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Abstract 
 
In this work, we study the existence and uniqueness of pseudo almost periodic solutions for some difference 
equations. Firstly, we investigate the spectrum of the shift operator on the space of pseudo almost periodic 
sequences to show the main results of this work. For the illustration, some applications are provided for a 
second order differential equation with piecewise constant arguments. 
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1. Introduction 
 
Difference equations have many applications in popula-
tions dynamics, they are used to describe the evolution of 
many phenomena over the course of time. For example, 
if a certain population has discrete generations, the size 
of the th generation  is a function of the 

th generation 
( 1)n  ( 1)x n 

n ( )x n . This relation expresses itself in 
the following difference equation 

    1 = ,x n f x n n  .         (1) 

The discrete processes occur in the investigation of 
many phenomena, mainly in the case of use of computers. 
One of the most widely adopted definition of a discrete 
process can be formulated as follows: a discrete process 
is a map from the additive group of the integers , into 
a complete metric space 


( , )X d , such as  or  

with the distance function induced by the vector norm. 

m m

We use two different notations to designate a discrete 
process, namely, if :f X

  
n

f n

 is a discrete process, we 

shall write instead 
  or   , dropping n n

f


usually the subscript “ n ”, since no confusion can 
occur (indeed, we are not going to consider in this work 
discrete processes defined on a group, other than ). 




Of course, one of the most common sources for the 

discrete processes is the theory of difference equations, 
such as  

1 = ,n n nx Ax b n   ,           (2) 

where nx  stands for the unknown process, with values 

in  or  m m A  is a square matrix of order  with 
real or complex entries and nb  stands for a given 
discrete process, with values in the same space as 

m

 nx . 
In practice, we deal with solutions of (2) which are only 
defined on subsets of , and therefore, they might be 
regarded as restrictions of a “complete” process to a 
subset of its domain of definition. 



1

m

Difference equations and discrete dynamic systems 
represent two sides of the same coin. For instance, when 
mathematicians talk about difference equations, they 
usually refer to the analytic theory of the subject, and 
when they talk about discrete dynamic systems, they 
generally refer to its geometrical and topological aspects. 

More sophisticated equations (or systems) than (2) are 
those described by the following discrete equation 

 = ,n

m

 

,n nx f x n          (3) 

where  (or ) is a given map, in 
general nonlinear in both arguments. 

:f m  

Another example, let y n  be the size of a 
population at time . If n   is the rate of growth of the 
population from one generation to another, then we may 
consider a mathematical model in the form 

  y n 1 = , > 0y n  .        (4) 

If the initial population is given by  0 = 0 ,y y
> 1,

 then 
the solutions are given by . If   0

ny n y=   then 

 y n  increases infinitely, and  If   = .lim
n

y n = 1,  

then   0=y n y  for all , which means that the 
size of the population is constant for the indefinite future.  

> 0n
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However, for < 1,  we have  and the   lim = 0,
n

y n


population eventually becomes extinct. 
Since our main objective is to provide a criteria to get 

the existence of a pseudo almost periodic solution for 
equations of the form (2) or (3), we shall first review the 
basic properties of pseudo almost periodic discrete 
processes. 

This work is motivated by the results obtained in [1,2], 
and the main results would be some extension for some 
well-established results in the literature, more details can 
be found in [3]. 

This work is organized as follows. In Section , we 
consider geometrical properties of the shift operator in 
general case and, we deal with the properties of shift 
operator the spaces of almost periodic and on ergodic 
sequences. In Section 3, we a consider the existence and 
uniqueness solutions of some difference equations using 
polynomial functions. In the last section, we deal with 
the application of the previous results to some second 
order differential equation with a piecewise constant 
argument. 

2

 
2. Shift Operator Acting on the Space of 

Pseudo Almost Periodic Sequences 
 
In this section, we give some properties on pseudo 
almost periodic sequences that will be used in this work. 
For more details in this connexion, the reader will see 
[4-12]. 

