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Abstract 
The spin-charge-family theory is a kind of the Kaluza-Klein theories, but with two kinds of the spin 
connection fields, which are the gauge fields of the two kinds of spins. The SO(13,1) representation 
of one kind of spins manifests in d = (3 + 1) all the properties of family members as assumed by the 
standard model; the second kind of spins explains the appearance of families. The gauge fields of 
the first kind, carrying the space index ( )m = , ,0 3 , manifest in d = (3 + 1) all the vector gauge 
fields assumed by the standard model. The gauge fields of both kinds of spins, which carry the 
space index (7, 8) gaining at the electroweak break nonzero vacuum expectation values, manifest 
in d = (3 + 1) as scalar fields with the properties of the Higgs scalar of the standard model with re-

spect to the weak and the hyper charge ( ± 1
2

 and 1
2

 , respectively), while they carry additional 

quantum numbers in adjoint representations, offering correspondingly the explanation for the 
scalar Higgs and the Yukawa couplings, predicting the fourth family and the existence of several 
scalar fields. The paper 1) explains why in this theory the gauge fields are with the scalar index 

( )s = , , ,5 6 7 8  doublets with respect to the weak and the hyper charge, while they are with respect 
to all the other charges in the adjoint representations; 2) demonstrates that the spin connection 
fields manifest as the Kaluza-Klein vector gauge fields, which arise from the vielbeins; and 3) ex-
plains the role of the vielbeins and of both kinds of the spin connection fields. 
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1. Introduction 
The standard model assumed and the LHC confirmed the existence of the Higgs’s scalar—the only so far ob-

served boson with the fractional charges 1
2

± . The question arises: where does the Higgs originate, why does it 

carry the “fermion” charges and where do the Yukawa couplings originate? 

It is demonstrated in this paper how do the scalar fields with the weak and the hyper charge equal to 1
2

±  and 

1
2

 , respectively, appear from the simple starting action of the spin-charge-family theory. While the weak and 

the hyper charge of the scalar gauge fields originate in the scalar index ( )7,8s = 1, all the other charges of these 
scalar fields originate in the two kinds of the spin, carrying these additional charges in the adjoint representa-
tions. These scalars explain the appearance of families, of the Higgs scalar and the Yukawa couplings and their 
influence on the properties of the family members and on the families.  

The relation between the vector gauge fields, when they are presented by the spin connections—this is the 
case in the spin-charge-family theory—and the vector gauge fields when they are expressed in terms of the 
vielbeins—which is usually used in the Kaluza-Klein theories—is discussed. 

It was demonstrated in the paper [1] that all the scalars, that is all the gauge fields with the space index 5s ≥  
of the spin-charge-family theory, manifest in ( )3 1d = +  fractional charges with respect to the index s and the 
standard model charge groups: when carrying the space index ( )5,6,7,8s =  they are ( ) ( )2 2SU SU×  doub-
lets (originating in ( )4SO ). When carrying the space index ( )9, ,14s =   they are colour charge triplets (be-
longing to ( ) ( )3 6SU SO⊂ ). Doublets explain the weak and the hyper charge; triplets offer a possible explana-
tion for the matter-antimatter asymmetry of the ordinary matter in the universe and for the proton decay. 

The spin-charge-family theory [2]-[12] offers the explanation for all the assumptions of the standard model: 
for the properties of each family member—quarks and leptons, left and right handed (right handed neutrinos are 
in this theory regular members of each family)—for the appearance of the families, for the existence of the 
gauge vector fields of the family member charges and for the scalar field and the Yukawa couplings. It is offer-
ing the explanation also for the existence of phenomena, which are not included in the standard model, like 
there is the dark matter [11] and the (ordinary) matter-antimatter asymmetry [1].   

The spin-charge-family theory predicts that there are at the low energy regime two decoupled groups of four 
families: The fourth [2] [4] [5] [10] to the already observed three families of quarks and leptons will be meas-
ured at the LHC [12], LHC will measure also some of the scalar fields (manifesting as the Higgs and the Yuka-
wa couplings [4]). The lowest of the upper four families constitutes the dark matter [11]. 

In Subsection 1.1 a short introduction of the spin-charge-family theory is made: the simple starting action of 
the theory together with the assumptions made to achieve that the theory manifests at the low energies the ob-
served phenomena are presented. 

The main Section 3 discusses the properties of the scalar fields, offering the explanation for the appearance 
and properties of families of quarks and leptons, of the Higgs and the Yukawa coupling and correspondingly for 
the masses of the heavy bosons. 

In Section 2 the relation between the vector gauge fields as appearing from the vielbeins (as one usually 
proceeds in the Kaluza-Klein theories [13]) and those expressible with the spin connections (as it is in the 
spin-charge-family theory) is discussed. I prove the statement that both gauge fields (those emerging from the 
vielbeins and those expressed by the spin connections) are equivalent for the ( )4SO  symmetry of the space of 
coordinates ( )5,6,7,8s =  and no fermion sources present. 

Section 5 presents a short summary of all the problems discussed in this paper. 
In the Sections 4, 7, and 8, properties of the vielbeins and both kinds of the spin connection fields—mani- 

festing at the low energy regime the observed vector and scalar gauge fields—as well as properties of both kinds 
of the Clifford algebra objects—which determine either spins and charges or family quantum numbers of fer-
mions, respectively—are discussed. 

In Appendix A1 the infinitesimal generators of the subgroups of ( )13 1SO +  (determining spins and charges 

 

 

1In the spin-charge-family theory the weak and the hyper charge of the scalar fields originate in the ( ) ( )2 2SU SU×  invariant subgroups 

of ( )4SO  ( ( )5,6,7,8s = ), having the analogue in the spin representation of the vector gauge fields in ( )3 1d = + . 
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of fermions and of the corresponding gauge vector and scalar fields) and of  ( )7 1SO +  (determining family 
quantum numbers and the family charges of the scalar gauge fields), expressed by the generators abS  and abS , 
respectively, are presented, together with the corresponding gauge fields. 

Appendix A4 is a short review of the technique, taken from Ref. [1]. It is used in this paper to demonstrate 
properties of the spinor states, representing family members and families. 

All appendices are added to make the paper easier to follow. 
Let me point out at the end of this part of the introduction that more I am working on the spin-charge-family 

theory (together with the collaborators) more answers to the open questions of the elementary particle physics 
and cosmology the theory is offering. In order that the reader will easier follow the achievements of this paper I 
repeat several topics which already have appeared in previous papers, cited in this one. The new achievements 
of this paper are presented and discussed in Sections 2 and 3 and supported by Appendix A2 and Appendix A3. 

1.1. Spin-Charge-Family Theory, Action and Assumptions  
This section follows a lot the similar one from Ref. [1]. 

Let me present the assumptions on which the theory is built, starting with the simple action in ( )13 1d = + : 
A i. In the action [1] [2] [4] fermions ψ  carry in ( )13 1d = +  as the internal degrees of freedom only two 

kinds of spins, no charges, determined by the two kinds of the Clifford objects (there exist no additional Clifford 
algebra objects) (Equations ((14), (15), (47), (49), (63)))— aγ  and aγ —and interact correspondingly with the two  

kinds of the spin connection fields— abαω  and abαω , the gauge fields of ( )4
ab a b b aiS γ γ γ γ= − , the generators of 

( )13,1SO  (Appendix A1) and ( )4
ab a b b aiS γ γ γ γ= −

    , the generators of  ( )13,1SO  (Appendix A1)—and the 

vielbeins af α .  
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                          (1) 

Here2 [ ]a b a b b af f f f f fα β α β α β= − . R  and R  are the two scalars ( R  is a curvature), as it is presented 
in Section 4 and Appendix A3. 

A ii. The manifold ( )13 1M +  breaks first into ( )7 1M +  times ( )6M  (which manifests as  
( ) ( ) ( )7,1 3 1SO SU U× × ), affecting both internal degrees of freedom—the one represented by aγ  and the one 

represented by aγ . Since the left handed (with respect to ( )7 1M + ) spinors couple differently to scalar (with re-
spect to ( )7 1M + ) fields than the right handed ones, the break can leave massless and mass protected ( )( )7 1 2 12 + −  
massless families. The rest of families get heavy masses3. 

 

 

2
af α  are inverted vielbeins to ae α  with the properties ,a a a

b b ae f e fα β β
α α αδ δ= = , ( )det aE e α= . Latin indices , , , , , , , ,a b m n s t    

denote a tangent space (a flat index), while Greek indices , , , , , , , ,α β µ ν σ τ    denote an Einstein index (a curved index). Letters from 
the beginning of both the alphabets indicate a general index ( , , ,a b c   and , , ,α β γ   ), from the middle of both the alphabets the ob-
served dimensions 0,1,2,3  ( , ,m n   and , ,µ ν  ), indices from the bottom of the alphabets indicate the compactified dimensions 
( , ,s t   and , ,σ τ  ). We assume the signature { }diag 1, 1, 1, , 1abη = − − − . 
3A toy model [14] [15] was studied in ( )5 1d = +  with the same action as in Equation (1). The break from ( )5 1d = +  to ( )3 1d = + ×  an 

almost 2S  was studied. For a particular choice of vielbeins and for a class of spin connection fields the manifold ( )5 1M +  breaks into 
( )3 1M +  times an almost 2S , while ( )( )5 1 2 12 + −  families remain massless and mass protected. Equivalent assumption, although not yet proved 

how does it really work, is made in the ( )13 1d = +  case. This study is in progress. 
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A iii. There are additional breaks of symmetry: the manifold ( )7 1M +  breaks further into ( ) ( )3 1 4M M+ × . 
A iv. There is a scalar condensate (Table 1) of two right handed neutrinos with the family quantum numbers 

of the upper four families, bringing masses of the scale above the unification scale ( 1610 GeV∝ ) to all the vec-
tor and scalar gauge fields, which interact with the condensate [1]. 

A v. There are nonzero vacuum expectation values of the scalar fields with the space index (7, 8) conserving 
the electromagnetic and colour charge, which cause the electroweak break and bring masses to all the fermions 
and to the heavy bosons. 

Comments on the assumptions: 
C i. This starting action enables to represent the standard model as an effective low energy manifestation of 

the spin-charge-family theory, offering an explanation for all the standard model assumptions, explaining also 
the appearance of the families, the Higgs and the Yukawa couplings: 

C i.a. One Weyl representation of ( )13,1SO  contains [2]-[5], if analysed with respect to the subgroups 
( )3,1SO , ( )2 ISU , ( )2 IISU , ( )3SU  ( )1U  (Equations ((33)-(35)), Appendix A1), all the family members 

required by the standard model, with the right handed neutrinos in addition (Table 3): It contains the left handed 
weak ( )( )2 ISU  charged and ( )2 IISU  chargeless colour triplet quarks and colourless leptons (neutrinos and 
electrons), and right handed weak chargeless and ( )2 IISU  charged coloured quarks and colourless leptons, as 
well as the right handed weak charged and ( )2 IISU  chargeless colour antitriplet antiquarks and (anti)colourless 
antileptons, and left handed weak chargeless and ( )2 IISU  charged antiquarks and antileptons. The antifermion 
states are reachable from the fermion states by the application of the discrete symmetry operator    , pre-
sented in Ref. [16]. 

C i.b. There are before the electroweak break all massless observable gauge fields: the gravity, the colour oc-
tet vector gauge fields (of the group ( )3SU  from ( )6SO , Equation (35)), the weak triplet vector gauge field 
(of the group ( )2 ISU  from ( )4SO , Equation (34)) and the hyper singlet vector gauge field (a superposition 
of ( )1U  from ( )6SO  and the third component of ( )2 IISU  triplet, Equation (41)). All are the superposition 
of the cf α  abαω  spinor gauge fields (Equation (41) represents the superposition for some scalar fields). 

C i.c. There are before the electroweak break all massless two decoupled groups of four families of quarks  
and leptons, in the fundamental representations of  ( )

 ( )
 ( )

 ( ), 3,1 , 42 2R SO II SOSU SU×  and  

 ( )
 ( )

 ( )
 ( ), 3,1 , 42 2L SO I SOSU SU×  groups, respectively—the subgroups of  ( )3,1SO  and  ( )4SO  (Appendix A1,  

Table 4). These eight families remain massless up to the electroweak break due to the “mass protection mechan-
ism”, that is due to the fact that the right handed members have no left handed partners with the same charges. 

C i.d. There are scalar fields, Section 3, with the space index (7, 8) and with respect to the space index with the 
weak and the hyper charge of the Higgs’s scalar (Equation (19)). They belong with respect to additional quan-
tum numbers either to one of the two groups of two triplets, Equations ((36), (37)) (either to one of the two trip  
lets of the groups  ( )

 ( ), 3,12 R SOSU  and  ( )
 ( ), 42 II SOSU , or to one of the two triplets of the groups  ( )

 ( ), 3,12 L SOSU  

and  ( )
 ( ), 42 I SOSU , respectively), which couple through the family quantum numbers to one (the first two triplets)  

or two another (the second two triplets) of the two groups of four families - all are the superposition of sf σ  
abσω  (Equation (40)), or they belong to three singlets, the scalar gauge fields of ( ), ,Q Q Y′ ′  (Equation (39)), 

which couple to the family members of both groups of families—they are the superposition of sf σ  abσω  (Eq-
uation (41)). Both kinds of scalar fields determine the fermion masses (Equation (23)), offering the explanation 
for the Yukawa couplings and the heavy bosons masses (Equation (24)). 

C i.e. The starting action contains also additional ( )2 IISU  (from ( )4SO , Equation (34)) vector gauge 
fields (one of the components contributes to the hyper charge gauge fields as explained above), as well as the 
scalar fields with the space index ( )5,6s∈  and ( )9,10, ,14t∈  . All these fields gain masses of the scale of 
the condensate (Table 1) with which they interact. They all are expressible with the superposition of m abf µ

µω . 
In the case of free fields (if no spinor source, carrying their quantum numbers, is present) both m abf µ

µω  and 
m abf µ

µω  are expressible with vielbeins (Subsection 2, Equations ((31), (62))), correspondingly only one kind 
of the three gauge fields are the propagating fields. 

ii., iii.: There are many ways of breaking symmetries from ( )13 1d = +  to ( )3 1d = + . The assumed breaks 
explain why the weak and the hyper charge are connected with the handedness of spinors, manifesting corres-
pondingly the observed properties of the family members—the quarks and the leptons, left and right handed 
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(Table 3)—and of the observed vector gauge fields. 
Antiparticles are accessible from particles by the application of the operator ⋅  , as explained in Refs. 

[16] [17]. This discrete symmetry operator does not contain aγ ’s degrees of freedom. To each family member 
there corresponds the antimember, with the same family quantum number. 

iv.: It is the condensate of two right handed neutrinos with the quantum numbers of the upper four families 
(Table 1), which makes massive all the scalar gauge fields (with the index ( 5,6,7,8 ), as well as those with the 
index ( )9, ,14 ) and the vector gauge fields, manifesting nonzero 4τ , 23τ , 4τ , 23τ , 3

RN  (Equations (33)- 
(39)) [1]. Only the vector gauge fields of Y , ( )3SU  and ( )2SU  remain massless, since they do not interact 
with the condensate. 

v.: At the electroweak break the scalar fields with the space index ( )7,8s = —originating in absω , (Equation 
(40) as well as some superposition of s s sω ′ ′′  with the quantum numbers ( , ,Q Q Y′ ′ ), Equation (41), conserving 
the electromagnetic charge—change their mutual interaction, and gaining nonzero vacuum expectation values 
change correspondingly also their masses. They contribute to mass matrices of twice the four families, as well as 
to the masses of the heavy vector bosons (the two members of the weak triplet and the superposition of the third 
member of the triplet with the hyper vector field, Equation (24)). 

