

The Schultz Index and Schultz Polynomial of the Jahangir Graphs *J*_{5,m}

Mohammad Reza Farahani^{1*}, Wei Gao²

¹Department of Applied Mathematics of Iran University of Science and Technology (IUST), Narmak, Iran ²School of Information Science and Technology, Yunnan Normal University, Kunming, China Email: ^{*}MrFarahani88gmail.com, gaowei@ynnu.edu.cn

Received 13 November 2015; accepted 28 December 2015; published 31 December 2015

Copyright © 2015 by authors and Scientific Research Publishing Inc. This work is licensed under the Creative Commons Attribution International License (CC BY). http://creativecommons.org/licenses/by/4.0/

Abstract

Let G be simple connected graph with the vertex and edge sets V(G) and E(G), respectively. The Schultz and Modified Schultz indices of a connected graph G are defined as

 $Sc(G) = \frac{1}{2} \sum_{u,v \in V(G)} (d_u + d_v) d(u,v)$ and $Sc^{\bullet}(G) = \frac{1}{2} \sum_{u,v \in V(G)} (d_u \times d_v) d(u,v)$, where d(u, v) is the distance between vertices u and v; d_v is the degree of vertex v of G. In this paper, computation of the Schultz and Modified Schultz indices of the Jahangir graphs $I_{5,m}$ is proposed.

Keywords

Wiener Index, Schultz Index, Modified Schultz Index, Distance, Jahangir Graphs

1. Introduction

Let G be simple connected graph with the vertex set V(G) and the edge set E(G). For vertices u and v in V(G), we denote by d(u, v) the topological distance *i.e.*, the number of edges on the shortest path, joining the two vertices of G.

A topological index is a numerical quantity derived in an unambiguous manner from the structure graph of a molecule. As a graph structural invariant, *i.e.* it does not depend on the labelling or the pictorial representation of a graph. Various topological indices usually reflect molecular size and shape.

As an oldest topological index in chemistry, the Wiener index was first introduced by *Harold Wiener* [1] in 1947 to study the boiling points of paraffin. It plays an important role in the so-called inverse structure-property relationship problems. The Wiener index of G is defined as [1]-[7]:

How to cite this paper: Farahani, M.R. and Gao, W. (2015) The Schultz Index and Schultz Polynomial of the Jahangir Graphs $J_{5,m}$. Applied Mathematics, **6**, 2319-2325. <u>http://dx.doi.org/10.4236/am.2015.614204</u>

^{*}Corresponding author.

$$W(G) = \frac{1}{2} \sum_{v \in V(G)} \sum_{u \in V(G)} d(v, u)$$

The Hosoya polynomial was introduced by Haruo Hosoya, in 1988 [8] and defined as follows:

$$H(G, x) = \frac{1}{2} \sum_{v \in V(G)} \sum_{u \in V(G)} x^{d(v, u)}$$

The number of incident edges at vertex v is called degree of v and denoted by d_v .

The Schultz index of a molecular graph G was introduced by *Schultz* [9] in 1989 for characterizing alkanes by an integer as follow:

$$Sc(G) = \frac{1}{2} \sum_{\{u,v\} \in V(G)} (d_u + d_v) d(u,v).$$

The Modified Schultz index of a graph G was introduced by S. Klavžar and I. Gutman in 1996 as follow [10]:

$$Sc^{*}(G) = \frac{1}{2} \sum_{\{u,v\} \subset V(G)} \left(d_{u} \times d_{v} \right) d\left(u,v \right).$$

Also the Schultz and Modified Schultz polynomials of G are defined as:

$$Sc(G, x) = \frac{1}{2} \sum_{\{u,v\} \subset V(G)} (d_u + d_v) x^{d(u,v)}$$
$$Sc^*(G, x) = \frac{1}{2} \sum_{\{u,v\} \subset V(G)} (d_u \times d_v) x^{d(u,v)}$$

where d_u and d_v are degrees of vertices u and v.

The Schultz indices have been shown to be a useful molecular descriptors in the design of molecules with desired properties, reader can see the paper series [11]-[29].

