
Applied Mathematics, 2015, 6, 2319-2325 
Published Online December 2015 in SciRes. http://www.scirp.org/journal/am 
http://dx.doi.org/10.4236/am.2015.614204   

How to cite this paper: Farahani, M.R. and Gao, W. (2015) The Schultz Index and Schultz Polynomial of the Jahangir Graphs 
J5,m. Applied Mathematics, 6, 2319-2325. http://dx.doi.org/10.4236/am.2015.614204 

 
 

The Schultz Index and Schultz Polynomial of 
the Jahangir Graphs J5,m 
Mohammad Reza Farahani1*, Wei Gao2 
1Department of Applied Mathematics of Iran University of Science and Technology (IUST), Narmak, Iran 
2School of Information Science and Technology, Yunnan Normal University, Kunming, China 

  
 
Received 13 November 2015; accepted 28 December 2015; published 31 December 2015 

 
Copyright © 2015 by authors and Scientific Research Publishing Inc. 
This work is licensed under the Creative Commons Attribution International License (CC BY). 
http://creativecommons.org/licenses/by/4.0/ 

    
 

 
 

Abstract 
Let G be simple connected graph with the vertex and edge sets V(G) and E(G), respectively. The 
Schultz and Modified Schultz indices of a connected graph G are defined as  

( ) ( ) ( )( )∑ ,2
,1

u v V G u vSc G d d d u v
∈

= +  and ( ) ( ) ( )( )∑ ,2
,1

u vu v V G u vSc G d d d
∈

∗ = × , where d(u, v) is the dis-

tance between vertices u and v; dv is the degree of vertex v of G. In this paper, computation of the 
Schultz and Modified Schultz indices of the Jahangir graphs J5,m is proposed. 
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1. Introduction 
Let G be simple connected graph with the vertex set V(G) and the edge set E(G). For vertices u and v in V(G), 
we denote by d(u, v) the topological distance i.e., the number of edges on the shortest path, joining the two ver-
tices of G.  

A topological index is a numerical quantity derived in an unambiguous manner from the structure graph of a 
molecule. As a graph structural invariant, i.e. it does not depend on the labelling or the pictorial representation 
of a graph. Various topological indices usually reflect molecular size and shape.  

As an oldest topological index in chemistry, the Wiener index was first introduced by Harold Wiener [1] in 
1947 to study the boiling points of paraffin. It plays an important role in the so-called inverse structure-property 
relationship problems. The Wiener index of G is defined as [1]-[7]: 

 

 

*Corresponding author. 

http://www.scirp.org/journal/am
http://dx.doi.org/10.4236/am.2015.614204
http://dx.doi.org/10.4236/am.2015.614204
http://www.scirp.org
http://creativecommons.org/licenses/by/4.0/


M. R. Farahani, W. Gao    
 

 
2320 

( ) ( )
( )( )

1 ,
2 v V G u V G

d v uW G
∈ ∈

= ∑ ∑  

The Hosoya polynomial was introduced by Haruo Hosoya, in 1988 [8] and defined as follows: 

( ) ( )

( )( )

,

2
, 1 d v u

v V G u V G
H G xx

∈ ∈

= ∑ ∑  

The number of incident edges at vertex v is called degree of v and denoted by dv.  
The Schultz index of a molecular graph G was introduced by Schultz [9] in 1989 for characterizing alkanes by 

an integer as follow: 

( ) ( ) ( )
{ } ( ),

1 , .
2 u v V

u
G

vSc G d d d u v
⊂

= +∑  

The Modified Schultz index of a graph G was introduced by S. Klavžar and I. Gutman in 1996 as follow [10]: 

( ) ( ) ( )
{ } ( )

*

,

1 , .
2 u

u v V G
vSc G d d d u v

⊂

= ×∑  

Also the Schultz and Modified Schultz polynomials of G are defined as: 

( ) ( ) ( )

{ } ( )

,

,

1,
2

d u v
u v

u v V G
Sc G x d d x

⊂

= +∑  

( ) ( ) ( )

{ } ( )

,

,

* 1,
2

d u v
u v

u v V G
Sc G x d d x

⊂

= ×∑  

where du and dv are degrees of vertices u and v. 
The Schultz indices have been shown to be a useful molecular descriptors in the design of molecules with de-

sired properties, reader can see the paper series [11]-[29]. 
In this paper computation of the Schultz and Modified Schultz indices of the Jahangir graphs J5,m are pro-

posed. The Jahangir graphs J5,m 3m∀ ≥  is defined as a graph on 5m + 1 vertices and 6 m edges i.e., a graph 
consisting of a cycle C5m with one additional vertex (Center vertex c) which is adjacent to m vertices of C5m at 
distance 5 to each other on C5m. Some example of the Jahangir graphs and the general form of this graph are 
shown in Figure 1 and Figure 2 and the paper series [30]-[35]. 
 

 
Figure 1. Some examples of the Jahangir graphs J5,3, J5,4, J5,5, J5,6 and J5,8. 
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Figure 2. A general representation of the Jahangir graphs ,n mJ  n = 5, 3m∀ ≥ . 