All the rest scalar fields keep masses of the scale of the condensate and are correspondingly unobservable in 
the low energy regime. 

The fourth family to the observed three ones is predicted to be observed at the LHC. Its properties are under 
consideration [12], the baryons of the stable family of the upper four families is offering the explanation for the 
dark matter [11]. 

Let us rewrite that part of the action of Equation (1), which determines the spinor degrees of freedom, in the 
way that we can clearly see how the action manifests under the above assumptions in the low energy regime by 
the standard model required degrees of freedom of fermions and bosons [2]-[12].  

0 0
, 7,8 5,6,9, ,14

0

0

,

1 1 ,
2 2
1 1 ,
2 2

m A Ai Ai s t
f m m s t

A i s t

s s ab
s s s s s abs

t t ab
t t t t t abt

p g A p p

p p S S

p p S S

ψγ τ ψ ψγ ψ ψγ ψ

ω ω

ω ω

= =

′ ′′
′ ′′

′ ′′
′ ′′

     
= − + +    

     

= − −

= − −

∑ ∑ ∑












              (2) 

where ( )0,1,2,3m∈ , ( )7,8 ,s∈  ( ) ( ), 5,6,7,8s s′ ′′ ∈ , ( ),a b  (appearing in abS ) run within ( )0,1,2,3  and 
( )5,6,7,8 , ( )5,6,9, ,13,14t∈  , ( ) ( ), 5,6,7,8t t′ ′′ ∈  and ( )9,10, ,14∈  . The spinor function ψ  represents  

all family members of all the 
7 1 1

22 8
+
−
=  families. 

The first line of Equation (2) determines (in ( )3 1d = + ) the kinematics and dynamics of spinor fields, 
coupled to the vector gauge fields. The generators Aiτ  of the charge groups are expressible in terms of abS  
through the complex coefficients Ai

abc , as presented in Equations ((34), (35), (39))  

,
,Ai Ai ab

ab
a b

c Sτ = ∑                                     (3) 

fulfilling the commutation relations  

{ }, ,Ai Bj AB Aijk Aki fτ τ δ τ
−
=                                 (4) 

and representing the colour, the weak and the hyper charge. The corresponding vector gauge fields Ai
mA  are ex-

pressible with the spin connection fields stmω , with ( ),s t  either ( )5,6,7,8∈  or ( )9,10, ,13,14∈  , in 
agreement with the assumptions ii. and iii.. In Subsection 2 the relation between the gauge fields, as obtain from 
the vielbeins in the ussual Kaluza-Klein procedure and those obtained from the spin connections as it is done in 
the spin-charge-family theory, is discussed. For a particular choice of the group ( ( )2SU  from ( )4SU ) when 
vielbeins have a particular symmetry the proof that both procedures lead to the same vector gauge field in 

( )3 1d = +  is presented. The expressions of the vector gauge fields goes for all the charges in a similar way as 
in this particular case (Equation (10)). 

All vector gauge fields, appearing in the first line of Equation (2), except 2
mA ±  and Y

mA ′   
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( 23 4
2 2cos sinm mA Aϑ ϑ= − , Y ′  is defined in Equation (39), 4τ  in Equation (35)), are massless before the elec-

troweak break. 3
mA


 carries the colour charge ( )3SU  (originating in ( )6SO ), 1
mA


 carries the weak charge 
( )2 ISU  ( ( )2 ISU  and ( )2 IISU  are the subgroups of ( )4SO ) and Y

mA  ( 23 4
2 2sin cosm mA Aϑ ϑ= + ,Y  is de-

fined in Equation (39), the corresponding ( )1U  group originates in ( )6SO , 4
mA  is defined in Equation (41) 

if the scalar space index s is replaced by the space vector index m, and 23
mA  is the third component of the 

second ( )2 ISU  field 2
mA


). The fields 2
mA ±  and Y

mA ′  get masses of the order of the condensate scale through 
the interaction with the condensate of the two right handed neutrinos with the quantum numbers of the upper 
four families (the assumption iv., Table 1). 

The condensate, Table 1, gives masses of the order of the scale of its appearance also to all the scalar gauge 
fields, presented in the second and the third line of Equation (2). 

The charges ( 3 1, ,Yτ τ  ) of the gauge fields are before the electroweak break the conserved charges, since the 
corresponding vector gauge fields don’t interact with the condensate. After the electroweak break, when the 
scalar fields with the space index ( )7,8s = —those with the family quantum numbers and those with the quan-
tum numbers ( , ,Q Q Y′ ′ )—start to self interact (Equation (21)) gaining nonzero vacuum expectation values, the 
weak charge and the hyper charge are no longer conserved. The only conserved charges are then the colour and 
the electromagnetic charges. 

In Equations ((41), (40)) the scalar fields with the space index (7, 8), Equation (17), are presented as superpo-
sitions of the spin connection fields of both kinds. These scalar fields determine after the electroweak break the 
mass matrices of the two decoupled groups of four families (Equation (23)) and of the heavy bosons (Equation 
(24)). 

Quarks and leptons have the “spinor” quantum number ( 4τ , originating in ( )6SO  (Equation (35), presented 

in Table 3) equal to 1
6

 and 1
2

− , respectively4 (with the sum of both equal to 1 13 0
6 2

 × + − = 
 

). 

Let us conclude this Subsection with the recognition that:  
A. It is (only) one scalar condensate of two right handed neutrinos (Table 1), which gives masses to all the 

vector and the scalar gauge fields appearing in the spin-charge-family theory, except to those vector gauge fields 
which enter into the standard model as massless vector gauge fields (the gravity, the colour vector gauge fields, 
the weak vector gauge fields and the hyper ( )1U  gauge field, the last three gauge fields manifesting after the 
electroweak break as the heavy bosons and the massless colour and electromagnetic gauge fields). 

B. There are (only) the nonzero vacuum expectation values of the scalar gauge fields with the space index 

( )7,8s =  (with the weak charge equal to 1
2

±  and the hyper charge correspondingly equal to 1
2

 , both due  

to the space index), and with the family (twice two triplets) and family member quantum numbers (three singlets) 
in adjoint representations, which cause the electroweak break breaking the weak and the hyper charge symme-
try. 

The rest of the scalar fields, the members of the weak doublets (Table 2) with the space index ( )5,6s = , and 
the colour triplets and antitriplets with the space index ( )9,10, ,14t =   [1] which contribute to transitions of 
antiparticles into particles and to proton decay, keep masses of the condensate scale. 

Correspondingly the (only) two assumptions, iv. and v., make at the low energy regime observable the meas-
ured vector and scalar gauge fields, offering in addition the explanation also for the dark matter and the mat-
ter-antimatter asymmetry.  

2. Relation between Spin Connections and Vielbeins When No Sources Are Present 
It is demonstrated in this section for the case of spaces with no fermion sources present and with the symmetry 
of the vielbeins with the space indices ( ( )5, 5s σ≥ ≥ ) equal to s sf fσ σδ= , for any f, that both procedures—the 
ordinary Kaluza-Klein one with vielbeins and the procedure with spin connections used in the spin-charge-family 
theory—lead to the same gauge vector fields in ( )3 1d = + . 

 

 

4In the Pati-Salam model [18] this “spinor” quantum number is named 
2

B L−  quantum number and is twice the “spinor” quantum number, 

for quarks equal to 1
3

 and for leptons to 1− . 
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Table 1. This table is taken from [1]. The condensate of the two right handed neutrinos Rν , with the thVIII  family quan-
tum numbers, coupled to spin zero and belonging to a triplet with respect to the generators 2iτ , is presented, together with its 
two partners. The right handed neutrino has 0Q Y= = . The triplet carries 4 1τ = − , 23 1τ = , 4 1τ = − , 3 1RN = , 3 0LN = , 

0Y = , 0Q = . The family quantum numbers are presented in Table 4.  

state 03S  
12S  

13τ  
23τ  

4τ  Y  Q  
13τ  

23τ  
4τ  Y  Q  

3
LN  

3
RN  

( )1 21 2

VIII VIII
R Rν ν

 
0 0 0 1 −1 0 0 0 1 −1 0 0 0 1 

( )1 21 2

VIII VIII
R Reν

 
0 0 0 0 −1 −1 −1 0 1 −1 0 0 0 1 

( )1 21 2

VIII VIII
R Re e

 
0 0 0 −1 −1 −2 −2 0 1 −1 0 0 0 1 

 

Table 2. The two scalar weak doublets, one with 23 1
2

τ = −  and the other with 23 1
2

τ = + , both with the “spinor” quantum 

number 4 0τ = , are presented. In this table all the scalar fields carry besides the quantum numbers determined by the space 
index also the quantum numbers i  from Equation (17). 

 state 13τ  
23τ  spin 4τ  Q  

( )
78
AiA
−  

7 8
Ai AiA iA+

 
1
2

+
 

1
2

−
 

0 0 0 

( )
56
AiA
−  

5 6
Ai AiA iA+

 
1
2

−
 

1
2

−
 

0 0 -1 

( )
78
AiA
+  

7 8
Ai AiA iA−

 
1
2

−
 

1
2

+
 

0 0 0 

( )
56
AiA
+  

5 6
Ai AiA iA−

 
1
2

+
 

1
2

+
 

0 0 +1 

 
Let us assume the infinitesimal coordinate transformations of the kind [13]  

( ) ( ) ( ) ( )1 1 1 1, ,x x x x x x x i x x xµ µ σ σ µ σ τ σ µ τ σα τ α τ′ ′= = + = −
                    (5) 

where we have made a choice of the symmetry ( ) ( )2 2SU SU×   

( )

( )

1 58 67 57 68 56 78

2 58 67 57 68 56 78

1 , ,
2
1 , , ,
2

M M M M M M

M M M M M M

τ

τ

= − + −

= + − +





                         (6) 

st st stM S L= + , st s t t sL x p x p= −  and stS  concern internal degrees of freedom of boson and fermion fields. 
The commutation relations for the generators of the ( )SO n  groups ( ( )4SO  in this case),  
{ } ( ),st s t st ts ts st ss tt tt ssM M i M M M Mη η η η′ ′ ′ ′ ′ ′ ′ ′ ′ ′

−
= + − − , lead for the generators 1τ  and 2τ  to the commuta-

tion relations presented in Equations ((3), (4)) with 1ijk ijkf ε= . 
It follows for the vielbeins representing the background field  

0
, .

0

m m
a m m

as s
s s

e f
e f

e e f f

µ σ
µ σ α

α µ σ
µ σ

δ δ   =
= =     =  

                       (7) 

The background field in ( )3 1d = +  is chosen to be flat, while the vielbeins mf σ  represent the appearance 
of the vector gauge fields 1

mA


 and 2
mA


 in ( )3 1d = + . Both fields are functions of the coordinates in 
( )3 1d = +  only. We make a choice [13]  

( ) ( )1 1 2 2 1 1 2 2 ,m m m m mf i i xσ σ σ τ σ σ
τ ττ τ τ τ= + = +

   

   

                           (8) 

where 1
m



  and 2
m



  are the gauge fields of the charges 1τ  and 2τ , respectively, depending on the coordi-
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nates ( )0 1 2 3, , ,x x x x xµ ∈  only . 
From 0a

ae f σ
µ =  it follows  

.s m s
me e f σ

µ µ σδ= −                                     (9) 

Statement: These two vector gauge fields are just the superposition of abeω  as used in the spin-charge-family 
theory:  

( )
( )

1 1
58 67 57 68 56 78

2 2
58 67 57 68 56 78

, ,

, , .

m m m m m m m m

m m m m m m m m

A

A

ω ω ω ω ω ω

ω ω ω ω ω ω

= = − + −

= = + − +










                      (10) 

To prove this statement let us express the operators, appearing in Equation (5), as follows  

(
)

(

1 1 1

2 2 2

1 5 8 8 5 6 7 7 6 5 7 7 5 6 8 8 6

5 6 6 5 7 8 8 7

2 5 8 8 5 6 7 7 6 5 7 7 5 6 8 8 6

5

,

,

, ,
2

,

, ,
2

p x p

p x p
i e f e f e f e f e f e f e f e f

e f e f e f e f

i e f e f e f e f e f e f e f e f

e

σ σ τ
σ τ σ

σ σ τ
σ τ σ

σ σ σ σ σ σ σ σ σ
τ τ τ τ τ τ τ τ τ

σ σ σ σ
τ τ τ τ

σ σ σ σ σ σ σ σ σ
τ τ τ τ τ τ τ τ τ

τ τ τ

τ τ τ

τ

τ

= =

= =

= − − + − + −

− − +

= − + − − − +

  

  





)6 6 5 7 8 8 7 .f e f e f e fσ σ σ σ
τ τ τ τ− + −

          (11) 

(One notices that 1 20σ τ σ τ
τ σ τ στ δ τ δ= =



  .) 
Then we use the relation between the stmω  fields and the vielbeins (Equation (62)), which in the case of no 

fermion sources present simplifies to  

( ) ( ) ( ){
( ) }

1
2

.

stm m t s s t s m t m t

t m s m s

f e Ef e Ef e E f f f f
E

e E f f f f

σ τ τ σ τ τ σ
σ τ σ τ σ τ

σ τ τ σ
σ τ

ω    = ∂ − ∂ + ∂ −   

 − ∂ − 

           (12) 

Let us now put the vielbeins mf σ  from Equation (8) into the expressions for the gauge fields, let say 
( )11

58 67m m mω ω= −  (Equation (10)), expressing 58mω  and 67mω  with the right hand side of Equation (12). 
Taking into account the symmetry of the space of the coordinates ( ) ( )5 8, ,x x , manifesting in 1s se fσ σδ

−= , for 
any f (from where it follows that s sf fσ σδ= ), one obtains after a little longer calculations that  

( )11 11
58 67 .m m m mA ω ω= − =                                (13) 

Repeating equivalent calculations for the rest of components of 1
m



  and 2
m



  one obtains that: 1 1
m mA=




 , 

and 2 2
m mA=




 , what completes the proof.  

3. Scalar Fields Contributing to Electroweak Break Belong to Weak Charge  
Doublets 

It is proven in this section that all the scalar gauge fields with the space index ( )7,8s∈  carry—with respect to 
the space index s—the weak and the hyper charge as does the Higgs’s scalar of the standard model. These scalar 
fields, belonging either to (one of two times two ( )2SU ) triplets with respect to the family quantum numbers 
or to (one of the three) singlets with respect to the family members quantum numbers, offer the explanation for 
the origin of the Higgs’s scalar and the Yukawa coupling of the standard model. 

It turnes out [1] that all scalars (the gauge fields with the space index 5≥ ) of the action (Equation (1)) carry 
charges in the fundamental representations: They are either doublets (Table 2) or triplets [1] with respect to the 
space index 5s ≥ . The scalars with the space indices ( )7,8s∈  and ( )5,6s∈  are the ( )2SU  doublets 
(Table 2). 

