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Abstract 
With the development of fuzzy measure theory, the integral inequalities based on Sugeno integral 
are extensively investigated. We concern on the inequalities of Choquuet integral. The main pur-
pose of this paper is to prove the Hölder inequality for any arbitrary fuzzy measure-based Choquet 
integral whenever any two of these integrated functions f, g and h are comonotone, and there are 
three weights. Then we prove Minkowski inequality and Lyapunov inequality for Choquet integral. 
Moreover, when any two of these integrated functions f1, f2, ∙∙∙, fn are comonotone, we also obtain 
the Hölder inequality, Minkowski inequality and Lyapunov inequality hold for Choquet integral. 
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1. Introduction 
The Choquet integral, introduced in [1], of a nonnegative, σ -measurable function f, based on a fuzzy measure 
µ  on measurable set A, is defined as 

( ) ( )
A 0

d A d .C f Fαµ µ α
∞

=∫ ∫   

Ralescu and Adams [2] studied several equivalent definitions of fuzzy integral, while Pap [3] and Wang and 
Klir [4] provided an overview of fuzzy measure theory. The main properties of Choquet integral are monotonic-
ity and positive homogeneity, see [3] [5]. Although the Choquet integral have the positive homogeneity, 

( ) ( )d d , 0,C f C fλ µ λ µ λ= ≥∫ ∫  
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but it is generally nonlinear with respect to its integral due to the nonadditivity of µ . That is, we may have 

( ) ( ) ( ) ( )d d d .C f g C f C gµ µ µ+ ≠ +∫ ∫ ∫  

So, in some sense, the Choquet integral ia a kind of fuzzy integral. But, unlike the Sugeno integral [6], the 
Choquet integral is a real generalization of the Lebesgue integral. In the special case when the monotone meas-
ure is σ -additive, the Choquet integral coincides with the Lebesgue integral since the definition of the Choquet 
integral is just an equivalent definition the Lebesgue integral. The main fields for application of the Choquet 
integral are engineering, soft computing, social sciences, patter recognition and decision analysis [7] [8]. 

Integral inequalities are useful tools in several theoretical and applied fields. For more information on classic-
al inequalities, we refer the reader to the distinguished monograph [9] [10]. Recently, Li and Sun [11] provided 
Hölder type inequalities for Sugeno integral. Some other classical inequalities have also been generalized to Su-
geno integral by other authors (see, for example [12] [13]). And Song have been proved the Berwald type in-
equality for extremal universal integrals based on ( ),mα -concave function in [14] and Song also provided 
fuzzy algebra in triangular norm system in [15]. Recently Li and Song [16] proved Hermite-Hadamard type in-
equality for Sugeno integrals based on ( ), mα -convex function. Then Li and Song [17] proved Generalization 
of Liyapunov type inequality for pseudo-integrals. In [18] we proved Sandor’s type inequality for fuzzy inte-
grals based on ( ),mα -Convex function. 

Section 2 consists of some preliminaries and notations about Choquet integral. In section 3, we prove the 
Hölder inequality for arbitrary fuzzy measure-based Choquet integral whenever any two of these integrated 
functions are comonotone. Then, we prove Minkowski inequalities and Lyapunov inequality for arbitrary fuzzy 
measure-based Choquet integral whenever any two of these integrated functions are comonotone. And including 
several examples. Finally, some conclusions are drawn. 

2. Preliminaries 
In this section we recall some basic definitions and previous results that will be used in the sequel. 

As usual we denote by R the set of real numbers. Let X be a nonempty set, Σ  be a σ -algebra of subsets of 
X, and R+  denote [ )0,+∞ . Also, let A∈Σ  and f be a nonnegative measurable function on ( )X,Σ ,  

[ ]: 0,µ Σ→ +∞  is a monotone measure. 
Definition 1. ([11]) A set function : Rµ +Σ→  is called a fuzzy measure if the following properties are satis-

fied: 
(FM1) ( ) 0µ φ = ; 
(FM2) A B⊂  implies ( ) ( )A Bµ µ≤ ; 
(FM3) 1 2A A⊂ ⊂ , implies ( ) ( )1