Definition 2.1: A sequence  n n
x

 with values in  

is called almost periodic if for all 

m
> 0,  the set 

  , : : , <n nT x for all n x x          is rela- 

tively dense.  
The space of almost periodic sequences is denoted by 

. If  we use the notation Let ( , )mAP   = 1,m ( ).AP 
( , )B


  denote the space of bounded complex sequen- 

ces provide with the supremum norm. 0  denote 
the space of bounded complex sequences 

( )PAP
 n n
x

  
satisfying the ergodicity condition  

=

1
lim = 0

2

N

n
N n N

x
N 
 . 

Remark 2.2: 
=

1
lim = 0

2

N

n
N n N

x
N 
 , doesn’t imply that 

 is bounded. In fact, let us consider the sequence 

defined by  

 n n
x



3if =
=

0 otherwise.
n

p n p
x





 

Let  be such that . Then  p  33 < 1p N p 

 
3

= =1

11 1
= 0

2 2

pN

n
pn N k

p p
x k

N N p 


   . 

For a function  we define : mf   , ( , )T f   by  

      , = : for all , < .T f t f t f t         

Definition 2.3: A bounded continuous function x  is 
said to be almost periodic if the set  ,T f   is rela- 
tively dense for all > 0 .  

For the next  denotes the space of all 
almost periodic functions from  to . 

( , )mAP  



m
Proposition 2.4: Let  and m  = n n

x x
  be a 

sequence with values in . Let define the function m x : 
by  m 

  = for allnx n x n,  

and x  is affine in [ , 1].n n   Then the following re- 
sults are true. 

1)  sup = sup ,n
t n

x t x
  

   , ,T x T x    and 

( , )mx AP    if and only if , ( , )mx AP 
2)  if and only if 0 ( , )mx PAP  ( , )mx PAP   .  

Proof. 1) is a consequence of results taken from [1]. 
For the proof of 2), by taking the components, real 

part and imaginary part, we can consider the case where 

0 ( , )x PAP 
[ ,t n n

. Then, one has 
For 1]   one has  

        1 1= =n n n n n 1x t x x t n x x t n x n t         

Two cases to be considered: 
a) If   1 0n nx x  

 1 1| | |
d =

2

n n n

n

|x x
x t t

  
 . 

b) If  1 < 0n nx x 

   
2 2

11 1

1

1 1

| | | |
= d

2 2 | | | |

| | | | 3 | |
| | .

2 2

nn n n n

n
n n

n n n n
n

x x x x
x t t

x x

x x x x
x

 



 

 




 
  


 

The result is a consequence of the fact that x   

 if and only if 0 ( , )PAP     1

0d ( , )
n

n n
x t t PAP




 


 .  

Definition 2.5: We define the space of pseudo almost 
periodic sequences by  

0( ) ( ) ( )PAP AP PAP    . 

 Proposition 2.6: [2] Let  be such that ( )x PAP 
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= ,x y z  for some  and  Then ( )y AP  0 ( )z PAP 
y x

 
 . 

Difference calculus is the discrete analogue of the 
familiar differential and integral calculus. In this section, 
we introduce some basic properties of two the following 
operators that are essential in difference equations  

  = 1  x n x n 

 

x n  

and the shift operator 

 = 1Ex n x n

 

. 

Then  

 n k=kE x n x . 

Let I  be the identity operator. Then  and 
.  The following formula are true 

= E

 

 

1k kk

I
=E I

.

i

 

    

 

k i

i

  
=0

=0

= =

= 1

k

i

k

i

x n E I

k

x n E x n
i

x n k i

 
  

 
 

i

 

   
 

 i x n





 
=0

=
k

i

k
n

i

 
 
 



   (5) 

Similarly we have  

k kE x  . 

We should point out here that the operator   is the 
counterpart of the derivative operator  in calculus. 
Both operators  and  share one of the helpful fea- 
tures of the derivative operator , namely, the property 
of linearity. Another interesting difference, parallel to 
differential calculus, is the discrete analogue of the 
fundamental theorem of calculus. 

D

na

1 . 