To see this one must take into account that the infinitesimal generators abS ,  
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( ) ,
4

ab a b b aiS γ γ γ γ= −
                                 (14) 

determine spins of spinors, while abS ,  

( ),4
ab a b b aiS γ γ γ γ= −

                                     (15) 

determine family charges of spinors (Equation (15)), while ab  (Equation (47)), which apply on the spin con-
nections bdeω  ( e bdf α

αω= ) and 
bdeω
 

  ( e bdf α
αω=

 

 ), on either the space index e or any of the indices ( ), , ,b d b d   
operates as follows  

( ) ,ab d e g ae d b g be d a gA i A Aη η= −                                (16) 

in accordance with the Equations ((71)-(73)). Expressions for the infinitesimal operators of the subgroups of the 
starting groups (presented in Equations ((33)-(39))) are equivalent (have for the chosen Ai  the same coeffi-
cients Ai

abc  in Equation (3)) for all three kinds of degrees of freedom (Appendix A2.1, Appendix A1). 
All scalars carry correspondingly, besides the quantum numbers determined by the space index, also the 

quantum numbers Ai , the states of which belong to the adjoint representations. At the electroweak break all 
the scalar fields with the space index (7, 8), those which belong to one of twice two triplets carrying the family 
quantum numbers ( Aiτ 

 , Equations ((36)-(38))) and those which belong to one of the three singlets carrying the 
allowed family members quantum numbers ( , ,Q Q Y′ ′ ), Equation (39), Section 1.1, the assumption v. and the 
corresponding comments), start to self interact, Equation (21). Gaining nonzero vacuum expectation values they 
break the weak, the hyper charge and the family charges. 

Statement: Scalar fields with the space index (7, 8) carry with respect to this space index the weak and the 

hyper charge ( 1
2

 , 1
2

± ), respectively. 

To prove this statement let me introduce a common notation Ai
sA  for all the scalar fields, independently of 

whether they originate in absω  scalar fields—in this case ( ), ,Ai Q Q Y′ ′= —or in 
absω




  scalar fields—in this 
case all the family quantum numbers of all eight families contribute.  

( )
( )

1 2

1 2

, , , , , , ,

, , , , , , .

L RN NAi Q Q Y
s s s s s s s s

Ai
L R

A A A A A A A A

Q Q Y N Nτ τ τ

′ ′∈

′ ′⊃

 

 

 

   

   

 

 

 

 

                         (17) 

Here Aiτ  represent all the operators, which apply on the spinor states. These scalars, the gauge scalar fields 
of the generators Aiτ  and Aiτ  (Equations (35)-(37)), are expressible in terms of the spin connection fields 
(Equations ((40), (41))). 

Let us make a choice of the superposition of the scalar fields so that they are eigenstates of  

( )13 56 781
2

τ = −   (Equation (34), if abS  is replaced by ab ) for all quantum numbers Ai . Such a superpo- 

sition appears by itself if one rewrites the second line of Equation (2) as follows (the momentum sp  is left out5)  

( )
( ) ( ) ( ) ( ) ( )

( ) ( )
( )

( )78

78 78

7 8 7 8
7,8 ,

78
7 8

7 8

,

1 , : ,
2

s Ai Ai Ai Ai Ai Ai Ai Ai
s

s Ai

Ai Ai Ai

A A iA A iA

i A A iA

ψ γ τ ψ ψ τ τ ψ

γ γ

=

±

 − = − + − + − + 
 

± = ± =

∑



           (18) 

with the summation over Ai  performed, since Ai
sA  represent the scalar fields ( Q

sA , Q
sA ′ , Y

sA ′ , 4
sA

 , 1
sA


 , 
2
sA



 , RN
sA 



  and LN
sA 



 ). 
The application of the operators ,Y Q  (Equations ((16), (39))) and 13τ  (Equation (34), if abS  is replaced 

by ab ) on the fields ( )7 8
Ai AiA iA  gives  

 

 

5It is expected that solutions with nonzero momentum lead to higher masses of the fermion fields in d = (3 + 1) [14] [15]. We correspon-
dingly pay no attention to the momentum ( ), 7,8sp s∈ , when having in mind the lowest energy solutions, manifesting at low energies. 
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( ) ( )

( ) ( )
( )

13
7 8 7 8

7 8 7 8

7 8

1 ,
2

1 ,
2

0.

Ai Ai Ai Ai

Ai Ai Ai Ai

Ai Ai

A iA A iA

Y A iA A iA

Q A iA

τ = ±

=

=

 

  



                           (19) 

Since 4τ , Y , 13τ  and 1 1τ τ   give zero, if applied on ( Q
sA , Q

sA ′  and Y
sA ′ ) with respect to the indices 

( , ,Q Q Y′ ′ ), and since Y  and 13τ  commute with the family quantum numbers, one sees that the scalar fields  
Ai
sA  (= Q

sA , Y
sA , Y

sA ′ , 4
sA

 , Q
sA 

 , 1
sA


 , 2
sA



 , RN
sA 



 , LN
sA 



 ), rewritten as 
( )

( )78 7 8
Ai Ai AiA A iA
±
=  , are eigenstates of 

13τ  and Y , having the quantum numbers of the standard model Higgs’ scalar. 
These superpositions of Ai

sΦ  are presented in Table 2. Table 2 represents two doublets with respect to the 
weak charge 13τ , with the eigenvalue of 23τ  (the second ( )2 IISU  charge), Equation (34), if abS  is replaced  

by ab ), equal to 1
2

 , respectively.  

The operators 1 11 12iτ τ τ± = ±  (Equation (34), if abS  is replaced by ab ),  

( ) ( )1 58 67 57 681 ,
2

iτ ±  = − +                              (20) 

transform one member of a doublet from Table 2 into another member of the same doublet, keeping 23τ  un-
changed. 

This completes the proof of the above statement. 
After the appearance of the condensate (Table 1), which breaks the ( )2 IISU  symmetry (bringing masses to 

all the scalar fields), the weak 1τ  and the hyper charge Y  remain the conserved charges6. 
At the electroweak break the scalar fields with the space index (7, 8) start to interact among themselves so 

that the Lagrange density for these gauge fields changes from ( ) ( ) ( ){ }† 2 †Ai m Ai Ai Ai
s m s s Ai s sE p p m′= Φ Φ − Φ Φ  to  

( ) ( ) ( )( )† 2 † † †

, ,
,Ai m Ai Ai Ai Ai AiBj Ai Ai Bj Bj

sg m s s Ai s s s s s s
A i B j

E p p mλ
 

′= Φ Φ − − + Φ Φ + Λ Φ Φ Φ Φ 
 

∑ ∑        (21) 

where 2 2Ai
Ai Aim mλ ′− + =  and Aim  manifests as the mass of the Ai

sΦ  scalar. 
The operator 1τ   (Equation (20)) transforms 

( )
78
AiA
±

 into 
( )

( )56 5 6:Ai Ai AiA A iA
±

=  , while 
( )
78

1 0.AiAτ
±
=  

Let me pay attention to the reader, that the term ( )
78

0γ −  Aiτ  
( )
78
AiA
−

 in Equation (18) transforms the right  

handed 1c
Ru  quark from the first line of Table 3 into the left handed 1c

Lu  quark from the seventh line of the 
same table7, which can, due to the properties of the scalar fields (Equation (19)), be interpreted also in the stan-
dard model way, namely, that 

( )
78
AiA
−

 “dress” 1c
Ru  giving it the weak and the hyper charge of the left handed 1c

Lu   

quark, while 0γ  changes handedness. Equivalently happens to Rν  from the 25th line, which transforms under  

the action of ( )
78

0γ −  Aiτ  
( )
78
AiA
−

 into Lν  from the 31th line. 

The operator ( )
78

0γ +  Aiτ  
( )
78
AiA
+

 transforms 1c
Rd  from the third line of the Table 3 into 1c

Ld  from the fifth 

 

 

6It is 
23τ  which determines the hyper charge Y  ( 23 4Y S τ= + , Equation (39)) of these scalar fields, since 4τ  applied on the scalar index 

of these scalar fields gives zero, according to Equations ((34), (35)) in which abS  is replaced by ab  from Equation (16). 
7This transformation of the right handed family members into the corresponding left handed partners can easily be calculated by using Equa-
tion ((74), (72), (82)). 
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line of this table, or Re  from the 27th line into Le  from the 29th line, where 
( )
78
AiA
+

 belong to the scalar fields 

from Equation (17). 

The term ( )
78

0γ   Aiτ  
( )
78
AiA
+

 of the action (Equations ((1), (18))) takes care of the Yukawa couplings as well. 

All the scalar fields 
( )
78
AiA
−

, presented in Equation (17), carry the weak and the hyper charge (Equations ((34),  

(35))) of the Higgs of the standard model. If Aiτ  represents the first three operators in Equation (17) then it 
only multiplies the right handed family member with its eigenvalue. If Aiτ  represents the last four operators of  

the same equation, then the operators ( )
78

0γ   Aiτ  
( )
78
AiA


 ((  ) for ( ),R Ru ν  and ( ),R Rd e , respectively) trans-

form the right handed family member of one family into the left handed partner of another family within the same 
group of four families, since these four operators manifest the symmetry twice ( ( )

 ( )
 ( )

 ( )3,1 42 2SO SOSU SU× ). 

The nonzero vacuum expectation values of the scalar fields of Equation (17) break the mass protection me-
chanism of quarks and leptons and determine correspondingly the mass matrices (Equation (23)) of the two 
groups of quarks and leptons. One group of four families carries the family quantum numbers ( 1τ



 , LN


 ), the 
other group of four families carries the family quantum numbers ( 2τ



 , RN


 ). 
In loop corrections all the scalar and vector gauge fields which couple to fermions contribute. Correspon-

dingly all the off diagonal matrix elements of the mass matrix (Equation (23)) depend on the family members 
quantum numbers. 

It is not difficult to show that the scalar fields 
( )
78
AiA
±

 are triplets as the gauge fields of the family quantum 

numbers ( RN


 , LN


 , 2τ


 , 1τ


 ; Equations ((16), (36), (37))) or singlets as the gauge fields of 13Q Yτ= + , 
2 13

1tanQ Yϑ τ′ = − +  and 2 4 23
2tanY ϑ τ τ′ = − + . 

Let us do this for 
( )
78

LN iA
±

  and for 
( )
78
QA
±

, taking into account Equation (33) (where we replace abS  by ab ) 

and Equation (16), and recognizing that 
( ) ( ) ( )
78 78 78

1 2L L LN N NA A iA±

± ± ±
=  

 .  

( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

78 78 78 7878

78 7878

78 78 78 78 78

23 01 31 02

3

12 03

56 910 1112 1314

,

,

.

L

L

N

N

Q

A i i i

A i

A

ω ω ω ω

ω ω

ω ω ω ω

±

± ± ± ±±

± ±±

± ± ± ± ±

     = + +    
     
 

= + 
 

 
= − + + 

 



       



   



   




   

One finds  

( ) ( ) ( ) ( )
7878 78 78

33 3, 0, 0.L L LN N N Q
L LN A A N A QA± ±

±± ± ±
= ± = =

  

                          (22) 

with ( )56 4 56 910 1112 13141
3

Q τ= + = − + +     , and with 4τ  defined in Equation (35), if replacing abS  by 

ab  from Equation (16). 
Similarly one finds properties with respect to the Ai  quantum numbers for all the scalar fields 

( )
78
AiA
±

. 

The mass matrix of any family member, belonging to any of the two groups of the four families, manifests - 
due to the  ( )( )

 ( )( ), ,2 2L R I IISU SU×  (either ( ,L I ) or ( ,R II )) structure of the scalar fields, which are the gauge 

fields of ,R LN


  and 2,1τ


 —the symmetry presented in Equation (23).  
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1

2

2

1

.

a a e d b
e a a b d
d b a a e
b d e a a

α

α

− − 
 − − =
 −
 

− 

                         (23) 

Let us summarize this section: It is proven that all the scalar fields with the scalar index ( )7,8s∈ , which at 
the electroweak break start to mutual interact and gain nonzero vacuum expectation values (Equation (21)), 
keeping the electromagnetic charge conserved, carry the weak and the hyper charge quantum numbers as required  

by the standard model for the Higgs’s scalar (Equation (19)): ( )
( ) ( )
78 78

13 1 1, ,
2 2

Ai AiY A Aτ
± ±

 = ± − 
 

. These are the only  

scalar fields in this theory with the quantum numbers of the Higgs’s field. These scalar fields carry additional 
quantum numbers: The triplet family quantum numbers and the singlet family members quantum numbers and 
form two groups of four families. They all contribute to masses of the heavy bosons ([4], Equation (53)) ( Q

mZ ′ ,
mW ± ), reproducing on the tree level the expression for the mass term in the standard model  

( )
( )

2
21 2

2
1

1 1 2 ,
2 cos

Q Q m m
I m mg v Z Z W W

θ
′ ′ + −

    +      
                        (24) 

where 2
Iv  are the contribution to the vacuum expectation value of all the scalar fields 

( )
78
AiA
±

 from Equation (19). 

All the other scalar fields: ( ), 5,6Ai
sA s∈  and ( ) ( ), , 9, ,14Ai

ttA t t′ ′ ∈   have masses of the order of the con-
densate scale and contribute to matter-antimatter asymmetry [1]. 

3.1. Triplets with Respect to Space Index s = (9, ∙∙∙, 14) 
The gauge fields with the space index ( )9, ,14t∈   form the triplets and antitriplets with respect to the space 
index ( )9, ,14s =  . They are discussed in Ref. [1]. The colour triplet scalars contribute to transition from an-
tileptons into quarks and antiquarks into quarks and back, unless the scalar condensate of the two right handed 
neutrinos, presented in Table 1, breaks matter-antimatter symmetry [1], offering the explanation for the mat-
ter-antimatter asymmetry in our universe. This condensate leaves massless besides gravity only the colour, weak 
and the hyper charge vector gauge fields. Also all the scalar fields get masses through the interaction with the 
condensate. 

There are no additional scalar indices and therefore no additional corresponding scalars with respect to the 
scalar indices in this theory. 

Scalars, which do not get nonzero vacuum expectation values, keep masses on the condensate scale.  

4. Vectors, Tensors and Spinors in Spin-Charge-Family Theory  
This section discusses properties of vectors, tensors and spinors, appearing in the action in Equation (1), for 
( )1,1d − -dimensional space-time, for any d in purpose to clarify the degrees of freedom of these fields, con-
nected with the two kinds of the Clifford algebra objects: aγ  and aγ  (Equations ((47), (49))). 

The presentation is based on Refs. [7] [6] [19]-[21], where the two kinds of the Clifford objects aγ ’s and 
aγ ’s were introduced. In Ref. [7] these two kinds of the Clifford algebra objects were introduced in Grassmann 

space of anticommuting coordinates aθ . A part of this reference is briefly repeated in Appendix A2, where 
aγ ’s and aγ ’s are introduced as two superposition of a coordinate and its momentum (Equation (47)).  

( ) ( )

{ } { }

: , ,

: , : ,

: , : , , : , ,
4 4

a ab
a a b

a a a ab a a a a ab a
b b

ab bc a ac b ab ab ab a b ab a b
c c

p i p p

i p i p i i

i ii S S S S

θ θ θ θ

θ θ

η

γ θ η θ γ θ η θ
θ θ

η θ η θ γ γ γ γ
θ θ − −

= ∂ =

   ∂ ∂
= − + = + = − − = − −   

∂ ∂   
 ∂ ∂

= − = + = = 
∂ ∂ 



 



 

 

 

       (25) 
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where { },A B
±

 represents { }, :A B AB BA
±
= ± . 

The Clifford algebra objects have properties (Equation (49)) { } { }, 2 ,a b ab a bγ γ η γ γ
+ +
= =   , { }, 0a bγ γ

+
= , 

while the generators of the infinitesimal Loorentz transformations fulfil the relations of Equation (50):  
{ } ( ),ab cd ad bc bc ad ac bd bd aci η η η η

−
= − + − −      , equivalent commutation relations are valid also for abS  

and abS , while { }, 0ab cdS S
−
= . 