A lim A ;n nn n
µ µ∞

= →∞
=



 

(FM4) 1 2A A⊃ ⊃ , and ( )Aµ < +∞  imply ( ) ( )1
A lim A .n nn n

µ µ∞

= →∞
=



 

When µ  is a fuzzy measure, then the triple ( )X, ,µΣ  is called a fuzzy measure space. 
Definition 2. ([4]) The Choquet integral of a nonnegative measurable function f with respect to monotone 

measure µ  on measurable set A, denoted by ( )
A

dC f µ∫ , is defined by the formula 

( ) ( )
A 0

d A d ,C f Fαµ µ α
∞

=∫ ∫   

where ( ){ }F x f xα α= ≥  for [ )0,α ∈ ∞ . When A X= , ( )
X

dC f µ∫  is usually written as ( ) dC f µ∫ . 

Since f in Definition 2 is measurable, we know that ( ){ }F x f xα α= ≥ ∈Σ  for [ )0,α ∈ ∞  and, therefore 
AFα ∈Σ , so ( )AFαµ   is well defined for all [ )0,α ∈ ∞ . Furthermore, { }Fα  is a class of sets that are 

nonincreasing with respect to α  and so are sets in { }AFα  . Since monotone measure µ  is a nondecreasing 
set function, we know that ( )AFαµ   is a nondecreasing function of α  and, therefore, the above Riemann 
integral makes sense. Thus, the Choquet integral of a nonnegative measurable function with respect to a mono-
tone measure on a measurable set is well defined. 

The Choquet integral has some properties of the Lebesgue integral. These properties are listed in the follow-
ing theorem. 

Theorem 1. ([4]) Let f and g be nonnegative measurable functions on ( )X, ,µΣ . A and B be measurable sets, 
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and a be a nonnegative real constant. Then, 
1) ( ) ( )

A
1d AC µ µ=∫ ; 

2) ( ) ( )
A

d AC c cµ µ=∫ ; 

3) ( ) ( ) AA
d dC f C fµ χ µ= ⋅∫ ∫ ; 

4) If f g≤  on A, then ( ) ( )
A A

d dC f C gµ µ≤∫ ∫ ; 

5) If A B⊂  then, ( ) ( )
A B

d dC f C fµ µ≤∫ ∫ ; 

6) ( ) ( )
A A

d dC af a C fµ µ=∫ ∫ . 

Unlike the Lebesgue integral, the Choquet integral is generally nonlinear with respect to its integrand due to 
the nonadditivity of µ . That is, we may have 

( ) ( ) ( ) ( )d d dC f g C f C gµ µ µ+ ≠ +∫ ∫ ∫  

for some nonnegative measurable functions f and g. But when integrand f and g satisfying the properties of 
comonotone, then we have 

( ) ( ) ( ) ( )
A A A

d d d .C f g C f C gµ µ µ+ = +∫ ∫ ∫                          (1) 

This is the properties of Choquet integral of comonotone additivity. Then we give the definition of two functions 
comonotonicity. 

Definition 3. ([11]) Let X be a nonempty set, two functions , : Xf g R→  are said to be comonotone, if for 
all ( ) 2, Xx y ∈ , then 

( ) ( )( ) ( ) ( )( ) 0.f x f y g x g y− − ≥  

Clearly, if f and g are comonotone, then for all nonnegative real numbers ,p q , either p qF G⊂  or q pG F⊂ . 
Indeed, if this assertion does not hold, then there are /p qx F G∈  and /q py G F∈ . That is,  
( ) ( ),f x p g x q≥ <  and ( ) ( ),f y p g y q< ≥ . And hence, ( ) ( )( ) ( ) ( )( ) 0f x f y g x g y− − < , contradicting! 