2. Results and Discussion 
In this present section, we compute the Schultz and Modified Schultz indices and the Schultz and Modified 
Schultz polynomials of the Jahangir graphs ,n mJ  n = 5, 3m∀ ≥  as. 

Theorem 1. Let J5,m be the Jahangir graphs for all integer numbers 3m∀ ≥ . Then, the Schultz, Modified 
Schultz polynomials and indices are as: 

The Schultz index and polynomial are equal to 

• 
( ) 2 1 2 2 2 3

5,

2 4 2 5 2 6

, 27 7 23 12 16

20 24 16 24 8 20 ,

mSc J x m m x m m x m m x

m m x m m x m m x

          = + + + + +

+          − − + + −
 

• ( ) 2
5, 259 215mSc J m m= − . 

The Modified Schultz index and polynomial are equal to: 

• 
( )

2
* 2 1 2 2 3

5,

2 4 2 5 2 6

19, 3 24 16 12
2

24 32

1

16 24 8 20 ,

7
m

m mSc J x m m x x m m x

m m x m m x m m x

 +  = + + + +   


  

       



+ − +  − − +

 

• ( )* 2
5, 292 289 .mSc J m m= −  

Proof. Let J5,m be Jahangir graphs 3m∀ ≥  with 5m + 1 vertices and 6 m edges. From Figure 1 and Figure 2, 
we see that 4 m vertices of J5,m have degree two and m vertices of J5,m have degree three and one additional ver-
tex (Center vertex) of J5,m has degree m. Thus we have three partitions of the vertex set ( )5,mV J  as follow 

( ){ }2 5, 22 4m vV v V J d V m= ∈ = → =  

( ){ }3 5, 33m vV v V J d V m= ∈ = → =  

( ){ }5, 1m m c mV c V J d m V= ∈ = → =  

Obviously, ( )5, 2 3m mV J V V V=    and 2 3 ,mV V V =∅   thus  

( )5, 2 3
1 2 3 6 .
2m mE J V V m V m = × + × + × =   

Now, for compute the Schultz and Modified Schultz indices and the Schultz and Modified Schultz polyno-
mials of the Jahangir graphs ,n mJ , we see that for all vertices u, v in ( ) ( ) { }5, , , 1, 2, ,6mV J d u v∃ ∈   and the 
diameter of the Jahangir graph J5,m is equal to ( )5, 6md J = . 

Now, we compute all cases of d(u,v)-edge-paths ( ), 1, 2, ,6d u v =   of J5,m in Table 1.  
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Table 1. All cases of ( ),d u v -edge-paths ( ), 1,2, ,6d u v =   of the Jahangir graph J5,m. 

The distance  
( ),d u v i=  degrees of du & dv 

Number of i-edges  
paths 

Term of Schultz  
polynomial 

Term of Modified  
Schultz polynomial 

1 2 & 2 3 33 2m V V= +  12m 12m 

1 2 & 3 32 2m V=  10m 12m 

1 3 & 3 0 0 0 

1 2 & m 0 0 0 

1 3 & m 3m V=  ( )3m m+  23m  

2 2 & 2 3 32 V V+  12m 12m 

2 2 & 3 32 V  10m 12m 

2 3 & 3 ( )3 3

1 1
2

V V −  ( )3 1m m −  ( )9 1
2

m m −  

2 2 & m 32 2m V=  ( )2 2m m +  4m2 

2 3 & m 0 0 0 

3 2 & 2 3 32 V V+  12m 12m 

3 2 & 3 ( )3 32 2 1V V m+ −  10m2 12m2 

3 3 & 3 0 0 0 

3 2 & m 32m V=  ( )2 2m m +  4m2 

3 3 & m 0 0 0 

4 2 & 2 ( )3 32 3m V V+ −  ( )8 1m m −  ( )8 1m m −  

4 2 & 3 ( )3 32 4V V −  ( )10 2m m −  ( )12 2m m −  

4 3 & 3 0 0 0 

4 2 & m 32 2m V=  ( )2 2m m +  4m2 

4 3 & m 0 0 0 

5 2 & 2 ( )2 3

12 2 4
2

m V V+ −  ( )8 2 3m m −  ( )8 2 3m m −  

5 2 & 3 0 0 0 

5 3 & 3 0 0 0 

5 2 & m 0 0 0 

5 3 & m 0 0 0 

6 2 & 2 ( )3 3

1 2 5
2

V V −  ( )4 2 5m m −  ( )4 2 5m m −  

6 2 & 3 0 0 0 

6 3 & 3 0 0 0 

6 2 & m 0 0 0 

6 3 & m 0 0 0 
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For example, in case ( ) ( )5,, 1, , md u v v u V J= ∀ ∈ ; one can see that there are 3V m=  1-edges paths between 
the vertex c and vertices from V3 (where 3, 3c v c vd d m d d m+ = + × = ). There exist two 1-edges paths starts 
every vertex 3u V∈  until 2v V∈  (where 5, 6u v u vd d d d+ = × = ). There are 3 m 1-edges paths between two 
vertices ( )2 5,, mu v V V J∈ ⊂  (two adjacent vertices or edges), such that 4u v u vd d d d+ = × = . Thus, the first 
terms of the Schultz and Modified Schultz polynomials of J5,m are equal to  