Either the coordinates ax  or the corresponding momenta ap  transform as vectors with respect to the Lo-
rentz transformations in the tangent space (Equation (43)) and so do aθ  and apθ  and correspondingly also aγ , 

aγ  (Equation (53)).  

1 2 2

1 2 2

1 2 2

e e ,

e e ,

e e ,

ab ab
ab ab

ab ab
ab ab

ab ab
ab ab

i iL Lc c c c a
a

i iS Sc c c c a
a

i iS Sc c c c a
a

x x x x
ω ω

ω ω

ω ω

γ γ γ γ

γ γ γ γ

−−

−−

−−

′ = = = Λ

′ = = = Λ

′ = = = Λ
 

   

 

 

 

                        (26) 

where abω  are parameters of transformations and ( )1
2e

ab ab
abi Lω +

=


  is the operator of a finite Lorentz trans-

formations. The Grassmann coordinate cθ  transforms correspondingly as:  
1 1

1 2 2e e .
ab ab

ab abi ic c c c a
a

ω ω
θ θ θ θ

−−′ = = = Λ
 

   

We see that ax , aθ , aγ  and aγ  transform as vectors, a
apγ  and a

apγ  a ap i
x
∂ = ∂ 

 are scalars and 

( )[ ]
,

1
2

a b c
ab ca bR f fα β
α β α βω ω ω= −  and ( )[ ]

,
1
2

a b c
ab ca bR f fα β
α β α βω ω ω= −

   , which appear in Equation (1) ( af α  

are the vielbeins), are also scalars. 
The linear vector space over the coordinate Grassmann space has the dimension 2d  (Subsection 7.2). Any 

vector in Grassmann space can be presented as written in Equation (45). Any complex number   and  
1 2

1 2
d

d

aa a
a a aa θ θ θ



 , where 
1 2 da a aa


 is an antisymmetric tensor, are scalars with respect to the Lorentz trans-
formations. 

Grassmann coordinates in Equation (45) can be replaced by one of the Clifford algebra objects, let say by aγ , 
and correspondingly the linear vector space can as well be described by the polynomials as follows  

( ) 1 2
1 2

0
1

1
, ,i

i

d
aa a

a a a k k
i

f a a a aγ γ γ γ +
=

= + ≤∑


                        (27) 

provided that operation of aγ  and aγ  on such a vector space is understood as the left and the right multiplica-
tion (Equation (64))  

( ) ( )
( ) ( )( )

1 1 2 1
1 1 2 1

1 1 2 1
1 1 2 1

0 0 0

0 0 0

: ,

: 1 ,

d
d

d
d

aa a a aa a a a a
a a a a a

d aa a a aa a a a a
a a a a a

f a a a a

f ia ia ia i a

γ γ ψ γ γ γ γ γ γ γ γ γ ψ

γ γ ψ γ γ γ γ γ γ γ γ γ ψ

= + + +

= − + + + −








 

       (28) 

where 0ψ  is a vacuum state. 
With this definition the relations from Equations ((47), (50)-(53)) remain valid. If abS  determine family 

quantum numbers, then abS  transform spinor states within one family (Table 3), keeping family quantum 
numbers unchanged, while abS  transform a family member of one family into the same family member of 
another family (Table 4). 

It is still true that the infinitesimal generators of the Lorentz transformations for vectors are ab ab abS S= +   
(Equation (47)), provided that we respect the rule of Equation (28). One correspondingly easily finds that any 
constant and the operator of handedness (Equation (68)) are the two scalars with respect to ab ab abS S= +  , in 
any d. In ( )3 1d = + , for example, one finds [7] besides the two scalars (a constant and a product of all aγ ) al-
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so two three vectors and two four vectors. 
The two tangent spaces have the same metric tensors: ( )diag 1, 1, , 1ab abη η= = − −

  and correspondingly for 
the Lorentz vectors aγ , aγ , or any two vectors aA  and aA  one finds that a ab

bA Aη=  and a ab
bA Aη= 

 . 
Let us transform any two vectors aA  and aA  into the corresponding coordinate (curved) space with the 

vielbeins af α   

, .a a
a aA f A A f Aα α α α= =                                (29) 

Here a
af eα α

β βδ=  and b b
a af eα

α δ= . 
In Appendix A3 relations among the vielbeins af α  and the two kinds of the spin connection fields, abαω  

and abαω , which are the gauge fields of abS  and abS , respectively, are studied under the assumption that 
( )1 1d d= − +  space-time has a structure of a differentiable manifold [13]. The relation among the two kinds of  

the spin connection fields, abαω  and abαω  (Equations ((54), (55))), and the corresponding two kinds of the af-

fine connections, α
βγΓ  and α

βγΓ  (Equations ((56), (57))), is presented. The requirement that the covariant de- 
rivative of the vielbeins is equal to zero (Equation (60)) relates the two affine connections, α

ρβΓ  and α
ρβΓ , 

with the two spin connections, abcω  and abcω ,  

.a b a a b a
b be e e eγ γ
α β βα γ α β βα γω ω−Γ = −Γ                            (30) 

Varying the action in Equation (1) with respect to af α  leads to the equations of motion  

( ) ( )( )

[ ]

[ ]

0

0

[ ] [ ] [ ]

[ ] [ ] [ ]

10 2
2
1      2
2

,

1 1 ,
2 2

,

.

ba a
b

ba a
b

a a b a
b

cd cd
cd cd

ab ab a cb
c

ab ab a cb
c

f R e R

f R e R

p f e p p

p p S S

R

R

β
βα α

β
βα α

β
α α β α

α α α α

αβ α β α β

αβ α β α β

α

α

γ γ γ

ω ω

ω ω ω

ω ω ω

 = −  
 + −  

+ Ψ Ψ − Ψ Ψ − Ψ Ψ

= − −

= ∂ +

= ∂ +

 









  

                    (31) 

Variation of the action with respect to abcω  and absω , respectively, in the presence of the spinor fields leads 
[22] to the two equations  

( )

( )

[ ] [ ] [ ]

[ ] [ ] [ ]

1 1 ,
2

1 1 .
2

c c c
c a b a b c a b c ab

c c c
c a b a b c a b c ab

f f Ef f f S
E

f f Ef f f S
E

α α α β α
β

α α α β α
β

ω ω γ ψ

ω ω γ ψ

+ = ∂ + Ψ

+ = ∂ + Ψ 

 

                  (32) 

One notices from Equations ((31), (32)) that if there are no spinor sources, then both spin connections— c
a bω  

and c
a bω —are expressible with the vielbeins af α  in the same way and correspondingly equal to each other. 

Then also α
βγΓ  and α

βγΓ  are equal (Equation (61). The only propagating fields are in this case the vielbeins 
af α . 

The expressions for the two spin connection fields [22], c
abω  and c

abω , as functions of the vielbeins and the 
spinor sources are presented in Equation (62). If there are spinors present, then in general the two kinds of the 
spin connection fields are different. 

The condensate (Table 1) of two right handed neutrinos, with the quantum numbers of the eighth family, 
contributes differently to abcω  than to abcω . It influences also af α . In a flat space, that is with vielbeins equal 

to a af α αδ= , the condensate (independent of all coordinates) contributes to different spin connection fields 
(like 560 13140, ,ω ω

, 560 13140, ,ω ω 


, and several others) different constants.  

5. Conclusions 
It is demonstrated in this paper (Section 3) that all the scalar gauge fields of the starting action (the second line 
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in Equation (2)) of the spin-charge-family theory [1]-[11] with the space index ( )7,8s =  are, before the electro- 

weak break, members of the two weak doublets (Table 2) with the hyper charge 1
2

 , respectively. 

These scalars (Equation (17)) interact besides through the weak and the hyper charge (determined by the 
space index ( )7,8s = ) either through the family quantum numbers—they belong to twice two triplets (either to 

 ( )
 ( )

 ( )
 ( )3,1 42 2R SO II SOSU SU×  or to  ( )

 ( )
 ( )

 ( )3,1 42 2L SO I SOSU SU× ) carrying the quantum numbers of either ( RN


 ,

2τ


 ) or ( LN


 , 1τ


 ), respectively—or through the family members quantum numbers—( , ,Q Q Y′ ′ )—as singlets. 

Triplets are the gauge scalar fields of the Clifford algebra objects ( )4
ab a b b aiS γ γ γ γ= −

    , while singlets are the 

scalar gauge fields of the Clifford algebra objects ( )4
ab a b b aiS γ γ γ γ= −  (4) [7].  

Correspondingly they either transform members of one group of four families of fermions among themselves, 
keeping the family member quantum number unchanged, or interact with each family member according to their 
eigenvalues of the family members charges ( , ,Q Q Y′ ′ ), keeping the family quantum numbers unchanged. 

When these scalars start to interact among themselves (Equation (21)), they gain nonzero vacuum expectation 
values, break the weak and the hyper charge, while preserving the electromagnetic charge, and cause the elec-
troweak break. They determine mass matrices (Equation (23)) of two groups of four families as well as masses 
of the heavy bosons (Equation (24)). 

These scalar fields with the space index ( )7,8s =  and correspondingly with the weak charge 1
2

  and the 

hyper charge 1
2

±  and all the family charges in the adjoint representations offer an explanation for the appear-

ance of the Higgs’s scalar fields and the Yukawa couplings. 
The paper discusses the relation between the Kaluza-Klein way through vielbeins and the spin-charge-family 

way through spin connections when explaining the appearance of the vector gauge fields in ( )3 1d = + . It is 
proven in Section 2 that, when there are no spinor sources present and the space exhibits in 5d ≥  a large 
enough symmetry so that vielbeins in 5d ≥  have the property 1s se fσ σδ

−=  for any choice of f; both ways 
lead to the same vector gauge fields. 

The paper discusses also the Lorentz properties of the scalar and vector gauge fields of this theory—the 
vielbeins and the two kinds of the spin connection fields—showing up the difference among all three kinds of 
the gauge fields in the presence of the spinor sources, while in the absence of the spinor sources only one of 
these three kinds of gauge fields is the propagating field (Section 4, and Appendix A2, Appendix A3).  

All the scalar and vector gauge fields, and all the family members and the families appearing in this theory 
have the interpretation in the observed fermion and boson fields. 

The theory predicts two decoupled groups of four families [4] [5] [10] [11]: The fourth of the lower group of 
families will be measured at the LHC [12] and the lowest of the upper four families constitutes the dark matter 
[11]. It also predicts that there will be several scalar fields observed sooner or later at the LHC, and that there is 
a new nuclear force among the fifth (and also the rest three of the upper group of four families) family baryons. 
The condensate contributes to the dark energy, as it does also the nonzero vacuum expectation values of the 
scalar fields with the space index (7, 8). 

Let me conclude with pointing out that the spin-charge-family theory is offering a possible next step beyond 
the standard model by offering the explanation for all the assumptions of the standard model and also so far to 
several phenomena of the cosmology, which are not yet understood: the dark matter [11], the matter/antimatter 
asymmetry [1]. The spin-charge-family theory essentially differs from the unifying theories of Pati and Salam 
[18], Georgi and Glashow [23] and other ( )10SO  and ( )SU n  theories [24], and also from the Kaluza-Klein 
theories [25] [26], although all these unifying theories have many things in common—among themselves and 
with the spin-charge-family theory. 

There are a lot of open questions in the elementary particle physics and cosmology which wait to be answered 
in addition to those presented in this paper. To see whether the spin-charge-family can offer answers also to 
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(some) of those questions remains so far the open question.  

Acknowledgements 
The author acknowledges funding of the Slovenian Research Agency, which terminated in December 2014. 

References 
[1] Mankoč Borštnik, N.S. (2015) Physical Review D, 91, Article ID: 065004. [arxiv:1409.7791] 

http://dx.doi.org/10.1103/PhysRevD.91.065004 
[2] Mankoč Borštnik, N.S. (2013) Spin-Charge-Family Theory Is Explaining Appearance of Families of Quarks and Lep-

tons, of Higgs and Yukawa Couplings. Mankoč Borštnik, N.S., Nielsen, H.B. and Lukman, D., Eds., Proceedings to 
the 16th Workshop “What Comes beyond the Standard Models”, Bled, 14-21 July 2013, DMFA Založništvo, Ljubljana, 
113. [arxiv:1312.1542, arxiv:1409.4981] 

[3] Mankoč Borštnik, N.S. (2012) Do We Have the Explanation for the Higgs and Yukawa Couplings of the Standard 
Model. Mankoč Borštnik, N.S., Nielsen, H.B. and Lukman, D., Eds., Proceedings to the 15th Workshop “What Comes 
beyond the Standard Models”, Bled, 9-19 of July 2012, DMFA Založništvo, Ljubljana, 56-71.  
[arxiv:1302.4305,arxiv:1011.5765] 

[4] Mankoč Borštnik, N.S. (2013) Journal of Modern Physics, 4, 823-847. [arxiv:1312.1542]  
http://dx.doi.org/10.4236/jmp.2013.46113 

[5] Borštnik Bračič, A. and Mankoč Borštnik, N.S. (2006) Physical Review D, 74, Article ID: 073013.  
[hep-ph/0301029; hep-ph/9905357, p. 52-57; hep-ph/0512062, p. 17-31; hep-ph/o401043, p. 31-57] 

[6] Mankoč Borštnik, N.S. (1992) Physics Letters B, 292, 25-29. http://dx.doi.org/10.1016/0370-2693(92)90603-2 
[7] Mankoč Borštnik, N.S. (1993) Journal of Mathematical Physics, 34, 3731. http://dx.doi.org/10.1063/1.530055 
[8] Mankoč Borštnik, N.S. (2001) International Journal of Theoretical Physics, 40, 315-338.  

http://dx.doi.org/10.1023/A:1003708032726 
[9] Mankoč Borštnik, N.S. (1995) Modern Physics Letters A, 10, 587. http://dx.doi.org/10.1142/S0217732395000624 
[10] Bregar, G., Breskvar, M., Lukman, D. and Mankoč Borštnik, N.S. (2008) New Journal of Physics, 10, Article ID: 

093002. http://dx.doi.org/10.1088/1367-2630/10/9/093002 
[11] Bregar, G. and Mankoč Borštnik, N.S. (2009) Physical Review D, 80, Article ID: 083534.  

http://dx.doi.org/10.1103/PhysRevD.80.083534 
[12] Bregar, G. and Mankoč Borštnik, N.S. (2003) Can We Predict the Fourth Family Masses for Quarks and Leptons? 