Notice that constant function and any functions are comonotone, by (1) and Theorem 1 (2) we obtain, 

( ) ( ) ( ) ( )
A A

d d A .C f c C f cµ µ µ+ = +∫ ∫  

3. Hölder Inequality for Choquet Integral 
This section is devoted to providing Hölder inequality for Choquet integral, when there are three integrand and 
three weights. And these integrand satisfying the properties of comonotone additivity. Then we prove Hölder 
inequality for Choquet integral about a finite number of integrands and finite weights appears as its corollary. 

In this paper, we suppose any two of these nonnegative measurable functions 1 2, , , nf f f  are comonotone, 
so we can easily obtained any two of f, g and h are comonotone. 

Theorem 2 (Hölder inequality). Let ( )X, ,µΣ  be a fuzzy measure space, A∈Σ , f, g and h be nonnegative  

measurable functions. When any two of f, g and h are comonotone, and 1 1 1 1
p q r
+ + = , , , 1p q r > . Then, the 

Hölder inequality 

( ) ( )( ) ( )( ) ( )( )
1 1 1

A A A A
d d d dp q rp q rC fgh C f C g C hµ µ µ µ≤∫ ∫ ∫ ∫                   (2) 

holds. 
Proof. By Theorem 3.1 [19] the Hölder inequality about two nonnegative measurable functions and two 

weights 

( ) ( )( ) ( )( )
1 1

A A A
d d dp qp qC fg C f C gµ µ µ≤∫ ∫ ∫                         (3) 
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holds. Let pq
p q

λ =
+

, then 1 1 1
rλ

+ = , , 1rλ >  When f and h are nonnegative measurable functions, then by  

the product of a finite number of measurable functions still can be measurable, we have fg is nonnegative mea-
surable function. And fg and h are comonotone for any , Xx y∈  can be easily proved. Then, the inequality 

( ) ( ) ( ) ( )( ) ( )( )
1 1

A A A
d d dr rC fg h C fg C hλ λµ µ µ≤∫ ∫ ∫                       (4) 

holds. Let p qu
q
+

= , p qs
p
+

= , then 
1 1 1
u s
+ = . Then the inequality 

( ) ( )( ) ( ) ( )( ) ( ) ( )( )
( )( ) ( )( )

1 11

A A A

1 1

A A

d d d

d d

u su s

p qp q

C fg C f C g

C f C g

λ λ λλ λλµ µ µ

µ µ

≤

=

∫ ∫ ∫

∫ ∫

                   (5) 

holds. Then, by the inequalities (4) and (5), we obtain 

( ) ( )( ) ( )( ) ( )( )
1 1 1

A A A A
d d d d .p q rp q rC fgh C f C g C hµ µ µ µ≤∫ ∫ ∫ ∫                   (6) 

This completes the proof. 
Then, let us review examples illustrating the previous result. 
Example 1. Let [ ]X 0,1= , ( )f x x= , ( ) 2g x x= , ( ) 3h x x=  for Xx∈ . p = 6, q = 3 and r = 2. Σ  be  

the class of all Borel sets in [ ]0,1  and ( ) ( ) 2
B Bmµ =     for B∈Σ , where m is the lebesgue measure. We 

know the µ  is a monotone measure on σ -algebra Σ  and f, g and h are nonnegative measurable functions 
on X, and any two of f, g and h are comonotone. According to Definition 2, the value of Choquet integral for fgh, 
f, g and h with respect to µ  are 

( ) ( ) ( ) ( ) }{( ) }{( )
( ) ( ) ( )

6
0 0

2 21 1 16 6 6
0 0 0

1 11 7 4
1 16 3 6 3

00
0 0

d d d

,1 d ,1 d 1 d

12 3 11 2 d .
7 4 28

C fgh x f x g x h x x x

m

µ µ α α µ α α

µ α α α α α α

α α α α α α

∞ ∞
= ≥ = ≥

 = = = − 

 
= − + = − + =  

 

∫ ∫ ∫

∫ ∫ ∫

∫

 

In a similar manner, we calculate that 

( ) 1d
28

pC f µ =∫ , ( ) 1d
28

qC g µ =∫ , and ( ) 1d
28

rC h µ =∫ . 