In this paper computation of the Schultz and Modified Schultz indices of the Jahangir graphs $J_{5,m}$ are proposed. The Jahangir graphs $J_{5,m}$ $\forall m \ge 3$ is defined as a graph on 5m + 1 vertices and 6 *m* edges *i.e.*, a graph consisting of a cycle C_{5m} with one additional vertex (Center vertex *c*) which is adjacent to *m* vertices of C_{5m} at distance 5 to each other on C_{5m} . Some example of the Jahangir graphs and the general form of this graph are shown in **Figure 1** and **Figure 2** and the paper series [30]-[35].

Figure 1. Some examples of the Jahangir graphs $J_{5,3}$, $J_{5,4}$, $J_{5,5}$, $J_{5,6}$ and $J_{5,8}$.

Figure 2. A general representation of the Jahangir graphs $J_{n,m}$ n = 5, $\forall m \ge 3$.

2. Results and Discussion

In this present section, we compute the Schultz and Modified Schultz indices and the Schultz and Modified Schultz polynomials of the Jahangir graphs $J_{n,m}$ n = 5, $\forall m \ge 3$ as.

Theorem 1. Let $J_{5,m}$ be the Jahangir graphs for all integer numbers $\forall m \ge 3$. Then, the Schultz, Modified Schultz polynomials and indices are as:

The Schultz index and polynomial are equal to

•
$$Sc(J_{5,m}, x) = [m^{2} + 27m]x^{1} + [7m^{2} + 23m]x^{2} + [12m^{2} + 16m]x^{3} + [20m^{2} - 24m]x^{4} + [16m^{2} - 24m]x^{5} + [8m^{2} - 20m]x^{6},$$

•
$$Sc(J_{5,m}) = 259m^2 - 215m$$
.

The Modified Schultz index and polynomial are equal to:

•
$$Sc^* (J_{5,m}, x) = \left[3m^2 + 24m \right] x^1 + \left[\frac{17m^2 + 19m}{2} \right] x^2 + \left[16m^2 + 12m \right] x^3 + \left[24m^2 - 32m \right] x^4 + \left[16m^2 - 24m \right] x^5 + \left[8m^2 - 20m \right] x^6,$$

•
$$Sc^*(J_{5,m}) = 292m^2 - 289m$$

Proof. Let $J_{5,m}$ be Jahangir graphs $\forall m \ge 3$ with 5m + 1 vertices and 6m edges. From Figure 1 and Figure 2, we see that 4m vertices of $J_{5,m}$ have degree two and m vertices of $J_{5,m}$ have degree three and one additional vertex (Center vertex) of $J_{5,m}$ has degree m. Thus we have three partitions of the vertex set $V(J_{5,m})$ as follow

$$V_{2} = \left\{ v \in V\left(J_{5,m}\right) \middle| d_{v} = 2 \right\} \rightarrow \left| V_{2} \right| = 4m$$
$$V_{3} = \left\{ v \in V\left(J_{5,m}\right) \middle| d_{v} = 3 \right\} \rightarrow \left| V_{3} \right| = m$$
$$V_{m} = \left\{ c \in V\left(J_{5,m}\right) \middle| d_{c} = m \right\} \rightarrow \left| V_{m} \right| = 1$$

Obviously, $V(J_{5,m}) = V_2 \cup V_3 \cup V_m$ and $V_2 \cap V_3 \cap V_m = \emptyset$, thus

$$|E(J_{5,m})| = \frac{1}{2} [2 \times |V_2| + 3 \times |V_3| + m \times |V_m|] = 6m.$$

Now, for compute the Schultz and Modified Schultz indices and the Schultz and Modified Schultz polynomials of the Jahangir graphs $J_{n,m}$, we see that for all vertices u, v in $V(J_{5,m}), \exists d(u,v) \in \{1, 2, \dots, 6\}$ and the diameter of the Jahangir graph $J_{5,m}$ is equal to $d(J_{5,m}) = 6$.

Now, we compute all cases of d(u,v)-edge-paths $d'(u,v) = 1, 2, \dots, 6$ of $J_{5,m}$ in Table 1.