E 

exp

   ds g s s

 .k

  
:

n nx x


 

  

D

Remark 2.7: Exponential  in differential equa- 
tions corresponds to the exponential  and the 

at

integral  corresponds to the sum- 

mation:   

0
exp

t
a t 

1
1

=0

n
n k

k

a g


 
Let us consider the linear map defined by  

n n

T

 





 

Let F  be a subspace of that is invariant by , 
for example 

B T
F  could be one of the following spaces 

 0   Let ( , ,AP )  ( , ),  PAPPAP ( , ). FT  be the 
linear map induced by  on T F  and take y F  and 

 where [ ],P X [ ]X  is the space of polynomial 
functions over . Next, we study the existence of 
solutions in 


F  for a given y F  for the following 

algebraic equation  

  =FP T x y . 

This equation has solutions if  Im ,Fy P T  but we 
have to compute  Im .FP T

ker
 The uniqueness problem is 

equivalent to determine  The following re- 
sult is well-established. 

P T .F

Lemma 2.8: Let [ ]P X  be non constant. Then  

   
=1

ker = : with deg( ) <
N

n
i i i i

i n

P T Q n Q m


   
  
   



 

where the i s  are non zero roots of  with res- 
pective multiplicities   

P

P
.im

Remark 2.9: If  is the unique root of , then 0

   ker = 0 .P T   

Lemma 2.10: Let 1 |= BT T  (the restriction of  to 
B). Then  

T

    1ker = , = 1, = 1, , .n
i in

P T vect i r 


 


 

Proof. Let   be a complex number such that = 1.  
Then  

    1ker = ,n

n
T I c c 


 


. 

Let  2

1kery T I    and   = .B x T I y
=

 Then 

1 1andn n n n= 0 nx x y y x    , 

which implies that 1 0= n
n n ,y y x    and  

1 0
1

=n n
n n

y y x

 

  . 

Since n
n

y


 is also bounded, because = 1,  then 

 and 0 = 0x 1 =ny y ,n  also  

  2

1 1ker = ker .T I T I     

By simple recurrence on  we deduce that  ,m
for all  1,m 

      1 1ker = ker = :
m n

n
T I T I c c  


  


 . 

Consequently:  

   

  
1 1

1
ker = ker

= : = 1, = 1, ,

mi
i

i r

n
i in

P T T I

vect i r



 

 



 




.
       

Lemma 2.11: Let ,x  . Consider y x y  the 
sequence defined by  

 

1
0 1

1
1

if > 0

= 0  if =

if < 0.

k n k
k n

n

k n k
n k

x y n

x y n

x y n

 
  

 
 



 


0.
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Then  ,x y x  y
,

 is bilinear and symmetric. More- 
over, if we denote by = T I    then 

   0=x y x y x y       

Remark 2.12: If  then ,x x  can be extended 
to a function x  which is of stepping type on  in the 
following manner: 


    x t x E t  where  E t  de- 

notes the greatest integer function of  then one has 
for   

,t
, ,x y 

      
0

d
n

x y n x t y n t t     . 

Proof. Using the above remark, one can see that the 
following map  x y x   y  is bilinear and symme- 
tric. On the other hand, one has  

          

   

       

   

   

      

   

1

0 0

1

0

1

1 0

0 0

0

0 0

0

1 d d

1 d

  1 d d

1 d

  d

1 d

n n

n n

n

n

n

n

n

n

x y n x t y n t t x t y n t t

x t y n t t

x t y n t t x t y n t t

x y x u y n u u

x t y n t t

x y x t x t y n t t

x y x y n

















      

  

   

   

 

    

   

 



 







   

 

   

 

 

  





p

 

In the sequel, we denote by   

 
  

, = ( ) ,  such that

and deg  .

n
p n n

n n

F b Q n

b F Q

 






 





 

We define the following polynomials 

   0 1 1
= 1and = if

!
p

X X

X X X p
C C p

p
    

 . 

Lemma 2.13: Let and y    be a complex 
number such that = 1 , Then for , the 
following are true 

p

1)  where    1

, =
p

pc y 
  y  , = p n p

p n n
c C  


. 

2)  such that   1
Im = :

p

FT I y F 

, ,p pc y F



   .  