By the inequality 
1 1 1
6 3 21 1 1 1 1

28 28 28 28 28
     ≤ × × =     
     

 

Then, we obtain 

( ) ( )( ) ( )( ) ( )( )
1 1 1

A A A A
d d d d .p q rp q rC fgh C f C g C hµ µ µ µ≤∫ ∫ ∫ ∫                    (7) 

When the integrand ( )Fαµ  of the integral cannot be expressed by an explicit algebraic expression of α , or 
the expression is too complex, the value of the Choquet integral has to be approximately calculated by using 
some numerical method (e.g., the Simpson method). 

Example 2. Let [ ]X 0,1= , ( )f x x= , ( ) 1
3

g x =  and ( ) 1
10

h x x= , 3p q r= = = . And any two of f, g and 

h are comonotone, then 
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( ) ( ) ( )2 2
A A A

1 1 1 1 1d d d = .
30 30 30 6 180

C fgh C x C xµ µ µ= = = ×∫ ∫ ∫  

Then, we can calculate that 

( )( )
11
3

A

1d ;
10

p pC f µ  =  
 ∫  ( )( )

1

A

1d ;
3

q qC g µ =∫  and ( )( )
41
3

A

1d .
10

r rC h µ  =  
 ∫  

So by the inequality 
1 4
3 31 1 1 10.0056 0.0072

180 10 3 10
   ≈ < × × ≈   
   

 

where µ  is defined as in Example 1. Then, we obtain 

( ) ( )( ) ( )( ) ( )( )
1 1 1

A A A A
d d d d .p q rp q rC fgh C f C g C hµ µ µ µ≤∫ ∫ ∫ ∫                   (8) 

From the above two examples we can get, f, g and h be nonnegative measurable functions, when any two of f, 

g and h are comonotone, and 1 1 1 1
p q r
+ + = , , , 1p q r > . Then, the Hölder inequality holds. 

Hölder inequality for Choquet integral about a finite number of integrands and finite weights appears in the 
following corollary. 

Corollary 1. Let ( )X, ,µΣ  be a fuzzy measure space, A∈Σ , 1 2, , ,f f   and fn be nonnegative measurable  

functions. When any two of 1 2, , , nf f f  are comonotone, and 
1 2

1 1 1 1
np p p

+ + + = , ( )1 1,2, ,ip i n≥ =  , 

then, the Hölder inequality for Choquet integral about a finite number of integrands and finite weights 

( ) ( )( )
1

1 2A A
1

d di i
n

p p
n i

i
C f f f C fµ µ

=

≤∏∫ ∫  

holds. 
As the application of Hölder inequality for Choquet integral, we will prove Minkowski inequality. First, we 

prove the following lemma.  

4. Minkowski Inequality for Choquet Integral 
Lemma 1. Let f, g and [ ]: X 0, .h → ∞  When any two of f, g and h are comonotone, then any two of these 
functions ( ) 1pf g h f−+ + , ( ) 1pf g h g−+ +  and ( ) 1pf g h h−+ +  are comonotone, for any 1p > . 

Proof. For any , Xx y∈ , we first prove ( ) 1pf g h f−+ +  and ( ) 1pf g h g−+ +  are comonotone. According 
to Definition 3 [11], this is equivalent to prove that 

( ) ( ) ( )( ) ( ) ( ) ( ) ( )( ) ( )

( ) ( ) ( )( ) ( ) ( ) ( ) ( )( ) ( )

1 1

1 1
0

p p

p p

f x g x h x f x f y g y h y f y

f x g x h x g x f y g y h y g y

− −

− −

 + + − + +  
 × + + − + + ≥  

               (9) 

If ( ) ( )f x f y> , then by any two of f, g and h are comonotone, we obtain ( ) ( )g x g y≥ , ( ) ( )h x h y≥ . And 
by nonnegativity of f, g and h and 1p > , we get 

( ) ( ) ( )( ) ( ) ( ) ( ) ( )( ) ( )1 1
;

p p
f x g x h x f x f y g y h y f y

− −
+ + > + +  

( ) ( ) ( )( ) ( ) ( ) ( ) ( )( ) ( )1 1
.