Mankoč Borstnik, N.S., Nielsen, H.B. and Lukman, D., Eds., Proceedings to the 16th Workshop “What Comes beyond 
the Standard Models”, Bled, 14-21 July 2013, DMFA Založništvo, Ljubljana, 31-51. [arxiv:1403.4441] 

[13] Blagojevič, M. (2002) Gravitation and Gauge Symmetries. IoP Publishing, Bristol.  
http://dx.doi.org/10.1887/0750307676 

[14] Lukman, D., Mankoč Borštnik, N.S. and Nielsen, H.B. (2011) New Journal of Physics, 13, Article ID: 103027. 
http://dx.doi.org/10.1088/1367-2630/13/10/103027 

[15] Lukman, D. and Mankoč Borštnik, N.S. (2012) Journal of Physics A: Mathematical and Theoretical, 45, Article ID: 
465401. [arxiv:1205.1714; arxiv:1312.541; hepph/0412208, p. 64-84]  
http://dx.doi.org/10.1088/1751-8113/45/46/465401 

[16] Mankoč Borštnik, N.S. and Nielsen, H.B.F. (2014) Journal of High Energy Physics, 165. [arXiv:1212.2362] 
http://dx.doi.org/10.1007/JHEP04(2014)165 

[17] Troha, T., Lukman, D. and Mankoč Borštnik, N.S. (2014) International Journal of Modern Physics A, 29, Article ID: 
1450124. [arXiv:1312.1541] http://dx.doi.org/10.1142/S0217751X14501243 

[18] Pati, J. and Salam, A. (1974) Physical Review D, 10, 275. http://dx.doi.org/10.1103/PhysRevD.10.275 
[19] Mankoč Borštnik, N.S. and Nielsen, H.B. (2000) Physical Review D, 62, Article ID: 044010. [hep-th/9911032] 

http://dx.doi.org/10.1103/PhysRevD.62.044010 
[20] Mankoč Borštnik, N.S. and Nielsen, H.B. (2002) Journal of Mathematical Physics, 43, 5782. [hep-th/0111257] 

http://dx.doi.org/10.1063/1.1505125 
[21] Mankoč Borštnik, N.S. and Nielsen, H.B. (2003) Journal of Mathematical Physics, 44, 4817. [hep-th/0303224] 

http://dx.doi.org/10.1063/1.1610239 
[22] Mankoč Borštnik, N.S., Nielsen, H.B. and Lukman, D. (2004) An Example of Kaluza-Klein-Like Theories Leading 

after Compactification to Massless Spinors Coupled to a Gauge Field-Derivations and Proofs. Mankoč Borštnik, N., 

http://dx.doi.org/10.1103/PhysRevD.91.065004
http://dx.doi.org/10.4236/jmp.2013.46113
http://dx.doi.org/10.1016/0370-2693(92)90603-2
http://dx.doi.org/10.1063/1.530055
http://dx.doi.org/10.1023/A:1003708032726
http://dx.doi.org/10.1142/S0217732395000624
http://dx.doi.org/10.1088/1367-2630/10/9/093002
http://dx.doi.org/10.1103/PhysRevD.80.083534
http://dx.doi.org/10.1887/0750307676
http://dx.doi.org/10.1088/1367-2630/13/10/103027
http://dx.doi.org/10.1088/1751-8113/45/46/465401
http://dx.doi.org/10.1007/JHEP04(2014)165
http://dx.doi.org/10.1142/S0217751X14501243
http://dx.doi.org/10.1103/PhysRevD.10.275
http://dx.doi.org/10.1103/PhysRevD.62.044010
http://dx.doi.org/10.1063/1.1505125
http://dx.doi.org/10.1063/1.1610239


N. S. Mankoč Borštnik 
 

 
2260 

Nielsen, H.B., Froggatt, C. and Lukman, D., Eds., Proceedings to the 7th Workshop “What Comes Beyond the Stan-
dard Models”, Bled, 19-31 July 2004, DMFA Založništvo, Ljubljana, 64-84. [hep-ph/0412208] 

[23] Georgi, H. and Glashow, S. (1974) Physical Review Letters, 32, 438. http://dx.doi.org/10.1103/PhysRevLett.32.438 
[24] Zee, A., Ed. (1982) Unity of Forces in the Universe. World Scientič, Singapore. arXiv:1403.2099 [hep-ph] 
[25] Lee, H.C., Ed. (1983) The Authors of the Works Presented in an Introduction to Kaluza-Klein Theories. World 

Scientič, Singapore.  
Appelquist, T., Chodos, A. and Freund, P.G.O., Eds. (1987) Modern Kaluza-Klein Theories. Addison Wesley, Read-
ing. 

[26] Witten, E. (1981) Nuclear Physics B, 186, 412-428. http://dx.doi.org/10.1016/0550-3213(81)90021-3 
[27] Borštnik, A. and Mankoč Borštnik, N.S. (2003) Weyl Spinor of SO(1, 13), Families of Spinors of the Standard Model 

and Their Masses. Mankoč Borštnik, N., Nielsen, H.B., Froggatt, C. and Lukman, D., Eds., Proceedings to the Euro-
conference on Symmetries beyond the Standard Model, Portoroz, 12-17 July 2003, DMFA, Založništvo, Ljubljana, 
31-57. [hep-ph/0401043; hep-ph/0401055] 

  

http://dx.doi.org/10.1103/PhysRevLett.32.438
http://dx.doi.org/10.1016/0550-3213(81)90021-3


N. S. Mankoč Borštnik 
 

 
2261 

Appendix A1. Standard Model Subgroups of ( )SO 13 1+  Group, Subgroups of  
 ( )SO 13 1+  Group and Corresponding Gauge Vector and Scalar Fields 

This section follows the similar section in Refs. [1] [4]. To calculate quantum numbers of one Weyl representa-
tion presented in Table 3 in terms of the generators of the standard model groups Aiτ  ( ),

Ai ab
aba bc S= ∑ , Equa-

tion (3), one must look for the coefficients Ai
abc . The generators Aiτ  are the generators of the charge groups: 

( )3SU  (originating in ( ) ( )6 13,1SO SO⊂ ), ( )2 ISU  (originating in ( ) ( ) ( )4 7,1 13,1SO SO SO⊂ ⊂ ), 

( )2 IISU  (originating in ( ) ( ) ( )4 7,1 13,1SO SO SO⊂ ⊂ ), ( )1U  (originating in ( ) ( )6 13,1SO SO⊂ ) and 

( )3,1SO  (originating in ( ) ( )7,1 13,1SO SO⊂ ). Equivalently the generators of the family subgroups of the 
 ( )13 1SO +  group are defined and expressed. 

I present here also the gauge fields to the corresponding either the spins and charges or to the family quantum 
numbers in terms of either abc c abf α

αω ω=  or abc c abf α
αω ω=  , respectively. 

For a chosen group the same coefficients Ai
abc  determine generators of all three kinds of quantum numbers: 

Of those applying either on the family member or on the family quantum number of spinors, or on quantum 
numbers of bosons (of the vector and the scalar gauge fields). The difference among these three kinds of opera-
tors comes from the generators in d-dimensional space: abS  (for spins, Equation (14)), abS  (for family quan-
tum numbers, Equation (15)) and ab  (for quantum numbers of gauge fields, Equation (16)). 

While abS  for spins of spinors is equal to ( )4
a b b ai γ γ γ γ− , and abS  for families of spinors is equal to 

( )4
ab a b b aiS γ γ γ γ= −

     is ab , which applies on the spin connections bdeω  ( )e bdf α
αω=  and 

bdeω
 

   

( )e bdf α
αω=

 

 , on either the space index e or the indices ( ), , ,b d b d  , equal to  

( )ab d e g ae d b g be d a gA i A Aη η= −      , or equivalently, in the matrix notation,  

( ) ( )cab d e g ac b bc a d e g
e ee

A i Aη δ η δ= −    . This means that the space index (e) of bdeω  transforms according 

to the requirement of Equation (16), and so do ,b d  and ,b d  . I used the notation ,b d   to point out that abS  
and abS  ( )abS=





  are generators of two independent groups. 

One finds [2]-[9] [27] for the infinitesimal generators of the spin and the charge groups, which are the sub-
groups of ( )13,1SO , the expressions:  

( )( ) ( )23 01 31 02 12 03
,

1: , , ,
2L RN N S iS S iS S iS± = = ± ± ±

 

                     (33) 

where the generators N±



 determine representations of the two invariant ( )2SU  subgroups of ( )3,1SO , the 
generators 1τ  and 2τ ,  

( ) ( )1 58 67 57 68 56 78 2 58 67 57 68 56 781 1: , , , : , , ,
2 2

S S S S S S S S S S S Sτ τ= − + − = + − +
            (34) 

determine representations of the ( ) ( )2 2I IISU SU×  invariant subgroups of the group ( )4SO , which is further 
the subgroup of ( )7,1SO  ( ( )4SO  and ( )3,1SO  are subgroups of ( )7,1SO ), and the generators 3τ , 4τ .  

( )

( )

3 9 12 10 11 9 11 10 12 9 10 1112

9 14 10 13 9 13 10 14 1114 12 13

1113 12 14 9 10 1112 1314

4 9 10 1112 1314

1: , , ,
2

, , ,

1, 2 ,
3

1: ,
3

S S S S S S

S S S S S S

S S S S S

S S S

τ

τ

= − + −


− + −


+ + − 



= − + +



                      (35) 
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determine representations of ( ) ( )3 1SU U× , originating in ( )6SO . 
One correspondingly finds the generators of the subgroups of  ( )7,1SO ,  

( )23 01 31 02 12 03
,

1: , , ,
2L RN S iS S iS S iS= ± ± ±



                              (36) 

which determine representations of the two  ( )2SU  invariant subgroups of  ( )3,1SO , while  

( )

( )

1 58 67 57 68 56 78

2 58 67 57 68 56 78

1: , , ,
2
1: , , ,
2

S S S S S S

S S S S S S

τ

τ

= − + −

= + − +



     





     



                          (37) 

determine representations of  ( )  ( )2 2I IISU SU×  of  ( )4SO . Both,  ( )3,1SO  and  ( )4SO , are the subgroups 

of  ( )7,1SO . One finds for the infinitesimal generator 4τ  of  ( )1U  originating in  ( )6SO  the expression 

( )4 9 10 1112 13141: .
3

S S Sτ = − + +  

                              (38) 

The corresponding expressions for the generators of the above subgroups defining the representations of the 
corresponding gauge fields follow if replacing abS  or abS  by ab  from (Equation (16)). 

One further defines the operators for the charges Y  and Q  of the standard model, together with Q′  and 
Y ′ , and the corresponding operators of the family charges Y , Y ′ , Q , Q′   

4 23 4 2 23 13 2 13
2 1

4 23 4 2 23 13 2 13
2 1

: , : tan , : , : tan ,

: , : tan , : , tan .

Y Y Q Y Q Y

Y Y Q Y Q Y

τ τ τ ϑ τ τ ϑ τ

τ τ τ ϑ τ τ ϑ τ

′ ′= + = − + = + = − +

′ ′= + = − + = + = − +    

     

            (39) 

The corresponding operators which apply on the corresponding gauge fields follow from the above relations, 
if either abS  or abS  are replaced by ab  from Equation (16). 

The scalar fields, responsible [2]-[4]—after gaining nonzero vacuum expectation values and triggering the 
electroweak break—for masses of the family members and of the heavy bosons, are presented in the second line  

of Equation (2). These scalar fields are included in the covariant derivatives as 1 1
2 2

s s ab
s s s absS Sω ω′ ′′
′ ′′− −











 , 

( )7,8s∈ , ( ),a b , ( ) ( )0, ,3 , 5, ,8∈   

 
, where notation a  is again used to point out that ( ),a b  belong in 

this case to the “tilde” space. 
One finds the scalar fields carrying the quantum numbers of the subgroups of the family groups, expressed in 

terms of 
absω




  (they contribute to mass matrices of quarks and leptons and masses of the heavy bosons), if tak-
ing into account Equations ((36), (37), (39)),  

( )
( )
( )

1 1 2 2

1
5758 67 68 56 78

23 01 31 02 12 03

2
58

1 ,
2

, , ,

, , ,

L R

L

N Nab
s s s sL Rabs

s ss s s s s

N
s s s s s s s

s s

S A N A A N A

A

A i i i

A

ω τ τ

ω ω ω ω ω ω

ω ω ω ω ω ω

ω

− = − + + +

= − + −

= + + +

= +

 



 

    



  





          



           





    

 

     

  





     





     





( )
( ) ( )( )

5767 68 56 78

23 01 31 02 12 03

, , ,

, , , 7,8 .R

ss s s s

N
s s s s s s sA i i i s

ω ω ω ω ω

ω ω ω ω ω ω

− +

= − − − ∈

        



           

    





     

               (40) 

The expressions for the scalars, expressed in terms of abcω  (contributing as well to the mass matrices of 
quarks and leptons and to masses of the heavy bosons) follow, if using Equations ((34), (35), (39))  

( )23 23 23 13 13 13 4 4 4

13 13 13 23 23 23 4 4 4

1 ,
2

,

s s
s s s s s s

Q Q Q Q Y Y
s s s s s s

S g A g A g A

g A g A g A g QA g Q A g Y A

ω τ τ τ

τ τ τ

′ ′′
′ ′′

′ ′ ′ ′

− = − + +

′ ′+ + = + +
               (41) 
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( )
( ) ( )

( )( )

4
910 1112 1314

13 23
56 78 56 78

13 13
1 1 1 1

23 4
2 2

,

, ,

sin cos , cos sin ,

cos sin , 7,8 .

s s s s

s s s s s s

Q Y Q Y
s s s s s s
Y
s s s

A

A A

A A A A A A

A A A s

ω ω ω

ω ω ω ω

ϑ ϑ ϑ ϑ

ϑ ϑ

′

′

= − + +

= − = +

= + = −

= − ∈

                   (41) 

Scalar fields from Equation (40) couple to the family quantum numbers, while those from Equation (41) 
couple to the family members quantum numbers. In Equation (41) the coupling constants are explicitly written 
in order to see the analogy with the gauge fields of the standard model. 

Expressions for the vector gauge fields in terms of the spin connection fields and the vielbeins, which corres-
pond to the colour charge ( 3

mA


), the ( )2 IISU  charge ( 2
mA


), the weak ( )2 ISU  charge ( 1
mA


) and the ( )1U  

charge originating in ( )6SO  ( 4
mA


), can be found by taking into account Equations ((34), (35)). Equivalently  
one finds the vector gauge fields in the “tilde” sector, or one just uses the expressions from Equations ((41), 
(40)), if replacing the scalar index s with the vector index m.  

Appendix A2. Symmetries of Vectors, Tensors and Spinors 
In this section the Lorentz transformations of aγ ’s, aγ ’s and correspondingly of vector, tensor and spinor 
fields in ( )1,1d − -dimensional space-time are discussed. The presentation is based on the papers [6] [7], where 
the two kinds of the Clifford objects aγ ’s, aγ ’s were introduced (in those papers the notation aµ

  and aµ


 , 
respectively, was used, the present notation— aγ  and aγ —was introduced in Refs. [19]-[21]). Ref [7] starts 
with the Grassmann space of anticommuting coordinates. I do the same in Subsection 7.1. The two kinds of the 
Clifford algebra objects (Equations ((63), (64))) in the Grassmann space are introduced in Subsection 7.2 as the 
two superposition of a Grassmann coordinate and its derivative and their properties are discussed, as well as the 
Lorentz transformations of aγ  and aγ  and of any vector or tensor. 

One could start instead with the two kinds of the Clifford algebra objects, without using the Grassmannn 
space, as it is presented in Appendix A4 and explained in Section 4, Equation (27).  

Appendix A2.1. Coordinate Space with Grassmann Character and Lorentz  
Transformations  

I shall repeat here some properties of the anticommuting Grassmann coordinates, since the appearance of the 
two kinds of the Clifford algebra objects can in the Grassmann space easily be demonstrated. 