Proof. 1) For  we claim that  > 0,p

 , 1,= .p pc y c     y

.

y

y

It follows that  

 

From lemma (2.11) one has : 

     
 

, , ,0

, 1,

=

= =

p p p

p p

c y c y c

c y c

    

  

    

  
 

for all 0p   

   
   

1
0,

0, 0,0

=

= =

p y c y

c y c y

 

  

  

  
 

,pc  

.y

2) One has   1
Im

p

Fy T     if and only if there 
exists x F  such that   1   = .

p

F  
e has:  = n

T x y  From mma 

(2.8) n

 le

and 1) o  ,n p n
x Q n c  y  is in F  

if and only if ,pc y   is in , .pF     
Proposition 2.14:  complex 

number such that 
Let y , λ be a
= 1 nomial of 

degree .p  Th followin ue
, be a poly

en the  

.

In particular 

 and Q  
g are tr

 
   

1
Im

= ,  such that 

p

F

n

T I

F Q n











 


 
,pn

y y F 

    1

,Im = ,  such that .
p p n

F pn
T I y F n y F  


   


 

and  

   
  1

1,

Im = : such that for all 1, ,F

m ni
i mi in

P T y F i r

n y F 




 

 


 

Proof. Let Then for all    1
Im .

p

Fy T I    ,q p  
  1q

IIm Fy T
  , by lemma (2.13) we have  

For all ,q p  ( )n nC y  
q n q  is in ,qF  , 

 to which is equivalent

For all (, )q n
n nq p C y    is in ,qF  , 

and as 0( )q
X q pC    is a [ ],p Xbasis of  then  

   ,
n  is in  pn

Q n y F 




. 

Conversely, assume that      is n

n
Q n y


in ,pF  . 

One has from lemma (2.11)  

,and are in atpx y y F which implies th

  is ,in px y F  .  

But  

     1
1=n n

n n
Q n Q n   

 
 

 
, 

then  

   1 ,is in n
pn

Q n y F 


 


, 

by iteration, we see that  

   1 ,for all [0, ], inq n is p
n

q p Q n y F 


  


, 
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is a basis of 
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and since    1
qQ X

 


0 q p
 [ ],p X  then 

for    ,all  [ ], is inn
p pn

R X R n y F 


 


 , 

In particular  

F  ,is inp n p
n pn

C y  





, 

and consequently   1p

Fy Im T I  
 the fact that  

. The end of the 
proof results from

  i

Let 

 
1

Im = Im
mi

F F
i r

P T T I
 
  . 

  be the linear map induced by T on 
 if 

( , )AP    
It is clear that 1,   then  I   

of 
is invertible. 

On the other hand if the roots P  are of modulus 
di tfferen  from 1,  then  P   is invertible, in this case 

   r = 0P   and we have th eness of the 
solutions. Let 1( )i i r

ke e uniqu
    be the r ts of P  with 

modulus 1.  Th   

   

oo
en

 

is a polynomial whose roots are of modulus 
differe rom 

Proposition 2.15: 

1 i r

P
 

=
mi

iX X Q X  

where Q  
nt f 1.  

    ker = : = 1, = 1, , .n
i iP vect i r      

n

 (2.10), one has Proof. From lemma

      
 = , = 1, for = 1n

i ivect i  
ker = , , = 1, = 1 ,

,..., ,

n
i in

n

P AP vect i r

r

  




 




 
 

(since  is periodic).  

It is well known that if ]  and 
 then  

,  

 n
i n




1 2, [Q Q X
1 2

 

= 1,Q Q

   1Im = Im ImQ Q Q Q 1 2 2   , 

and 

   
1

Im = Im
mi

i
i r

P I  
 
  . 

 
3. Existence of Pseudo Almost Periodic 

Sequences 
 
It is known that if   ,nA M    , mb AP     and 
x  is a bounded solution of 

1

t en 

= ,n n nx Ax b n    

h x  is almost periodic. 
If  ,y AP    and [ ],P X

  =x y , PP 

to a system, we deduce the following lemma. 
Lemma 3.1: For  and , y AP  , [ ]P X  

 is almost every bounded solution 

mma (3.1) an roposition
lt. 

ion 3.2: Let 

of  P T  =x y
periodic.  