The distance $d(u,v) = i$	degrees of $d_u \& d_v$	Number of <i>i</i> -edges paths	Term of Schultz polynomial	Term of Modified Schultz polynomia
1	2 & 2	$3m = 2\left V_3\right + \left V_3\right $	12 <i>m</i>	12 <i>m</i>
1	2 & 3	$2m = 2 V_3 $	10 <i>m</i>	12 <i>m</i>
1	3 & 3	0	0	0
1	2 & m	0	0	0
1	3 & m	$m = V_3 $	(m+3)m	$3m^2$
2	2 & 2	$2 V_3 + V_3 $	12 <i>m</i>	12 <i>m</i>
2	2 & 3	$2 V_3 $	10 <i>m</i>	12 <i>m</i>
2	3 & 3	$\frac{1}{2} V_3 (V_3 -1)$	3m(m-1)	$\frac{9}{2}m(m-1)$
2	2 & m	$2m = 2 V_3 $	2m(m+2)	$4m^2$
2	3 & m	0	0	0
3	2 & 2	$2 V_3 + V_3 $	12 <i>m</i>	12 <i>m</i>
3	2 & 3	$2 V_3 +2 V_3 (m-1)$	$10m^{2}$	$12m^2$
3	3 & 3	0	0	0
3	2 & m	$2m = V_3 $	2m(m+2)	$4m^2$
3	3 & m	0	0	0
4	2 & 2	$m + V_3 (2 V_3 -3)$	8m(m-1)	8m(m-1)
4	2 & 3	$ V_3 (2 V_3 -4)$	10m(m-2)	12m(m-2)
4	3 & 3	0	0	0
4	2 & m	$2m = 2 V_3 $	2m(m+2)	$4m^2$
4	3 & <i>m</i>	0	0	0
5	2 & 2	$2m + \frac{1}{2} V_2 (2 V_3 -4)$	8m(2m-3)	8m(2m-3)
5	2 & 3	0	0	0
5	3 & 3	0	0	0
5	2 & m	0	0	0
5	3 & <i>m</i>	0	0	0
6	2 & 2	$\frac{1}{2} V_3 (2 V_3 -5)$	4m(2m-5)	4m(2m-5)
6	2 & 3	0	0	0
6	3 & 3	0	0	0
6	2 & m	0	0	0
6	3 & m	0	0	0

For example, in case $d(u,v) = 1, \forall v, u \in V(J_{5,m})$; one can see that there are $|V_3| = m$ 1-edges paths between the vertex *c* and vertices from V_3 (where $d_c + d_v = m + 3, d_c \times d_v = 3m$). There exist two 1-edges paths starts every vertex $u \in V_3$ until $v \in V_2$ (where $d_u + d_v = 5, d_u \times d_v = 6$). There are 3 *m* 1-edges paths between two vertices $u, v \in V_2 \subset V(J_{5,m})$ (two adjacent vertices or edges), such that $d_u + d_v = d_u \times d_v = 4$. Thus, the first terms of the Schultz and Modified Schultz polynomials of $J_{5,m}$ are equal to

 $(12m+10m+(m+3)m)x^{1} = (m^{2}+27m)x^{1}$ and $(12m+12m+3m^{2})x = (3m^{2}+24m)x$ respectively.

Also, in case $d(u,v) = 2, \forall v, u \in V(J_{5,m})$; there are two 2-edges paths between Center vertex $c \in V(J_{5,m})$ and other vertices of vertex set $V_2 \subset V(J_{5,m})$. $\frac{1}{2}|V_3|(m-1)|$ 2-edges paths between all vertices of

 $u, v \in V_3 \subset V(J_{5,m})$ and $2|V_3| + |V_3|$ 2-edges paths start from vertices of V_2 until vertices of V_3 and $V_2 \subset V(J_{5,m})$. Thus, the second terms of the Schultz and Modified Schultz polynomials of $J_{5,m}$ are equal to $(12m+10m+3m(m-1)+2m(m+2))x^2$ and $(12m+12m+m(m-1)+4m^2)x^2$, respectively.

By using the definition of the Jahangir graphs and Figure 1 and Figure 2, we can compute other terms of the Schultz and Modified Schultz polynomials of $J_{5,m}$. We compute and present all necessary results on based the degrees of $d_u \& d_v$ for all cases of d(u,v)-edge-paths $d(u,v)=1,2,\cdots,6$ in following table.

