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Abstract 
 
Extremum principle for very weak solutions of A-harmonic equation  ,div A x u 0   is obtained, where the 

operator : n nA R R   satisfies some coercivity and controllable growth conditions with Muckenhoupt 
weight. 
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1. Introduction 
 
Throughout this paper  will stands for a bounded 
regular domain in , . By a regular domain we 
understand any domain of finite measure for which the 
estimates (1.6) and (1.7) for the Hodge decomposition 
are justified, see [1]. A Lipschitz domain, for example, is 
regular. 
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where the supremum is taken over all cubes  of . 
When , replace the inequality (1.1) with  
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for some fixed constant  and a.e. c nx R , where M  
is the Hardy-Littlewood maximal operator. 

It is well-known that 1 pA A  whenever , see 
[2]. We will denote by 
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The weighted Sobolev class  consists of 

all functions 

1, ,pW  w

f  for which f  and its first generalized 
derivatives belong to  ,L wp  . 

We will need the following definition. Given ,u v  
 1,rW  , 1 r <  , the function  
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also belong to  1,rW  . The chain rule gives  
= u v    if    <u x v x  and = 0  if   >u x  

 v x . We say    xu x v  on   in sobolev sense,  
or symbolically, u v

 
  if the function   defined 

above lies in  1,
0

rW  . 

Consider the following second order divergence type 
elliptic equation (also called A-harmonic equation or 
Leray-Lions equation)  

 div , = 0A x u                (2) 

where : n nA R R   is a Carathéodory function and 
satisfies 

1)    , ,
p

A x w x    , 

2)     1
,

p
A x w x    , 

where 1 < <p  , 0 < <    are fixed constants, 
and   1w x A  be a Muckenhoupt weight. The proto- 
type of Equation (2) is the -harmonic equation with 
weight  
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Definition: A function  with 
 is called a very weak solution of 

(2) if  
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for all   1, 1 ,r r pW   w


w
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 with compact support.  

Recall that  is a weak solution of (2) 
if (3) holds for all  with compact 
support. The word very weak in the above definition 
means that the Sobolev integrable exponent  of u  is 
smaller than the natural exponent . 
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  1, ( , )pW 

p
r

Extremum principle for weak and very weak solutions 
of elliptic equations is an important and basic property. It 
is closely related to the uniqueness results for some 
boundary value problems of elliptic PDEs, see [4]. 
Motivated by this property, Gao, Li and Deng showed in 
[3] the extremum principle for very weak solutions of (2) 
with the weight . In the present paper, we 
generalize the result obtained in [3] to weighted case, 
and prove the extremum principle for very weak 
solutions of (2). The main result of this paper is the 
following theorem. 
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With the extremum principle at hand, we can consider 
the 0-Dirichlet problem  

 
 1,

0

, =
r

div A x u

u W




 

0
              (4) 

Theorem 2: Let  and 2  be the exponents in 
Theorem 1 and 1 2 . Then the 0-Dirichlet bound- 
ary value problem (4) has only zero solution. 

1r
< <r r

r
r

We will need the following lemma in the proof of the 
main theorem, which is a Hodge decomposition in 
weighted spaces. 

Lemma: [5] Let  be a regular domain and   w x  
be an 1A  weight. If ,  1,
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where  = p   and  = , ,C C n p w  depending only 

on  and , respectively.  p , ,n p w

 
2. Proof of Theorem 1 and Theorem 2 
 
Proof of Throrem 1. If  u x  is a very weak solution of 
the Equation (2), then also is 
     1,= rv x u x m W w  
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By Lemma, we have the following estimate  
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The integral identity (8) with   as a test function of 
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Let us put  
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Since the gradient of   is equal to  on X, while 
it vanishes on 

v
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By the conditions 1) and 2), the above equality yields  

d d
r r p

X X
v w x v h w x       

Using Hölder’s inequality and (9) we obtain  

     

 

1
1

, ,
d

d

r p
r r prL w L wX

r

p X

v w x h

C A w p r v w x


  




 

  

  






2

   (11) 

Taking  sufficiently close to  to satisfy 1 < <r p r p
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yields  ,
= 0rL w

v


 , from which we deduce   = 0x  

almost everywhere in , and this simply means that 
 almost everywhere in . 


 m u x 

Similarly, by the same method we used above, we can 
also derive  almost everywhere in  u x M  . This 
completes the proof of Theorem 1. 

Proof of Throrem 2. By Theorem 1, we know that 
 and  almost everywhere in   0u x   u x  0  . 

This simply means that  almost everywhere in 
. This completes the proof of Theorem 2. 

  = 0u x

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