Consequently from le d the p  
(2.14), we get the following resu

Proposit   be a complex number such 
that 0  , p  and Q  be a polynomial with degree 
p. Then  

 


1

Im

=

p
I

y A




 

     ,, ,  such that n
pn

P Q n y B 

 







  . 

In particular 


 

  

1

,

Im

, ,  such that

p

p n
pn

I

n y B= y AP 

 












. 
   

and  

   
  1

1,

Im = , ,  such that for all [1, ],

.ni
i mi in

P y AP i

n y B 



 


 

 


 
 

m 

r

In the next, we are concerned with the solutions  in
 ,AP    of the following equation  

   1
= , for

p
I x y p   .        (6) 

tion 3.3: Let .y   Then we Proposi have  

1)    1
=

p

pT I y c y
  , (where = (pc ) ),p

n nC   

2)   1
Im

p
y I    b B  if and only if there exists 

 by transforming 
the scalar equation  

such that =py c b Q   w

the solutions of

ith Q [ ].p X  

3)     1
=

p
I x y   in  , AP  

are =n nx b c  where d   c  is a c  onstant an

  

  

0

= p k
k p

b y c c
 

  





1

2
1 2

1

= lim

( )
= lim

k

p
n

p k
k n p n

k
n

y c n

n

y c n C C

n



 







 




      



 

Proof. Since

.

  
0

k
X k p

C
 

 is a basis of [ ],p X  then 

there exit scalars  0k k p 
 such that k kQ c

0

=
k p 
  

in this case, one h

0

as  

=p k k
k p

c
 

  . ) y c b          (7
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Then, by applying   1p
T I

  to the equation (7), we 
obtain  

   1

1 1=
p

1p py c T I b c 
    , 

then 

  1= limp
n

y c n

n





.         (8) 

ose that 

  

Supp 1 2, , ,p p k     are known and let us 
compute 1 :k 

e has  
 by applying  k

T I  to the equation 
(7), on

  2 2=   1 1

k

p k k k p p kc T I c c         , 

so  

ky b c  

    2
2

1 = lim
p k

p k k n p n

k
n

y c n C C

n

 



 

 

     
.  (9

We conclude that for all  the equation 

) 

 , ,y AP  
   1

=
p

I x y   admits the solutions in    if 
d (9) 

,AP 
 (8) anand only if, the limits given by equations

exist and the sequence 
0

p k kc   
k p

y c
 

 is bounded, in 

this case the solutions are given by  

0

= p k k
k p

x y c c
 

   , 

with 0  is any constant and the ( 1)k k p    are given by 
(8) a ). 

Remark 3.4: By a change of variables, the equation 
nd (9   

   1
=

p
I x y    when = 1  bec pre- 

vious form (6).  
Indeed, let us o

omes in the 

Since 

 c nsider the following operator 

  ,AP P   
 


 

: ,
n

M A





 .n n
x x



= ,M M     then  

  = = I M M M M           . I

So  

  1=I M I M       , 

an

1

d  

   1 11=
p ppI M I M        . 

Then equation  

   1
=

p
I x y   ,          (10) 

be

  

comes  

  11 1pp  =M I M x     y , 

   1

1 11

1
=

p

p
I M x M

 





  , y

ing 

differently  

then by putt  1=X M x


 and 11

1
= ,

p
Y M

   y

and we are com he followi  equation ing down to t

= .

ng

   1p
I X Y   

Theorem 3.5 Fo l equat   = ,P x yr the genera ion  
the solution is of the form: 0 1= ,x x x  such that 

r

r1
=1

= i
i

x x , (with  is the number of different roots with 

modulus equal to 1 , ix  is the solution of the equ

   1
=

pi

ation 

ii iI x y   ) and 0x  a f n element o  ker .P    

Proof.  

