feA(p) satisfies the condition

{(1_77)[1'; (a+1;c)f(z)J”

I;m (a,c)f(z)[z.; (a,C)f(Z)]ﬂ—l} " (a)’

+1

P

(Iﬁ (a)f(2)

P

J eR (o) (zel),

z

where o is given by (26) with
-1

Ren
h= J.;[I‘H"(’””)] dt The value of o is best possi-

ble and cannot be improved.

Theorem 5. Let 0<7, <7,. Then
Hj (k:aacaaaohuanl) c H; (k,a,c,a’,(),/l,’b) °

Proof. If n, =0, then the proof is immediate from
Theorem 1. Let 7, >0 and feH, (k,a,c,a,0,u,7).

Then there exist two functions H,, H, € P, (a) such
that

Copyright © 2011 SciRes.

(1_77])(23 (a—i—l,c)féz)}

I; (a+1,c)g z)

+n1(1’?(a’c)f (Z)J(Iﬁ (a+1,c)f(z)]1_l

7/ (a.0)2(2) | 2/ (a+1.0)2(2)

=H,(z)

and

=77—2H z +[l—&]H z).
U 1( ) 771 2( )

Since P, («) is convex set (see [7]), it follows that
the right hand side of (2.8) belongs to 7, («r), which
proves Theorem 5.

Next, we consider the generalized Bernardi-Libera-
Livingston integral operator 7, (v>—-p) defined by
(cf. [1,8], and [15])

+poz,.

T, (=)= vzvp [ f(e)dt (feA(p)iv>-p).
(28)
Theorem 6: Let 1 be a complex number satisfying

Ren>0 andlet f(z)eA(p) and TJ,(f) be given
by (2.9) If

{(l_ﬂ)zﬁ (@)7,()) T <a,c>f<z>} h )

Z.”

then

77 (a:¢) 7, (/)(2)

V4

eR(a),

z

where o is given by (26) with

Ren -1
) =j;[1+tp+vj dr.

Proof. From (28), we obtain

(2} (@) 7, (1)(=) 9)
= (P )T} (@) (1)) -V T} (@), (£)(2).
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7, (a:¢) 7. (f)(2)

P

Let =h(z). Then, by virtue of

z
(29), we have

7, (a:¢) 7. (f)(2)

(1-7)=2 Z, (a.c) f (z)

P

+7

Hence, by using Lemma 2, we obtain the desired
result.

Finally, we consider the converse case of Theorem 1
as follows.

Theorem 7: Let feH;I (k,a,c,a, B, 1,0) . Then
feH;1 (k,a,c,a,ﬂ,,u,n) for |z|<R , where R is
given by

R= ““2 . (30)
a,u(l—ﬁ)+7]+\/(aﬂ,u) +n’ +2anu(1- )

Proof. Let

and

7/ (a,
Hy(z)= lp(ac)g(z)
7, (a+1,c)g(z)
and since feH; (k,a,c,a,0,1,0) , it follows that
HeP. (a) and H,ePB(a) .
Theorem 1, for
H(z)=(1-a)h(z)+a and H,(z)=(1-B)h(z)+pB

with heP,, h, € P, we obtain

Proceeding as in

(ot

k1 k) (z)
_(1_5)["2(2“%(1—/3)%%_

Copyright © 2011 SciRes.

By applying Lemma 3, for 4 €P(i=0,1,2) and
|z|=r<1,wehave

zhl.’(z)
Re[h,.(z)+£—(l_ﬁ)ho +ﬂ]

2 1+r
zReh;(Z)_ _il—ﬁ[l—(l‘zﬂ)rﬂ
2Reh (z) 1- o
>Re i ( )_l ay(l_r){l—(l—Zﬂ)rJ
_(1—2,B)aﬂr2—2{(1—ﬂ)aﬂ+’7}r+aﬂ}
au(1=r){i-(1-25)r} |

ZRehi(z

~—
I

31
Hence, the hand right side of (31) is positive for
|z| =r <R, where R is given by (30). This completes
the proof of Theorem 7.
Theorem 8. Let [e€Q)(k,a,c,a,f,1,0) . Then
feQ; (k,a,c,a,ﬁ,,u,n) for |z|<R , Where R is
given by

R= ,u(/l+p)(,u(l—ﬁ)(/1+p)+77
(32)

-1

+\/[ﬁy(i+p)]2 +n’ +277/¢(1—ﬂ)(/1+p)) )

Proof- Let
(T (ac)f(2))
(CRE e
and
(o)~ i (92)

I; (a+l,c)g(z)

and since f er (k,a,c,a,0,1,0) , it follows that
HeP, (a) and HyeP(B). Then, by using same
methods as in the proof of Theorem 7, we obtain the
required result.
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