A point in d-dimensional Grassmann space of real anticommuting coordinates aθ , ( )0,1, 2,3,5, ,a d=  , 

{ }, 0,a b a b b aθ θ θ θ θ θ
+
= + =                               (42) 

is determined by a vector { } ( )1 2 3 5, , , , ,a dθ θ θ θ θ θ=  . The metric tensor abη  ( ( )diag 1, 1, 1, , 1= − − − ) low-

ers the indices of a vector { }aθ : b
a abθ η θ= . A Lorentz transformation on a vector component aθ  and on a 

vector component ax , which is a real (ordinary) commuting coordinate,  

, ,a a b a a b
b bx xθ θ′ = Λ = Λ                                (43) 

leaves forms  

( )1 2 1 2
1 2 1 2, , ,, , 1, ,i i

i i

a aa a a a
a a a a a aA B x x x i dθ θ θ =

 

                      (44) 

invariant. While 1 2
1 2 1 1 2 2

i
i i i

b b b
a a a a b a b a bB Bη η η= 



  is a symmetric tensor made of complex numbers, 
1 2

1 2 1 1 2 2
i

i i i

b b b
a a a a b a b a bA Aη η η= 



  is an antisymmetric tensor made of complex numbers. The requirements that 
a b c d

ab cdx x x xη η′ ′ = , and a b c d
ab cdθ θ ε θ θ ε′ ′ = , abε  is the antisymmetric tensor, lead to a c

b d ac bdη ηΛ Λ = . An 

infinitesimal Lorentz transformation for the case with 0
0det 1, 0Λ = Λ ≥  can be written as a a a

b b bδ ωΛ = + , 
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where 0a a
b bω ω+ = .  

Appendix A2.2. Linear Vector Space and Linear Operators over Coordinate Grassmann Space  

A linear vector space over the coordinate Grassmann space has the dimension 2d , due to the fact that 

( )2
0iaθ =  for any ( )0,1,2,3,5, ,ia d∈  . 

Any vector in this space can be presented as a linear superposition of monomials  

( ) 1 2
1 2

0
1

1
, .i

i

d
aa a

a a a k k
i

f a a a aθ θ θ θ +
=

= + ≤∑


                        (45) 

The left derivative on vectors of the space of monomials is defined as follows  

( ) ( )

{ }
,

, 0, .

a a

a b

f
f

f f

θ

θ θ

θ
θ

θ

+

∂
∂ =

∂

∂ ∂ = ∀





 

                                 (46) 

The linear operators apθ , aγ  and aγ , ab , abS  and abS  are defined as  

( )

( )

( )

{ }
{ }

: ,

: ,

: ,

: ,

: , ,
4

: , ,
4

: .

a ab
a a b

a a a ab a
b

a a a ab a
b

ab a b b a bc a ac b
c c

ab a b

ab a b

ab ab ab

p i p p

i p i

p i i

p p i

iS

iS

S S

θ θ θ θ

θ

θ

θ θ

η

γ θ η θ
θ

γ θ η θ
θ

θ θ η θ η θ
θ θ

γ γ

γ γ

−

−

= ∂ =
 ∂

= − + = + 
∂ 

 ∂
= − − = − − 

∂ 
 ∂ ∂

= − = − 
∂ ∂ 

=

=

= +









 



 







                     (47) 

{ },A B
±

 means { }, :A B AB BA
±
= ± . 

The factors in front of the superposition of apθ  and aθ  in the second and the third line of Equation (47) are 
chosen so that both Clifford algebra objects, aγ  and aγ , fulfil the same Clifford algebra relation (the third and 
the fourth line in Equation (49)). One finds  

( ) ,ab c ac b bc aiθ η θ η θ= −                                (48) 

and equivalently ( ) ( )ab c a b b a c ac b bc aL x x p x p x i x xη η= − = − . It follows  

{ } { }
{ }
{ } { }
{ }

, 0 , ,

, ,

, 2 , ,

, 0,

a b a b

a b ab

a b ab a b

a b

p p

p i

θ θ

θ

θ θ

θ η

γ γ η γ γ

γ γ

++

+

+ +

+

= =

=

= =

=

 



                              (49) 

{ } ( )
{ } ( )
{ } ( )
{ }

, ,

, ,

, ,

, 0,

ab cd ad bc bc ad ac bd bd ac

ab cd ad bc bc ad ac bd bd ac

ab cd ad bc bc ad ac bd bd ac

ab cd

i S
S S i S S S S

S S i S S S S

S S

η η η η

η η η η

η η η η

−

−

−

−

= − + −

= − + −

= − + −

=

     



    

                     (50) 
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{ } { }
{ } { } ( )

{ } { } ( )

, 0 , ,

, , ,
2

, , .
2

a cd a cd

a cd a cd ac d ad c

a cd a cd ac d ad c

S S

iS

iS

γ γ

γ γ η γ η γ

γ γ η γ η γ

−−

− −

− −

= =

= = −

= = −







   





                        (50) 

An infinitesimal Lorentz transformation of the proper ortochronous Lorentz group is then  

,
2

,
2

c ab c c a
ab a

c ab c c a
ab a

i

ix L x x

δθ ω θ ω θ

δ ω ω

= − =

= − =


                              (51) 

where abω  are parameters of a transformation. 
Let us write the operator of finite Lorentz transformations as follows  

( )2e .
ab ab

ab
i Lω +

=


                                    (52) 

We see that the coordinates aθ  and ax  and the operators aγ  and aγ  transform as vectors Equation (26)  

( ) ( ) { }2 2e e ,
2

,

, , .

ab ab ab ab
ab ab

i iL Lc c c ab c
ab

c c a c a
a a

c c a c c a c c a
a a a

i

x x

ω ω
θ θ θ ω θ

θ ω θ θ

γ γ γ γ

− + +

−
′ = = − +

= + + = Λ

′ ′ ′= Λ = Λ = Λ





 

 


                  (53) 

Correspondingly one finds that compositions like a
apγ  and a

apγ , here ap  are x
ap  ai

x
∂ = ∂ 

, transform 

as scalars (remaining invariants), while ab
abcS ω  and ab

abcS ω

  transform as vectors:  
1 ab d ab

abc c abdS Sω ω− = Λ  , 1 ab d ab
abc c abdS Sω ω− = Λ 

   . 

Also objects like ( )[ ]
,

1
2

a b c
ab ca bR f fα β
α β α βω ω ω= −  and ( )[ ]

,
1
2

a b c
ab ca bR f fα β
α β α βω ω ω= −

    from Equation 

(1) transform with respect to the Lorentz transformations as scalars.  

Appendix A3. Spin Connection Fields of Two Kinds and Vielbeins in Presence of  
Spinor Sources [22]  

Relations among the vielbeins af α  and both kinds of the spin connection fields, abαω  and abαω , which are 

the gauge fields of abS  and abS , respectively, are studied under the assumption that ( )1 1d d= − +  space-time 
has a structure of a differentiable manifold [13]. 

The two kinds of vectors, aA  and aA , belonging to two different tangent spaces, transform with respect to 
the Lorentz transformations according to Equation (53). 

We express, after the parallel transport8 of each of these two kinds of vectors (belonging to two tangent spaces) 
from x  to x dx+ , in terms of the two kinds of the spin connections, a

bαω  and a
bαω , respectively, as fol-

lows  

( ) ( )
( ) ( )

, ,

, ,

a a a a a b
b

a a a a a b
b

A x dx A x A A A dx

A x dx A x A A A dx

α
α

α
α

δ δ ω

δ δ ω

+ = − = −

+ = − = −    



                      (54) 

where a
bαω  and a

bαω  are the two spin connection fields, related to tangent spaces. Requiring for the metric 

tensors, abη  and ab abη η= , that they are the same at each point of each of the two tangent spaces, the relations 

 

 

8In Ref. [13] the parallel transport is discussed at pages from 52-66. 
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( ) ( )0ab a cb b ca
c cx dxαα αδη ω η ω η= = +  and ( ) ( )0ab a cb b ca

c cx dxαα αδη ω η ω η= = +      follow, which demonstrate 

the antisymmetry property of both spin connections: 0ab baα αω ω+ =  and 0ab baα αω ω+ =  . Taking into ac-

count Equation (47) it must be that ab abη η=  . 
The difference between the two vectors a aA dA+  and a aA Aδ+ , adA  is obtained by the differentiation, 

aAδ  follows from the parallel transport, defines the covariant derivative of the vector aA  in the tangent space:  

( ) ( ):a a a a a b
bdA A D A A A dxαα αδ ω ω− = = ∂ + , where 

xα α

∂
∂ =

∂
. Equivalently one obtains the covariant deriv-

ative of the vector aA : ( ) ( ):a a a a a b
bdA A D A A A dxαα αδ ω ω− = = ∂ +    

  .  

( )
( )

: ,

: .

a a c
c

a a a c
c

D A A A

D A A A

α
α α α

α α α

ω ω

ω ω

= ∂ +

= ∂ +  

 

                              (55) 

We define the parallel transport also for the two kinds of vectors a
aA f Aα α=  and a

aA f Aα α=   

( a
af eα α

β βδ=  and b b
a af eα

α δ= ) by introducing two kinds of the affine connections α
βγΓ  and α

βγΓ , respec-
tively,  

( ) ( )
( ) ( )

, ,

, .

A x dx A x A A A dx

A x dx A x A A A dx

α α α α α β γ
βγ

α α α α α β γ
βγ

δ δ

δ δ

+ = + = −Γ

+ = + = −Γ    


                      (56) 

The difference between the two vectors A dAα α+  and A Aα αδ+ , and equivalently between the two vec-
tors A dAα α+   and A Aα αδ+  , defines the covariant derivatives of the vector Aα  and of the vector Aα

   

( )
( )

,

,

D A A A

D A A A

α α α γ
β β γβ

α α α γ
β β γβ

Γ = ∂ + Γ

Γ = ∂ + Γ  
 

                              (57) 

The affine connection α
ρβΓ  (as well as the “tilde affine connection” α

ρβΓ ) can be expressed by the torsion 

Tα
ρβ  (and the “tilde torsion” Tα

ρβ
 ) and the Christoffel connection { } ( ), , ,

1
2

g g g gα αρ
βγ γρ β βρ γ βγ ρ= + −  

( a
ag f fαβ α β= , a

ag e eαβ α β= )  

{ }
{ }

( )
( )

,

,
,
,

1 ,
2
1 ,
2

T
T

K T T T

T T T

α α α
ρβ βγ ρβ

α α α
ρβ βγ ρβ
α α α
ρβ βρ ρβ

α α α
ρβ βρ ρβ

α α α α
ρβ ρβ β ρ ρβ

α α α α
ρβ ρβ β ρ ρβ

Γ = +

Γ = +

= Γ −Γ
= Γ −Γ

= − − +

= − − +




  


  







                            (58) 

Kα
ρβ  and α

ρβ
  are the two contorsion tensors [13]. One finds  

.Kα α α α
ρβ ρβ ρβ ρβΓ −Γ = −                                  (59) 

When requiring that ( ) ( )( )a a aA A e x dx A Aα α
αδ δ+ = + +  and ( ) ( )( )a a aA A e x dx A Aα α

αδ δ+ = + +    , and 
correspondingly relating two kinds of different coordinate systems for either aA  or aA , we find the related 
covariant derivatives  

( )
( )

: 0,

: 0.

a a a b a
b

a a a b a
b

D e e e e

D e e e e

γ
α β α β α β βα γ

γ
α β α β α β βα γ

ω ω

ω ω

+Γ = ∂ + −Γ =

+ Γ = ∂ + −Γ = 

 

                     (60) 
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Equation (60) relates the two affine connections, α
ρβΓ  and α

ρβΓ , with the two spin connections abcω  and 
absω   

.a b a a b a
b be e e eγ γ
α β βα γ α β βα γω ω−Γ = −Γ                           (61) 

Let us now vary the action Equation (1) with respect to abcω  and absω , respectively, in the presence of the 
spinor fields. One ends up [22] with the two expressions presented in Equation (32). Let me point out that if 
there are no spinor sources, then both spin connections— c

a bω  and c
a bω —are expressible with the vielbeins  

af α  in the same way. Only one of these three fields are in this case the propagating field. Correspondingly also 
α
βγΓ  and α

βγΓ  are expressible with the vielbeins af α . 

Multiplying both equations of Equation (32) by ae α  and summing over both indices, the expressions for 

( )[ ]
1 1 1

2 2
c a c

b c a b cbe Ef f S
d E

α β
α βω γ ψ = ∂ + Ψ 

−  
 and ( )[ ]

1 1 1
2 2

c a c
b c a b cbe Ef f S

d E
α β

α βω γ ψ = + ∂ + Ψ 
−  



  

follow. 
The expression for the spin connection c

abω  and c
abω  can [22] then easily be found  

( ) ( ) ( ){ }

( ){ } ( )

( )

( ) ( )

] [
[ ] [ ]

[ ] [ ]

[ ]

] [
[ ] [

1
2

1 1 1
4 2

1 ,

1
2

e e e e
ab a b a b b a

e e e d d
ab a b a d b d b

e d d
b d a d a

e e e e
ab a b a b b

e Ef f e Ef f e Ef f
E

S S e Ef f S
d E

e Ef f S
E

e Ef f e Ef f e Ef f
E

α β α β α β
α β α β α β

α β
α β

α β
α β

α β α β α β
α β α β α β

ω

γ γ δ γ

δ γ

ω

= ∂ − ∂ − ∂

  + Ψ − Ψ − ∂ +Ψ Ψ  −  
 − ∂ +Ψ Ψ   

= ∂ − ∂ − ∂ ( ){ }

( ){ } ( )

( )

]

[ ] [ ]

[ ]

1 1 1
4 2

1 ,

a

e e e d d
ab a b a d b d b

e d d
b d a d a

S S e Ef f S
d E

e Ef f S
E

α β
α β

α β
α β

γ γ δ γ

δ γ

  + Ψ − Ψ − ∂ +Ψ Ψ  −  
 − ∂ +Ψ Ψ   

  



         (62) 

Again one notices that if there are no spinor sources, carrying the spinor quantum numbers abS  and abS  for 
all ( ),a b , then abαω  and abαω  are completely determined by the vielbeins. In general both kinds of spinor 
sources affect the spin connections and vielbeins in their own way, making all three fields, vielbeins and both 
kinds of the spin connection fields, propagating fields. 

Variation of the action Equation (1) with respect to af α  leads to the equations of motion Equation (31). 

Appendix A4. Short Presentation of Spinor Technique [4] [7] [20] [21] 
This appendix is a short review (taken from [4]) of the technique [7] [19]-[21], initiated and developed in Ref. 
[7], while proposing the spin-charge-family theory [1]-[12] [27]. All the internal degrees of freedom of spinors, 
with family quantum numbers included, are describable in the space of d-anticommuting (Grassmann) coordi-
nates [7], if the dimension of ordinary space is also d (Appendix A4). There are two kinds of operators in the 
Grassmann space fulfilling the Clifford algebra and anticommuting with one another 4, Equation (47). The tech-
nique was further developed in the present shape together with H.B. Nielsen [19]-[21]. 

In this last stage we rewrite a spinor basis, written in Ref. [7] as products of polynomials of Grassmann coor-
dinates of odd and even Grassmann character, chosen to be eigenstates of the Cartan subalgebra defined by the 
two kinds of the Clifford algebra objects, as products of nilpotents and projections, formed as odd and even ob-
jects of aγ ’s, respectively, and chosen to be eigenstates of a Cartan subalgebra of the Lorentz groups defined by 

aγ ’s and aγ ’s. 
The technique can be used to construct a spinor basis for any dimension d and any signature in an easy and 

transparent way. Equipped with the graphic presentation of basic states, the technique offers an elegant way to 
see all the quantum numbers of states with respect to the two Lorentz groups, as well as transformation proper-
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ties of the states under any Clifford algebra object. 
Appendix A2 briefly represents the starting point [7] of this technique in order to better understand the Lo-

rentz transformation properties of both Clifford algebra objects, aγ ’s and aγ ’s, as well as of spinor, vector, 
tensor and scalar fields, appearing in the spin-charge-family theory, that is of the vielbeins and spin connections 
of both kinds, abαω  and abαω , and of spinor fields, family members and families. 