w

We write P  under the form 

 1=
piX Q   

1
i

i

r

P 

ith i s  are the roots of P  which are of modulus 
equal  and  to 1 ,ip   

e may co
r

Eve f it means to replace 
by w me wn to  Indeed 

ttin

n i
 do

1

y  
let    1

Q y,  = 1.Q

us pu g  
=1,

=
pk

k


=1

= 1.i iAU  Then 

k k i

P X


 , then using the 

Bezout id ntity, we get that there exist polynomials iU  
r

e

such that 
i
  

=1

= i i
i

A y  with 
r

y

 =i iy U y  and equation  

   =P x  y (11)               

becomes  

t a solution of Equation (12), it suffices to 
determine a solution 

    
=

=
r

i

P x A   
1

i iy       (12) 

then to buil

ix  of the following equation  

i   1
=

pi
i iI x y   , 

the solution is easily determined and after we take 
r

=1

= i
i

x x . To obtain all solutions, we add elements of  

    ker = ,1n
i n

P vect i r 


 


.        

ple 3.6: For all polynomial Q  with all rootExam s 
are of modulus different from  in1,  [ ]X  one has the 

following decomposition 
 

,1
=

mr i
i j

=1 =1
j

i j i

a

Q X 

the i

  where 

s  are two by two d tinct of modulus is and 

different from 1, then we have  
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   1

,=
=1 =1

mr i j

i j iQ a I     g down 

to th e  =
m

Q X

i j

 

e cas

so we are comin

  with m   and 1  . 

First case: > 1:   

     
=0k

I=
m m

I =
m k

m k
mC

 
 




     

so for x A  has  

 
 
 

   
    

 ,P    one

=
m I x y


 where 

ase: 

   =
k m

x  
  . 

=0

k
n m

k

y C


 n k

Second c < 1  

     1m
I I C           , 

=0

= =m k
m

k





as  

m k k m

hence for  one h ,x AP  

  =
m

I x y  
with k

Let be bounded. Th k for a bounded 

r the following tion : 

n

  = .
k

n mx   
=0

k
n m

k

y C




en we loo

qua

2 28 n

 n n
h

  

solution fo  difference e

4 3 12 13 8 =n n n n30x x x x    . x 

8 = 2

h

  1 2Q x x x x x x   
34 3 2= 2 13 30 28  

   3 2

1 2

1

3 9 27 2 27 2 12 2

=

Q xx x

g g

  



 

where 

1 1 1 2 1 4 1 8
:=   

x

1

8 1
:=

27 2 1
g

x




 

and 

   2 3 2

1 1 2 1 4 1
:=

3 9 272 2
g

xx x
 

 
. 

2

For 
1

<| |< 2
2

x , we have 

1
=1

8 1
= , :=

27 2
n

nn n
n

a
g a

x



  

2
2

1 1
:= :=

48 2 2ng b 
=0

17 1 37 1
,

144 216 2
n

n n n n
n

x b n n


  . 

the solution nx  is given by:  

k n
=1 =0

:=k n k n n
n n

x a h b h
 

    

=1

21 1 17
n

n


=0

8 1
:=

27 2

1 37 1

48 144 2162 2 2

k k nn
n

k nn n
n

x h

n h









  
 



 

Let 

  

 0 ,y PAP  
nce and uniqueness

 and  the 
existe  of

[ ].P X  
 solutions in 

We study
 0 ,PAP    of 

the following equation  

 0 =P x , y

where 0  is the linear map induced by  on T
 PAP0 0 ch that . Let  be su ,x PAP  , 

 0 = 0.P x From lemma (2.10), we have  

       
     

0 0

0

, = 1, , ,

, , = 0

n
i r PAP

AP PAP


  

 


 
   

 
ker = n

iP vect 

.

Then have the uniqueness of the solution. 
3.7: Unlike to the almost periodic ca

 we 
Remark se, x  

bounded and  0 =P x y  is not enough to get that 
   In fact, we 0 ,x PAP  

example: 
have the following counter 

1 = 2 , ,n
n nx x n
    

the solutions are given by  

1

0
=0

2 , if > 0
k

x n
 




 . 01

0
=

= ,

2 , if < 0

n
k

n
k

k n

x x

x n









 




unded, on the other part one  
has: 

Then all solutions are bo

0lim = 2n
n

x x


  and 0lim = 1.n
n

x x


 . If 0x PAP  

we will have 0 02 = 1 = 0x x   

e solution is not in 

which is absurd, con- 

sequently, th   

As a consequence of proposition (2.14), we get the 
following result. 