Now, we can compute all coefficients of the Schultz $Sc(J_{5,m}, x)$ and Modified Schultz $Sc^*(J_{5,m}, x)$ polynomials and indices of $J_{5,m}$ by using all cases of the d(u, v)-edge-paths $(d(u, v) = 1, 2, \dots, 6)$ of the Jahangir graph $J_{5,m}$ in Table 1 and alternatively

$$Sc(J_{5,m}, x) = \frac{1}{2} \sum_{u,v \in V(J_{5,m})} (d_u + d_v) x^{d(u,v)} = [12m + 12m + 0 + 0 + m(m+3)] x^1 + [12m + 10m + 3m(m-1) + 2m(m+2) + 0] x^2 + [12m + 10m^2 + 0 + 2m(m+2) + 0] x^3 + [8m(m-1) + 10m(m-2) + 0 + 2m(m+2) + 0] x^4 + [8m(2m-3)] x^5 + [4m(2m-5)] x^6 = [m^2 + 27m] x^1 + [7m^2 + 23m] x^2 + [12m^2 + 16m] x^3 + [20m^2 - 24m] x^4 + [16m^2 - 24m] x^5 + [8m^2 - 20m] x^6.$$

From the definition of Schultz index and the Schultz Polynomial of *G*, we can compute the Schultz index of the Jahangir graph $J_{5,m}$ by the first derivative of Schultz polynomial of $J_{5,m}$ (evaluated at x = 1) as follow:

$$Sc(J_{5,m}) = \frac{\partial Sc(J_{5,m}, x)}{\partial x} \bigg|_{x=1} = \frac{\partial}{\partial x} ((m^2 + 27m)x^1 + (7m^2 + 23m)x^2 + (12m^2 + 16m)x^3 + (20m^2 - 24m)x^4 + (16m^2 - 24m)x^5 + (8m^2 - 20m)x^6)_{x=1}$$
$$= \left[(m^2 + 27m) \times 1 + (7m^2 + 23m) \times 2 + (12m^2 + 16m) \times 3 + (20m^2 - 24m) \times 4 + (16m^2 - 24m) \times 5 + (8m^2 - 20m) \times 6 \right]$$
$$= 259m^2 - 215m.$$

And also Modified Schultz polynomial of $J_{5,m}$ is equal to

$$Sc^{*}(J_{5,m},x) = \frac{1}{2} \sum_{u,v \in V(J_{5,m})} (d_{u} \times d_{v}) x^{d(u,v)} = \left[12m + 12m + 0 + 0 + 3m^{2}\right] x^{1} \\ + \left[12m + 12m + m(m-1) + 4m^{2} + 0\right] x^{2} + \left[12m + 12m^{2} + 0 + 4m^{2} + 0\right] x^{3} \\ + \left[8m(m-1) + 12m(m-2) + 0 + 4m^{2} + 0\right] x^{4} + \left[8m(2m-3)\right] x^{5} + \left[4m(2m-5)\right] x^{6} \\ = \left[3m^{2} + 24m\right] x^{1} + \left[\frac{17}{2}m^{2} + \frac{19}{2}m\right] x^{2} + \left[16m^{2} + 12m\right] x^{3} + \left[24m^{2} - 32m\right] x^{4} \\ + \left[16m^{2} - 24m\right] x^{5} + \left[8m^{2} - 20m\right] x^{6}.$$

And from the first derivative of Schultz Modified polynomial of the Jahangir graph $J_{5,m}$ (evaluated at x = 1), the Modified Schultz index of $J_{5,m}$ is equal to:

$$Sc^{*}(J_{5,m}) = \frac{\partial Sc^{*}(J_{5,m}, x)}{\partial x} \bigg|_{x=1}$$

= $\frac{\partial}{\partial x} (3m^{2} + 24m)x^{1} + (m^{2} + m)x^{2} + (16m^{2} + 12m)x^{3} + (24m^{2} - 32m)x^{4} + (16m^{2} - 24m)x^{5} + (8m^{2} - 20m)x^{6})_{x=1}$
= $292m^{2} - 289m$.