The objects aγ  and aγ  have properties (49),  

{ } { } { }, 2 , , 2 , , 0,a b ab a b ab a bγ γ η γ γ η γ γ
+ + +
= = =                        (63) 

If B is a Clifford algebra object, let say a polynomial of aγ  (Equation (27)),  
1 2

1 20
d

d

aa aa a b
a ab a a aB a a a aγ γ γ γ γ γ= + + + +



  , one finds  

( )( )
0 1 2 1

0 1 2 1

0

0

: ,

,

B

d
d

na a

a aa a a
a a a a a

B i B

B a a a a

γ γ ψ

γ γ γ γ γ

= −

= + + + +




 

                    (64) 

where 0ψ  is a vacuum state, defined in Equation (78) and ( ) Bn−  is equal to 1 for the term in the polynomial 
which has an even number of bγ ’s, and to −1 for the term with an odd number of bγ ’s, for any d, even or odd, 
and I is the unit element in the Clifford algebra. 

It follows from Equation (64) that the two kinds of the Clifford algebra objects are connected with the left and 
the right multiplication of any Clifford algebra objects B (Equation (28)). 

The Clifford algebra objects abS  and abS  close the algebra of the Lorentz group (Equation (50))  

( )( )
( )( )

{ }
{ } ( )
{ } ( )

: 4 ,

: 4 ,

, 0

, )

, .

ab a b b a

ab a b b a

ab cd

ab cd ad bc bc ad ac bd bd ac

ab cd ad bc bc ad ac bd bd ac

S i

S i

S S

S S i S S S S

S S i S S S S

γ γ γ γ

γ γ γ γ

η η η η

η η η η

−

−

−

= −

= −

=

= + − −

= + − −



   



     

，

，

                     (65) 

We assume the “Hermiticity” property for aγ ’s  
† ,a aa aγ η γ=                                      (66) 

in order that aγ  are compatible with (63) and formally unitary, i.e. †a a Iγ γ = .  

One finds from Equation (66) that ( )†ab aa bb abS Sη η= . 

Recognizing from Equation (65) that the two Clifford algebra objects ,ab cdS S  with all indices different 
commute, and equivalently for ,ab cdS S  , we select the Cartan subalgebra of the algebra of the two groups, 
which form equivalent representations with respect to one another  

( )

( )

03 12 56 1

03 12 2 1

03 12 56 1

03 12 2 1

, , , , , if 2 4,
, , , , if 2 1 4,

, , , , , if 2 4,
, , , , if 2 1 4.

d d

d d

d d

d d

S S S S d n
S S S d n

S S S S d n
S S S d n

−

− −

−

− −

= ≥

= + >

= ≥

= + >





   



  



                        (67) 

The choice for the Cartan subalgebra in 4d <  is straightforward. It is useful to define one of the Casimirs of 

the Lorentz group—the handedness Γ  { }( ), 0abS
−

Γ =  in any d  

( ) ( ) ( )
( ) ( )( ) ( )

2

1 2

: , if 2 ,

: , if 2 1.

dd aa a

a

dd aa a

a

i d n

i d n

η γ

η γ−

Γ = =

Γ = = +

∏

∏
                        (68) 
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One proceeds equivalently for ( )dΓ , subtituting aγ ’s by aγ ’s. We understand the product of aγ ’s in the 
ascending order with respect to the index a: 0 1 dγ γ γ . It follows from Equation (66) for any choice of the sig-
nature aaη  that † 2, .IΓ = Γ Γ =  We also find that for d even the handedness anticommutes with the Clifford  
algebra objects aγ  { }( ), 0aγ

+
Γ =  , while for d odd it commutes with aγ  { }( ), 0aγ

−
Γ = . 

To make the technique simple we introduce the graphic presentation as follows  

( ) [ ]1 1: , : 1 ,
2 2

aa abab
a b a bik k

ik k
ηγ γ γ γ

   = + = +   
  

                       (69) 

where 2 aa bbk η η= . It follows then  

( ) ( ) ( ) ( ) [ ] [ ], ,
2

ab abab ab ab ab
a b aa ab kk k ik k k S k kγ γ η   = + − = − − = − −  

   
                (70) 

One can easily check by taking into account the Clifford algebra relation (Equation (63)) and the definition of 
abS  and abS  (Equation (65)) that the nilpotent ( )

ab
k  and the projector [ ]

ab

k  are “eigenstates” of abS  and abS   

( ) ( ) [ ] [ ] ( ) ( ) [ ] [ ]1 1 1 1, , , ,
2 2 2 2

ab ab ab abab ab ab ab
ab ab ab abS k k k S k k k S k k k S k k k= = = = −              (71) 

which means that we get the same objects back multiplied by the constant 1
2

k  in the case of abS , while abS  

multiply ( )
ab
k  by k and [ ]

ab

k  by ( )k−  rather than ( )k . This also means that when ( )
ab
k  and [ ]

ab

k  act from 

the left hand side on a vacuum state 0ψ  the obtained states are the eigenvectors of abS . We further recognize 

that aγ  transform ( )
ab
k  into [ ]

ab

k− , never to [ ]
ab

k , while aγ  transform ( )
ab
k  into [ ]

ab

k , never to [ ]
ab

k−   

( ) [ ] ( ) [ ] [ ] ( ) [ ] ( )

( ) [ ] ( ) [ ] [ ] ( ) [ ] ( )

, , , ,

, , , .

ab ab ab abab ab ab ab
a aa b a b aa

ab ab ab abab ab ab ab
a aa b a b aa

k k k ik k k k k ik k

k i k k k k k i k k k k

γ η γ γ γ η

γ η γ γ γ η

= − = − − = − = − −

= − = − = = −   

             (72) 

From Equation (72) it follows  

( )( ) [ ][ ] ( )( ) [ ][ ]

[ ][ ] ( )( ) [ ][ ] ( )( )

( )[ ] [ ]( ) ( )[ ] [ ]( )

[ ]( ) ( )[ ] [ ]( ) ( )[ ]

, ,
2 2

, ,
2 2

, ,
2 2

, .
2 2

ab cd ab cdab cd ab cd
ac aa cc ac aa cc

ab cd ab cdab cd ab cd
ac ac

cd ab cd abab cd ab cd
ac aa ac aa

ab cd ab cdcd ab cd ab
ac cc ac cc

i iS k k k k S k k k k

i iS k k k k S k k k k

i iS k k k k S k k k k

i iS k k k k S k k k k

η η η η

η η

η η

= − − − =

= − − = −

= − − − = −

= − − =









                (73) 

From Equation (73) we conclude that abS  generate the equivalent representations with respect to abS  and 
opposite. 

Let us deduce some useful relations 

( )( ) ( )( ) [ ] ( )( ) [ ] ( )( )

[ ][ ] [ ] [ ][ ] [ ][ ] [ ][ ] [ ]

( )[ ] [ ]( ) ( ) ( )[ ] ( ) ( )[ ]

( )[ ] ( ) [ ]( ) [ ]( ) [ ]( ) ( )

0, , , 0,

, 0, 0, ,

0, , , 0,

, 0, 0, .

ab abab ab ab ab ab ab ab ab
aa aa

ab ab ab ab ab ab ab ab ab ab

ab ab ab abab ab ab ab ab ab

ab ab ab abab ab ab ab ab ab

k k k k k k k k k k

k k k k k k k k k k

k k k k k k k k k k

k k k k k k k k k k

η η= − = − = − − − =

= − = − = − − = −

= = − = − − − =

− = − = − = − − = −

              (74) 
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We recognize in Equation (74) the demonstration of the nilpotent and the projector character of the Clifford 

algebra objects ( )
ab
k  and [ ]

ab

k , respectively. Defining  

( ) ( ) ( ) ( )1 1, 1 ,
2 2

abab
a b a bi iγ γ γ γ± = ± = ±   
                          (75) 

one recognizes that  

( )( ) ( )( ) [ ] ( )[ ] ( ) ( )[ ]0, , , 0.
abab ab abab ab abab ab ab

aak k k k i k k k i k k kη= − = − = − =                  (76) 

Recognizing that  

( ) ( ) [ ] [ ]
††

, ,
ab abab ab

aak k k kη= − =                               (77) 

we define a vacuum state 0ψ  so that one finds  

( ) ( )

[ ] [ ]

†

†

1,

1.

ab ab

ab ab

k k

k k

=

=

                                    (78) 

Taking into account the above equations it is easy to find a Weyl spinor irreducible representation for 
d-dimensional space, with d even or odd. 

For d even we simply make a starting state as a product of d/2, let us say, only nilpotents ( )
ab
k , one for each  

abS  of the Cartan subalgebra elements (Equation (67)), applying it on an (unimportant) vacuum state. For d odd 
the basic states are products of ( )1 2d −  nilpotents and a factor ( )1± Γ . Then the generators abS , which do 
not belong to the Cartan subalgebra, being applied on the starting state from the left, generate all the members of 
one Weyl spinor.  

( )( )( ) ( )

[ ][ ]( ) ( )

[ ]( )[ ] ( )

[ ]( )( )

( )[ ][ ] ( )

1 20 3512

0 12 35 1 2 0

1 20 3512

0 12 35 1 2 0

1 20 3512

0 12 35 1 2 0

1 20 3512

0 12 35 1 2 0

1 23512

0 12 35 1 2 0

d dd

d d d

d dd

d d d

d dd

d d d

d dd

d d d

d dod

d d d

k k k k

k k k k

k k k k

k k k k

k k k k

ψ

ψ

ψ

ψ

ψ

− −

− −

− −

− −

− −

− −

− −

− −

− −

− −

− −

− −

 − − 

− −















                            (79) 

All the states have the same handedness Γ , since { }, 0abS
−

Γ = . States, belonging to one multiplet with re- 

spect to the group ( ),SO q d q− , that is to one irreducible representation of spinors (one Weyl spinor), can have 
any phase. We made a choice of the simplest one, taking all phases equal to one. 

The above graphic representation demonstrates that for d even all the states of one irreducible Weyl represen-

tation of a definite handedness follow from a starting state, which is, for example, a product of nilpotents ( )
ab

abk , 

by transforming all possible pairs of ( )( )
ab mn

ab mnk k  into [ ][ ]
ab mn

ab mnk k− − . There are , , ,am an bm bnS S S S , which do 

this. The procedure gives ( )2 12 d −  states. A Clifford algebra object aγ  being applied from the left hand side, 
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transforms a Weyl spinor of one handedness into a Weyl spinor of the opposite handedness. Both Weyl spinors 
form a Dirac spinor. 

We shall speak about left handedness when 1Γ = −  and about right handedness when 1Γ =  for either d 
even or odd. 

While abS  which do not belong to the Cartan subalgebra (Equation (67)) generate all the states of one repre-
sentation, abS  which do not belong to the Cartan subalgebra (Equation (67)) generate the states of 2 12d −  
equivalent representations. 

Making a choice of the Cartan subalgebra set (Equation (67)) of the algebra abS  and abS  03 12,S S , 56S , 
78S , 9 10S , 1112S , 1314S , 03S , 12S , 56S , 78S , 9 10S , 1112S , 1314S , a left handed ( ( )13,1 1Γ = − ) eigenstate of 

all the members of the Cartan subalgebra, representing a weak chargeless Ru -quark with spin up, hyper  

charge (2/3) and colour ( )( )1 2,1 2 3 , for example, can be written as  

( )( ) ( )( ) ( )( )( )
( )( ) ( )( ) ( )( )( )

9 10 1112 131403 12 56 78

0

0 3 1 2 5 6 7 8 9 10 11 12 13 14
07

| ||
1 | || .
2

i

i i i i i i

ψ

γ γ γ γ γ γ γ γ γ γ γ γ γ γ ψ

+ + + + + − −

= − + + + + − −
       (80) 

This state is an eigenstate of all abS  and abS  which are members of the Cartan subalgebra (Equation (67)). 
The operators abS , which do not belong to the Cartan subalgebra (Equation (67)), generate families from the 

starting Ru  quark, transforming the Ru  quark from Equation (80) to the Ru  of another family, keeping all of 
the properties with respect to abS  unchanged. In particular, 01S  applied on a right handed Ru -quark from 
Equation (80) generates a state which is again a right handed Ru -quark, weak chargeless, with spin up, hyper  
charge (2/3) and the colour charge ( )( )1 2,1 2 3   

( )( ) ( )( ) ( )( )( ) [ ][ ] ( )( ) ( )( )( )
03 1203 12 56 78 910 1112 1314 56 78 910 1112 1314

01 | || = | || .
2
iS i i+ + + + + − − − + + + + + − −                (81) 

Below some useful relations [5] are presented  

( )( ) ( )( )
( ) ( ) ( ) ( )

( )( )( ) ( )( )( )

( ) ( ) ( ) ( ) ( ) ( )

03 12 03 12
1 2 1 2

03 12 03 12

56 78 56 78
1 2

56 78 56 78
1 2

, ,

, ,

, ,

, .

N N iN i N N iN i

N i N i

τ τ

τ τ

± ±
+ + + − − −

± ±
+ −

±

±

= ± = − ± = ± = ± ±

= − ± = ± ±

= ± =

= ± =







 



    

 
    

                   (82) 

I present at the end one Weyl representation of ( )13 1SO +  and the family quantum numbers of the two 
groups of four families. 

One Weyl representation of ( )13 1SO +  contains left handed weak charged and the second ( )2SU  charge-
less coloured quarks and colourless leptons and right handed weak chargeless and the second ( )2SU  charged 
quarks and leptons (electrons and neutrinos). It carries also the family quantum numbers, not mentioned in this 
table. The table is taken from Ref. [16]. 

The eight families of the first member of the eight-plet of quarks from Table 3, for example, that is of the 
right handed 1Ru  quark, are presented in the left column of Table 4 [4]. In the right column of the same table 
the equivalent eight-plet of the right handed neutrinos 1Rν  are presented. All the other members of any of the 
eight families of quarks or leptons follow from any member of a particular family by the application of the oper-
ators ,R LN ±  and ( )2,1τ ±  on this particular member. 

The eight-plets separate into two group of four families: One group contains doublets with respect to RN


  

and 2τ


 , these families are singlets with respect to LN


  and 1τ


 . Another group of families contains doublets 

with respect to LN


  and 1τ


 , these families are singlets with respect to RN


  and 2τ


 . 