0 .PAP

Proposition 3.8: Let   be a complex number such 
 p ,that 0  ,  and Q al wit   a polynomi h degree

p . Then  

 
 

 
     

, uch that

.Q n y PAP  

 1

0 0Im = , s
p
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n
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0 0
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.
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p n
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 In ergodic case, for the calculation of 
the solutions, the method is similar to the one given in 
the almost periodic case, firstly we begin with solution of 
the following equation  

   
  

0 0

1
0 1,

Im = , , such that

[1, ],( ) .m ni
i n mi i

P y PAP

i r n y PAP





 



   

 
 

Remark 3.9:

   1

0
0

= , =
p

p k k
k p

I x y x y c c 

 

   
 

with 1( )k k p    

his time th

are determined by equations (8  and (9) 

but t e 

)

0  is not arbitrarily, but 0  is the 

mean value of 
1

p k kc
k p 

solutions needs more 
1

y c  , then the e tence of xis

p k k
k p

y c c
 

    to have a mean 

value 0  then py c  0
0 k p

c
 
 k k PAP .  

Example 3.10: Let be an absolutely convergent 

, 
0

k
k

a

  

series ]X , 0( )k kz   a family of complex numbers 

with modulus equa 1,  such that 

[P
l 

0
inf ( ) 0k
k

P z


 and 

=0

n

k

>

= .n k ky a z  Th


has a st per

 en the following equation  

y

lmo iodic solutions. In fact, if we put 

  =P x , 

 =0

= nk
n k

a

k k

x z
P z

 , one n



has x  is well defined and 

    =0

for all  0, = =i n ik
n in

k

a
i x x



k
k

z
P z


   

it results that 

      
=0 =0

= =n nk
k k k k nn

k kk

a
P x P z =a z y

P z


 

   

the equation admits solutions in 

z

 ,AP    The hypo-  

thesis  
0

inf > 0  is necessary, as we remak
k

P z


rk it  

through the following counter example : 

1 2 2
=0

1
= expn n

k

in
x x

k k




   
 

 . 

If the solution exists, then  

2 2

1 1
, exp 1 =

i
a x

2k

           
k k    

and  

2

1
, 1a x

    
kk  

 

which contradicts the Parsevall’s identity, we deduce that 
th lution.  
 
4. Application 
 
More details and the motivation on this applications can 

d in [4,14-20] and the references cited therein. 
To apply the previous results, we consider the 

following system 

e equation does not have a so

be foun

   

   

2 1 2 1 2 21 1 = 1
2n n n

q
p x p x x  

        
2 2 21 3

2

1 2 = 2

n n n

q
p x px a

x p x p q x px b


 

2 1 2 1 2 2 2n n n n n  

      
 

      



  

where  , ,a b AP   ,p q  with 0.q   n n

Remark 4.1: The last system comes from the re- 
search of solutions of the following second order 
differential equation with piecewise constant argument:  

     
2

2

d 1
1 = 2

2d

t
x t px t qx f t

t

             
. 

 .  where denotes the greatest integer function.  
In the case where 1,p   the system has a unique

 
 

solution  n n
x

  in  AP  ,
= 1, the 

 he intend to study 
sys omes 

re we 
the situ tem bec  ation where p

 

2 2 2 2 20 = 1 2 3
2 2

= 1 ,

n n n n

q q

2 1 2 1 2 2 2n n n n n

x x x a

x x q x x b

 
    

  

        
   

    
 



or more  

  2 2 = 2n nP x a

   2 1 2 2 ,n n n= 1I x q I x b  
    

  (13) 

where  

 

     2= 2 4 3 2P X q X q X    . 