Here these completed the proof of Theorem 1. ■

Acknowledgements

The authors are thankful to Professor *Emeric Deutsch* from Department of Mathematics of Polytechnic University (Brooklyn, NY 11201, USA) for his precious support and suggestions. The research is also partially supported by NSFC (No. 11401519).

Conflict of Interests

The authors declare that there is no conflict of interests regarding the publication of this paper.

References

- [1] Wiener, H. (1947) Structural Determination of Paraffin Boiling Points. *Journal of the American Chemical Society*, **69**, 17-20. <u>http://dx.doi.org/10.1021/ja01193a005</u>
- Gutman, I. and Polansky, O.E. (1986) Mathematical Concepts in Organic Chemistry. Springer, Berlin. <u>http://dx.doi.org/10.1007/978-3-642-70982-1</u>
- [3] Gutman, I., Klavžar, S. and Mohar, B., Eds. (1997) Fifty Years of the Wiener Index. MATCH Communications in Mathematical and in Computer Chemistry, 35, 1-259.
- [4] Gutman, I., Klavžar, S. and Mohar, B., Eds. (1997) Fiftieth Anniversary of the Wiener Index. *Discrete Applied Mathematics*, **80**, 1-113.
- [5] Farahani, M.R. (2013) Hosoya Polynomial, Wiener and Hyper-Wiener Indices of Some Regular Graphs. *Informatics Engineering, an International Journal (IEIJ)*, **1**, 9-13.
- [6] Farahani, M.R. and Rajesh Kanna, M.R. (2015) Computing Hosoya Polynomial, Wiener Index and Hyper-Wiener Index of Harary Graph. *Applied Mathematics*, 5, 93-96.
- [7] Farahani, M.R. (2015) Computation of the Wiener Index of Harary Graph. Fundamental Journal of Mathematics and Mathematical Science, 2, 45-54.
- Hosoya, H. (1988) On Some Counting Polynomials in Chemistry. Discrete Applied Mathematics, 19, 239-257. http://dx.doi.org/10.1016/0166-218X(88)90017-0
- [9] Schultz, H.P. (1989) Topological Organic Chemistry 1. Graph Theory and Topological Indices of Alkanes. *Journal Chemical Information and Computational Science*, 29, 227-228. <u>http://dx.doi.org/10.1021/ci00063a012</u>
- [10] Klavžar, S. and Gutman, I. (1996) A Comparison of the Schultz Molecular Topological Index with the Wiener Index. Journal Chemical Information and Computational Science, 36, 1001-1003. <u>http://dx.doi.org/10.1021/ci9603689</u>
- Todeschini, R. and Consonni, V. (2000) Handbook of Molecular Descriptors. Wiley VCH, Weinheim. <u>http://dx.doi.org/10.1002/9783527613106</u>
- [12] Karelson, M. (2000) Molecular Descriptors in QSAR/QSPR. Wiley Interscience, New York.
- [13] Iranmanesh, A. and Alizadeh, Y. (2008) Computing Wiener and Schultz Indices of $HAC_5C_7[p,q]$ Nanotube by GAP Program. *American Journal of Applied Sciences*, **5**, 1754-1757. <u>http://dx.doi.org/10.3844/ajassp.2008.1754.1757</u>
- [14] Eliasi, M. and Taeri, B. (2008) Schultz Polynomials of Composite Graphs. Applicable Analysis and Discrete Mathematics, 2, 285-296. <u>http://dx.doi.org/10.2298/AADM0802285E</u>
- [15] Iranmanesh, A. and Alizadeh, Y. (2009) Computing Szeged and Schultz Indices of $HAC_5C_7C_9[p,q]$ Nanotube by

Gap Program. Digest Journal of Nanomaterials and Biostructures, 4, 67-72.