( )( ) ( )1 2 112 10 3 27m m m m x m m x+ + + = +  and ( ) ( )2 212 12 3 3 24m m m x m m x+ + = +  respectively. 
Also, in case ( ) ( )5,, 2, , md u v v u V J= ∀ ∈ ; there are two 2-edges paths between Center vertex ( )5,mc V J∈   

and other vertices of vertex set ( )2 5,mV V J⊂ . ( )3
1 1
2

V m −  2-edges paths between all vertices of  

( )3 5,, mu v V V J∈ ⊂  and 3 32 V V+  2-edges paths start from vertices of 2V  until vertices of 3V  and 
( )2 5,mV V J⊂ . Thus, the second terms of the Schultz and Modified Schultz polynomials of 5,mJ  are equal to 

( ) ( )( ) 212 10 3 1 2 2m m m m m m x+ + − + +  and ( )( )2 212 12 1 4m m m m m x+ + − + , respectively. 
By using the definition of the Jahangir graphs and Figure 1 and Figure 2, we can compute other terms of the 

Schultz and Modified Schultz polynomials of J5,m. We compute and present all necessary results on based the 
degrees of du & dv for all cases of ( ),d u v -edge-paths ( ), 1, 2, ,6d u v =   in following table.  

Now, we can compute all coefficients of the Schultz ( )5, ,mSc J x  and Modified Schultz ( )*
5, ,mSc J x  poly-

nomials and indices of J5,m by using all cases of the ( ),d u v -edge-paths ( )( ), 1, 2, ,6d u v =   of the Jahangir 
graph J5,m in Table 1 and alternatively 

( ) ( ) ( )

( )
( )

( ) ( ) ( )
( ) ( ) ( ) ( ) ( )

5,

, 1
5,

2 2 3

,

4 5 6

2 1 2 2 2

, 12 12 0 0 3

12 10 3 1 2 2 0 12 10 0 2 2 0

8 1 10 2 0 2 2 0 8 2 3 4 2 5

27 7 23

2

2 16

1

1

mu v V

d u v
m u v

J
Sc J x d d x m m m m x

m m m m m m x m m m m x

m m m m m m x m m x m m x

m m x m m x m m

∈

= + = + + + + +

+ + + − + + + + + + + + +

+ − + − + + + + + − + −      

= + + +

  

     
  

     + + 

∑

3 2 4

2 5 2 6

20 24

16 24 8 20 .

x m m x

m m x m m x

+ −

+ −

    
      + −

 

From the definition of Schultz index and the Schultz Polynomial of G, we can compute the Schultz index of 
the Jahangir graph J5,m by the first derivative of Schultz polynomial of J5,m (evaluated at x = 1) as follow: 

( ) ( ) ( ) ( ) ( )(

( ) ( ) ( ) )
( ) ( ) ( ) ( )
( ) ( )

5, 2 1 2 2 2 3
5,

2 4 2 5 2 6

2 2 2 2

2 2

1

2

1

,
27 7 23 12 16

20 24 16 24 8 20

27 1 7 23 2 12 16 3 20 24 4

16 24 5 8 20 6

259 215 .

x

m

x

m

Sc J x
Sc J m m x m m x m m x

m m x m m x m m x

m m m m m m m

x x

m

m m m m

m m

=

=

= + + + + +

+ − + − + −

= + × + + × + + × + − ×

+ − × + − × 

= −

∂ ∂
=

∂ ∂

 

And also Modified Schultz polynomial of J5,m is equal to  

( ) ( ) ( )

( )

( )
( ) ( ) ( ) ( )

5,

,* 2 1
5,

2 2 2 2 3

2 4 5 6

2

,

1 2 2 217

1, 12 12 0 0 3
2

12 12 1 4 0 12 12 0 4 0

8 1 12 2 0 4 0 8 2 3 4 2 5

3 24 16 1219
2 2

m

d u v
m u v

v Ju V
Sc J x d d x m m m x

m m m m m x m m m x

m m m m m x m m x m m x

m m x m m x m m

∈

 = × = + + + + 

 + + + − + + + + + + + 
 + − + − + + + + − + −       

   = +

  

  + + +
 +   

∑

3 2 4

2 5 2 6

24 32

16 24 8 20 .

x m m x

m m x m m x

 + −  

+ − + −      
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And from the first derivative of Schultz Modified polynomial of the Jahangir graph J5,m (evaluated at x = 1), 
the Modified Schultz index of J5,m is equal to: 

( ) ( )

( ) ( )(
( ) ( ) )

*
5,*

5,

2 1 2 2 2 3 2 4

2 5 2 6

1

2
1

,

3 24 16 12 24 32

16 24 8 20

2

)

92 28

(

9 .

)

m
m

x

x

Sc J x
Sc J

m m x m m x m m x m m x

m m x m m x

m m

x

x

=

=

∂

∂
=

+ +
∂

= + + + + −

+ − + −

= −

∂
 

Here these completed the proof of Theorem 1. ■ 
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