 P   
th m

We know that is invertible if and only if the 
roots of are wi odulus different from 

tion 4.2: 1) Let . The equation 
has roo  if and only 

P  1 . 
Proposi

2
2 1a x a x

0 1 2, ,a a a 
ts of modulus 0 = 0a  

if 
1

2 0 1=a a a  or  

2 0

1 0

=

< 2 .

a a

a a





 

3 ,a   the following equation  2) For 
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3x a 2
3 2 1 0 = 0a x a x a  ,        (14) 

s roots of modulus 1  if an

2 0 1=a a a a   
3

or  

2 2
0 2 0 3 1 3=a a a a a  




 

Proof. It is clear that are roots of (
if 

2 0 3< 2 .a a a
a

1  14) if and only 

2 0 1=a a a  If  the eq
of modulus  if 

and only if their pro , which is equi nt 
to  the ab e omes then 

2 < 4

 is e
e cond

1 2 0

two conjugate comple roots which are 
,a a a

x 
duct qual 
ov ition 

uation admits 
1

vale1
b2 0= ,a a c 1a <  

02 a  For the second mits  as roots if 
and only if 

 eq tion, it adua 1
2 0 1=a a a , we can assume that 

if not we divide the e tion by , it is a 
 prove that  

3
a 

3 = 1,a  
matter to

qua  a3

2
0 2 0 1

2 0

= 1a a a a

a a

  



 

since the equation admits always a real root ,r  it will 
hav al roots with modulus equal to 1  if and

ill be factorized as follows  

< 2,

e non re  only 
if it w

  3 2 2
2 1 0 1 with < 2,x a x a cx c     

whch implies that =r

=x a x r x 

is a root, in the sequel 

.

If  we obtain  admits com- 
plex th modul en from the 

0a  

  01 =a2
0 2 0 1 0a a a a    

2
0 = 0,a

roots wi
 2 1 = 0x a x a 
us equal to 1  th

previous result, we deduce that  

1 = 1a
  

2 < 2.a

1 , the equ  as If 0 2 0 = 1a a a ation can be written
follows 

2 a 

 3 2 3 2 2
2 2 0= 1

    
1 0 2 0 0

2
0 2 0= 1

x a x a x a x a x a a a x a        


x a x a a x   
 

We will have no real roots with modulus equal to
if and only if 

 1  

2 0 < 2.a a    
4, Corollary 4.3: 1) If the roots of  are 

modulus different from
 q   P of 
 1  (we assume that 0q  ). 

2) If    = 2 1 3 1 .X X= 4,q   P X     
Proof. It suffices to apply the previous proposition. 
Proposition 4.4: If  the system (13) admits 

solutions if and only if  

  
4,q  

 2 Imn na b I   . 

If = 4,q   the system (13) admits solutions if an  
only if 

d

 
 

Imna I

a b 
 


2 Imn n I

 
  

 


Proof. First case: 4 :q    the system becomes 

     1

2 1( ) = 2 1n n

1
2 2 = 2 ( )n nx P a

.nI x q I P a  


 



b   

 

Th  admits solutions if and only if  is system

      1
2 1 Imn nq I P a b I      , 

or yet  

         2 1 Im = Im ,n nq I a P b P I I         

 

since  P   
 resp

is invertible. Make the Euclidean d ision 
of ectively 

iv
P  1 1q X   by 1X 

 
, we s

th  cond t to
ee that 

e previous ition is equivalen

 2 4 Imn nqa qb I   , 

identically 

 2 Imn na b I   . 

Second case: = 4 :q   
The system becomes  

  
  

2 2

2 1 2 2

2 3 = 2

= 3 ,
n n

n n n

I I x a

I x I x
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2 2

1

2 2 2 1

3 =
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I I x a

nx I I x b

 

 



 

  

  
 




Let us consider the following system 

  (( )I I

    
2 1

1

2 2 2 1

) =

= 3 ,

n n n

n n

x b a

nx I I x b 



 




   
 

   

which has solutions if and only if 

   
   

Im

= Im Im ,
n n I b a I I

I I

 
 

     
   

 


which is equivalent to  

 Imna I  
 2 Imn na b I   
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