- [16] Alizadeh, Y., Iranmanesh, A. and Mirzaie, S. (2009) Computing Schultz Polynomial, Schultz Index of C₆₀ Fullerene by Gap Program. *Digest Journal of Nanomaterials and Biostructures*, 4, 7-10.
- [17] Iranmanesh, A. and Alizadeh, Y. (2009) Computing Hyper-Wiener and Schultz Indices of $TUZC_6[p,q]$ Nanotube by Gap Program. *Digest Journal of Nanomaterials and Biostructures*, **4**, 607-611.
- [18] Halakoo, O., Khormali, O. and Mahmiani, A. (2009) Bounds for Schultz Index of Pentachains. Digest Journal of Nanomaterials and Biostructures, 4, 687-691.
- [19] Heydari, A. and Taeri, B. (2007) Wiener and Schultz Indices of $TUC_4C_8(S)$ Nanotubes. MATCH Communications in Mathematical and in Computer Chemistry, **57**, 665-676.
- [20] Heydari, A. (2010) Schultz Index of Regular Dendrimers. *Optoelectronics and Advanced Materials: Rapid Communications*, **4**, 2209-2211.
- [21] Heydari, A. (2010) On the Modified Schultz Index of $C_4C_8(S)$ Nanotubes and Nanotorus. Digest Journal of Nanomaterials and Biostructures, 5, 51-56.
- [22] Hedyari, A. (2011) Wiener and Schultz Indices of V-Naphthalene Nanotori. Optoelectronics and Advanced Materials: Rapid Communications, 5, 786-789.
- [23] Farahani, M.R. and Vlad, M.P. (2012) On the Schultz, Modified Schultz and Hosoya Polynomials and Derived Indices of Capra-Designed Planar Benzenoid. *Studia UBB Chemia*, 57, 55-63.
- [24] Farahani, M.R. (2013) On the Schultz and Modified Schultz Polynomials of Some Harary Graphs. *International Journal of Applications of Discrete Mathematics*, **1**, 1-8.
- [25] Gao, W. and Wang, W.F. (2015) The Vertex Version of Weighted Wiener Number for Bicyclic Molecular Structures. Computational and Mathematical Methods in Medicine, 2015, 1-10. <u>http://dx.doi.org/10.1155/2015/418106</u>
- [26] Farahani, M.R. (2013) Hosoya, Schultz, Modified Schultz Polynomials and Their Topological Indices of Benzene Molecules: First Members of Polycyclic Aromatic Hydrocarbons (PAHs). *International Journal of Theoretical Chemistry*, 1, 9-16.
- [27] Farahani, M.R. (2013) On the Schultz Polynomial, Modified Schultz Polynomial, Hosoya Polynomial and Wiener Index of Circumcoronene Series of Benzenoid. *Applied Mathematics & Information Sciences*, **31**, 595-608. <u>http://dx.doi.org/10.14317/jami.2013.595</u>
- [28] Raut, N.K. (2014) Topological Indices and Polynomials in Isomers of Organic Compounds. International Journal of Mathematics and Computer Research, 2, 456-461.
- [29] Raut, N.K. (2014) Schultz, Modified Schultz and Hosoya Polynomials and Their Indices in 2,3-Dimethyl Hexane an Isomer of Octane. *International Journal of Mathematics and Computer Research*, 2, 587-592.
- [30] Ali, K., Baskoro, E.T. and Tomescu, I. (2007) On the Ramzey Number of Paths and Jahangir Graph J_{3,m}. Proceedings of the 3rd International Conference on 21st Century Mathematics, Lahore, 4-7 March 2007.
- [31] Mojdeh, D.A. and Ghameshlou, A.N. (2007) Domination in Jahangir Graph *J*_{2,m}. *International Journal of Contemporary Mathematical Sciences*, **2**, 1193-1199.
- [32] Ramachandran, M. and Parvathi, N. (2015) The Medium Domination Number of a Jahangir Graph J_{m,n}. Indian Journal of Science and Technology, 8, 400-406. <u>http://dx.doi.org/10.17485/ijst/2015/v8i5/60462</u>
- [33] Farahani, M.R. (2015) Hosoya Polynomial and Wiener Index of Jahangir Graphs $J_{2,m}$. Pacific Journal of Applied Mathematics, 7, In Press.
- [34] Farahani, M.R. (2015) The Wiener Index and Hosoya Polynomial of a Class of Jahangir Graphs J_{3,m}. Fundamental Journal of Mathematics and Mathematical Science, 3, 91-96.
- [35] Farahani, M.R. (2015) Hosoya Polynomial of Jahangir Graphs J_{4,m}. Global Journal of Mathematics, **3**, 232-236.