The scalar fields which are the gauge scalars of RN


  and 2τ


  couple only to the four families which are  



N. S. Mankoč Borštnik 
 

 
2272 

Table 3. The left handed ( ( )13,1 1Γ = − ) ( ( ) ( )7,1 6= Γ ×Γ ) multiplet of spinors—the members of the ( )13,1SO  group, mani-

festing the subgroup ( )7,1SO —of the colour charged quarks and anti-quarks and the colourless leptons and anti-leptons, is 

presented in the massless basis using the technique presented in Appendix A4. It contains the left handed ( ( )3,1 1Γ = − ) weak 

charged 13 1
2

τ = ± 
 

 and ( )2
II

SU  chargeless ( 23 0τ = ) quarks and the right handed weak chargeless and ( )2
II

SU  

charged 23 1
2

τ = ± 
 

 quarks of three colours ( )( )33 38,ic τ τ=  with the “spinor” charge 4 1
6

τ = 
 

 and the colourless left 

handed weak charged leptons and the right handed weak chargeless leptons with the “spinor” charge 4 1
2

τ = − 
 

. 12S  de-

fines the ordinary spin 1
2

± . It contains also the states of opposite charges, reachable from particle states by the application 

of the discrete symmetry operator    , presented in Refs. [16] [17]. The vacuum state, on which the nilpotents and pro-
jectors operate, is not shown. The reader can find this Weyl representation also in Refs. [1] [4] [27].  

i  a
iψ

 
(3,1)Γ  

12S  
(4)Γ  

13τ  
23τ  

33τ  
38τ  

4τ  Y  Q  

  (Anti)octet, ( ) ( )1,7 1 1Γ = − , ( ) ( )6 1 1Γ = −  of 
(anti)quarks and (anti)leptons 

          

1 1c
Ru

 ( )( ) ( )( ) ( ) ( ) ( )
9 10 1112 13 1403 12 56 78

| ||i+ + + + + − −  
1 1

2  
1 0 1

2  

1
2  

1
2 3  

1
6  

2
3  

2
3  

2 1c
Ru

 [ ][ ] ( )( ) ( ) ( ) ( )
9 10 1112 13 1403 12 56 78

| ||i− − + + + − −  
1 1

2
−

 
1 0 1

2  

1
2  

1
2 3  

1
6  

2
3  

2
3  

3 1c
Rd

 ( )( ) [ ][ ] ( ) ( ) ( )
9 10 1112 13 1456 7803 12

| ||i+ + − − + − −  
1 1

2  
1 0 1

2
−

 

1
2  

1
2 3  

1
6  

1
3

−
 

1
3

−
 

4 1c
Rd

 [ ][ ] [ ][ ] ( ) ( ) ( )
9 10 1112 13 1403 12 56 78

| ||i− − − − + − −  
1 1

2
−

 
1 0 1

2
−

 

1
2  

1
2 3  

1
6  

1
3

−
 

1
3

−
 

5 1c
Ld

 [ ]( ) [ ]( ) ( ) ( ) ( )
9 10 1112 13 1403 5612 78

| ||i− + − + + − −  
−1 1

2  
−1 1

2
−

 
0 1

2  

1
2 3  

1
6  

1
6  

2
3  

6 1c
Ld

 ( )[ ] [ ]( ) ( ) ( ) ( )
9 10 1112 13 1412 5603 78

| ||i+ − − + + − −  
−1 1

2
−

 
−1 1

2
−

 
0 1

2  

1
2 3  

1
6  

1
6  

2
3  

7 1c
Lu

 [ ]( ) ( )[ ] ( ) ( ) ( )
9 10 1112 13 1403 7812 56

| ||i− + + − + − −  
−1 1

2  
−1 1

2  
0 1

2  

1
2 3  

1
6  

1
6  

2
3  

8 1c
Lu

 ( )[ ] ( )[ ] ( ) ( ) ( )
9 10 1112 13 1412 7803 56

| ||i+ − + − + − −  
−1 1

2
−

 
−1 1

2  
0 1

2  

1
2 3  

1
6  

1
6  

2
3  

9 2c
Ru

 ( )( ) ( )( ) [ ] [ ] ( )
9 10 1112 13 1403 12 56 78

| ||i+ + + + − + −  
1 1

2  
1 0 1

2
−

 

1
2

−
 

1
2 3  

1
6  

2
3  

2
3  

10 2c
Ru

 [ ][ ] ( )( ) [ ] [ ] ( )
9 10 1112 13 1403 12 56 78

| ||i− − + + − + −  
1 1

2
−

 
1 0 1

2
−

 

1
2

−
 

1
2 3  

1
6  

2
3  

2
3  

∙∙∙             

17 3c
Ru

 ( )( ) ( )( ) [ ] ( ) [ ]
9 10 13 14111203 12 56 78

| ||i+ + + + − − +  
1 1

2  
1 0 1

2  
0 

1
3

−
 

1
6  

2
3  

2
3  

18 3c
Ru

 [ ][ ] ( )( ) [ ] ( ) [ ]
9 10 13 14111203 12 56 78

| ||i− − + + − − +  
1 1

2
−

 
1 0 1

2  
0 

1
3

−
 

1
6  

2
3  

2
3  

∙∙∙             

25 Rν  ( )( ) ( )( ) ( ) [ ] [ ]
1112 13 149 1003 12 56 78

| ||i+ + + + + + +  
1 1

2  
1 0 1

2  
0 0 1

2
−

 
0 0 

26 Rν  [ ][ ] ( )( ) ( ) [ ] [ ]
1112 13 149 1003 12 56 78

| ||i− − + + + + +  
1 1

2
−

 
1 0 1

2  
0 0 1

2
−

 
0 0 

27 Re
 ( )( ) [ ][ ] ( ) [ ] [ ]

1112 13 149 1056 7803 12

| ||i+ + − − + + +  
1 1

2  
1 0 1

2
−

 
0 0 1

2
−

 
−1 −1 
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Continued 

28 Re
 [ ][ ] [ ][ ] ( ) [ ] [ ]

1112 13 149 1003 12 56 78

| ||i− − − − + + +  
1 1

2
−

 
1 0 1

2
−

 
0 0 1

2
−

 
−1 −1 

29 Le
 [ ]( ) [ ]( ) ( ) [ ] [ ]

1112 13 149 1003 5612 78

| ||i− + − + + + +  
−1 1

2  
−1 1

2
−

 
0 0 0 1

2
−

 

1
2

−
 

−1 

30 Le
 [ ]( ) [ ]( ) ( ) [ ] [ ]

1112 13 149 1003 5612 78

| ||i− + − + + + +  
−1 1

2
−

 
−1 1

2
−

 
0 0 0 1

2
−

 

1
2

−
 

−1 

31 Lν  [ ]( ) ( )[ ] ( ) [ ] [ ]
1112 13 149 1003 7812 56

| ||i+ + + − + + +  
−1 1

2
 −1 1

2  
0 0 0 1

2
−

 

1
2

−
 

0 

32 Lν  ( )[ ] ( )[ ] ( ) [ ] [ ]
1112 13 149 1012 7803 56

| ||i+ − + − + + +  
−1 1

2
−

 
−1 1

2  
0 0 0 1

2
−

 

1
2

−
 

0 

33 1c
Ld  [ ]( ) ( )( ) [ ] [ ] [ ]

9 10 1112 13 1403 12 56 78

| ||i− + + + − + +  
−1 1

2  
1 0 1

2  

1
2

−
 

1
2 3

−
 

1
6

−
 

1
3  

1
3  

34 1c
Ld  ( )[ ] ( )( ) [ ] [ ] [ ]

9 10 1112 13 141203 56 78

| ||i+ − + + − + +  
−1 1

2
−

 
1 0 1

2  

1
2

−
 

1
2 3

−
 

1
6

−
 

1
3  

1
3  

35 1c
Lu

 [ ]( ) ( )[ ] [ ] [ ] [ ]
9 10 1112 13 1403 7812 56

| ||i− + − − − + +  
−1 1

2  
1 0 1

2
−

 

1
2

−
 

1
2 3

−
 

1
6

−
 

2
3

−
 

2
3

−
 

36 1c
Lu

 ( )[ ] [ ][ ] [ ] [ ] [ ]
9 10 1112 13 1412 56 7803

| ||i+ − − − − + +  
−1 1

2
−

 
1 0 1

2
−

 

1
2

−
 

1
2 3

−
 

1
6

−
 

2
3

−
 

2
3

−
 

37 1c
Rd  ( )( ) ( )[ ] [ ] [ ] [ ]

9 10 1112 13 147803 12 56

| ||i+ + + − − + +  
1 1

2  
−1 1

2  
0 1

2
−

 

1
2 3

−
 

1
6

−
 

1
6

−
 

1
3  

38 1c
Rd  [ ][ ] ( )( ) [ ] [ ] [ ]

9 10 1112 13 1403 12 56 78

| ||i− − + − − + +  
1 1

2
−

 
−1 1

2  
0 1

2
−

 

1
2 3

−
 

1
6

−
 

1
6

−
 

1
3  

39 1c
Ru

 ( )( ) [ ]( ) [ ] [ ] [ ]
9 10 1112 13 145603 12 78

| ||i+ + − + − + +  
1 1

2  
−1 1

2
−

 
0 1

2
−

 

1
2 3

−
 

1
6

−
 

1
6

−
 

2
3

−
 

40 1c
Ru

 [ ][ ] [ ]( ) [ ] [ ] [ ]
9 10 1112 13 1403 12 56 78

| ||i− − − + − + +  
1 1

2
−

 
−1 1

2
−

 
0 1

2
−

 

1
2 3

−
 

1
6

−
 

1
6

−
 

2
3

−
 

41 2c
Ld  [ ]( ) ( )( ) ( ) ( ) [ ]

13 149 10 111203 12 56 78

| ||i− + + + + − +  
−1 1

2  
1 0 1

2  

1
2  

1
2 3

−
 

1
6

−
 

1
3  

1
3  

∙∙∙             

49 3c
Ld  [ ]( ) ( )( ) ( ) [ ] ( )

11129 10 13 1403 12 56 78

| ||i− + + + + + −  
−1 1

2  
1 0 1

2  
0 

1
3

 
1
6

−
 

1
3  

1
3  

∙∙∙             

57 Le
 [ ]( ) ( )( ) [ ] ( ) ( )

9 10 1112 13 1403 12 56 78

| ||i− + + + − − −  
−1 1

2  
1 0 1

2  
0 0 1

2  
1 1 

58 Le
 ( )[ ] ( )( ) [ ] ( ) ( )

9 10 1112 13 141203 56 78

| ||i+ − + + − − −  
−1 1

2
−

 
1 0 1

2  
0 0 1

2  
1 1 

59 Lν  [ ]( ) [ ][ ] [ ] ( ) ( )
9 10 1112 13 1403 56 7812

| ||i− + − − − − −  
−1 1

2  
1 0 1

2
−

 
0 0 1

2  
0 0 

60 Lν  ( )[ ] [ ][ ] [ ] ( ) ( )
9 10 1112 13 1412 56 7803

| ||i+ − − − − − −  
−1 1

2
−

 
1 0 1

2
−

 
0 0 1

2  
0 0 

61 Rν  ( )( ) [ ]( ) [ ] ( ) ( )
9 10 1112 13 145603 12 78

| ||i+ + − + − − −  
1 1

2  
−1 1

2
−

 
0 0 0 1

2  

1
2  

0 

62 Rν  [ ][ ] [ ]( ) [ ] ( ) ( )
9 10 1112 13 1403 12 56 78

| ||i− − − + − − −  
1 1

2
−

 
−1 1

2
−

 
0 0 0 1

2  

1
2  

0 

63 Re
 ( )( ) ( )[ ] [ ] ( ) ( )

9 10 1112 13 147803 12 56

| ||i+ + + − − − −  
1 1

2  
−1 1

2  
0 0 0 1

2  

1
2  

1 

64 Re
 [ ][ ] ( )[ ] [ ] ( ) ( )

9 10 1112 13 1403 12 7856

| ||i− − + − − − −  
1 1

2
−

 
−1 1

2  
0 0 0 1

2  

1
2  

1 
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Table 4. Eight families of the right handed 1c
Ru  (3) quark with spin 

1
2

, the colour charge ( 33 381 2, 1 2 3τ τ= = ), and 

of the colourless right handed neutrino Rν  of spin 
1
2

 are presented in the left and in the right column, respectively. They 

belong to two groups of four families, one (I) is a doublet with respect to ( LN


  and ( )1τ


 ) and a singlet with respect to ( RN


  

and ( )2τ


 ), the other (II) is a singlet with respect to ( LN


  and ( )1τ


 ) and a doublet with respect to ( RN


  and ( )2τ


 ). All the 

families follow from the starting one by the application of the operators ( ( )2,1
, ,R LN τ ±±



 ), Equation (82). The generators 
( )2,1

, ,R LN τ ±±  (Equation (82)) transform 1Ru  to all the members of one family of the same colour. The same generators 

transform equivalently the right handed neutrino 1Rν  to all the colourless members of the same family. 

     13τ  
23τ  

3
LN  

3
RN  

4τ  

I 1
1

c
Ru

 ( )[ ] [ ]( ) ( ) ( ) ( )
9 10 1112 13 1412 5603 78

| ||i+ + + + + − −  2Rν  ( )[ ] [ ]( ) ( ) [ ] [ ]
1112 13 149 1012 5603 78

| ||i+ + + + + + +  
1
2

−
 

0 1
2

−
 

0 1
2

−
 

I 1
2

c
Ru

 [ ]( ) [ ]( ) ( ) ( ) ( )
9 10 1112 13 1403 5612 78

| ||i+ + + + + − −  2Rν  [ ][ ] [ ]( ) ( ) [ ] [ ]
1112 13 149 1003 12 56 78

| ||i+ + + + + + +  
1
2

−
 

0 1
2  

0 1
2

−
 

I 1
3

c
Ru

 ( )[ ] ( )[ ] ( ) ( ) ( )
9 10 1112 13 1412 7803 56

| ||i+ + + + + − −  3Rν  ( )[ ] ( )[ ] ( ) [ ] [ ]
1112 13 149 1012 7803 56

| ||i+ + + + + + +  
1
2  

0 1
2

−
 

0 1
2

−
 

I 1
4

c
Ru

 [ ]( ) ( )[ ] ( ) ( ) ( )
9 10 1112 13 1403 7812 56

| ||i+ + + + + − −  4Rν  [ ]( ) ( )[ ] ( ) [ ] [ ]
1112 13 149 1003 7812 56

| ||i+ + + + + + +  
1
2  

0 1
2  

0 1
2

−
 

II 1
5

c
Ru

 [ ][ ] [ ][ ] ( ) ( ) ( )
9 10 1112 13 1403 12 56 78

| ||i+ + + + + − −  5Rν  [ ][ ] [ ][ ] ( ) [ ] [ ]
1112 13 149 1003 12 56 78

| ||i+ + + + + + +  
0 1

2
−

 
0 1

2
−

 

1
2

−
 

II 1
6

c
Ru

 ( )( ) [ ][ ] ( ) ( ) ( )
9 10 1112 13 1456 7803 12

| ||i+ + + + + − −  6Rν  ( )( ) [ ][ ] ( ) [ ] [ ]
1112 13 149 1056 7803 12

| ||i+ + + + + + +  
0 1

2
−

 
0 1

2  

1
2

−
 

II 1
7

c
Ru

 [ ][ ] ( )( ) ( ) ( ) ( )
9 10 1112 13 1403 12 56 78

| ||i+ + + + + − −  7Rν  [ ][ ] ( )( ) ( ) [ ] [ ]
1112 13 149 1003 12 56 78

| ||i+ + + + + + +  
0 1

2  
0 1

2
−

 

1
2

−
 

II 1
8

c
Ru

 ( )( ) ( )( ) ( ) ( ) ( )
9 10 1112 13 1403 12 56 78

| ||i+ + + + + − −  8Rν  ( )( ) ( )( ) ( ) [ ] [ ]
1112 13 149 1003 12 56 78

| ||i+ + + + + + +  
0 1

2  
0 1

2  

1
3

−
 

 

doublets with respect to these two groups. The scalar fields which are the gauge scalars of LN


  and 1τ


  couple 
only to the four families which are doublets with respect to these last two groups. 
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