p p
f x g x h x g x f y g y h y g y

− −
+ + > + +  

Then, the inequality (9) holds. 
The case that when ( ) ( )f x f y< , the inequality (9) can be proved in a similar manner. 
We have proved the inequality (9) holds, when ( ) ( )f x f y≠ . In a same way, we prove the inequality (9) 

holds, when ( ) ( )g x g y≠ , ( ) ( )h x h y≠ . And the inequality (9) obviously holds, when ( ) ( )f x f y= , 
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( ) ( )g x g y=  and ( ) ( )h x h y= . 
So, we obtain the functions ( ) 1pf g h f−+ +  and ( ) 1pf g h g−+ +  are comonotone. In a similar manner, we 

get the the functions ( ) 1pf g h g−+ +  and ( ) 1pf g h h−+ +  are comonotone. 
As so far, we prove any two of these functions ( ) 1pf g h f−+ + , ( ) 1pf g h g−+ +  and ( ) 1pf g h h−+ +  are 

comonotone. 
This completes the proof. 
Then the Minkowski inequality for Choquet integral is given in the following theorem. 
Theorem 3 (Minkowski inequality). Let ( )X, ,µΣ  be a fuzzy measure space and A∈Σ , f, g and h: 

[ ]X 0,→ ∞  be measurable functions. When any two of f, g and h are comonotone, then the inequality 

( ) ( )( ) ( )( ) ( )( ) ( )( )
1 1 1 1

A A A A
d d d dp p p pp p p pC f g h C f C g C hµ µ µ µ+ + ≤ + +∫ ∫ ∫ ∫           (10) 

holds for any 1 p≤ < ∞ . 
Proof. When 1p = , by any two of f, g and h are comonotone, we get 

( ) ( ) ( ) ( ) ( )
A A A A

d d d d .C f g h C f C g C hµ µ µ µ+ + = + +∫ ∫ ∫ ∫  

Obviously, the inequality (10) holds. 

When 1p > , there exists 1q > , such that 1 1 1
p q
+ =  (i.e. ( )1p q p− = ). By the Lemma 2 and Theorem 2, 

we obtain 

( ) ( )( ) ( ) ( )( )( ) ( )( )
( ) ( )( ) ( )( )

1 1
1 1

A A A

1 1

A A

d d d

d d .

p p q q p p

p pq p

C f g h f C f g h C f

C f g h C f

µ µ µ

µ µ

− −+ + ≤ + +

= + +

∫ ∫ ∫

∫ ∫
 

In the same method, we get 

( ) ( ) ( ) ( )( ) ( )( )
1 1

1

A A A
d d d ;p p pq pC f g h g C f g h C gµ µ µ−+ + ≤ + +∫ ∫ ∫  

( ) ( ) ( ) ( )( ) ( )( )
1 1

1

A A A
d d d .p p pq pC f g h h C f g h C hµ µ µ−+ + ≤ + +∫ ∫ ∫  

Hence, 

( ) ( )( ) ( )( ) ( )( ) ( )( )
1 1 1 11

A A A A
d d d d .p p p pq p p pC f g h C f C g C hµ µ µ µ

−
+ + ≤ + +∫ ∫ ∫ ∫  

( ) ( )( ) ( )( ) ( )( ) ( )( )
1 1 1 1

A A A A
d d d d .p p p pp p p pC f g h C f C g C hµ µ µ µ+ + ≤ + +∫ ∫ ∫ ∫           (11) 

This completes the proof. 

Example 3 Let [ ]X 0,1= , ( )f x x= , ( ) 1
3

g x =  and ( ) 1
3

h x x= + , 2p = , when any two of f, g and h are 

comonotone. Where µ  is defined as in Example 1. Then 

( ) ( ) ( ) ( )

( ) ( ) ( )

2
2

A A A

2
A A A

2 4 8d 2 d 4 d
3 9 3

4 8 3d d 4 d .
9 3 2

pC f g h C x C x x

C C x C x

µ µ µ

µ µ µ

   + + = + = + +   
   

= + + =

∫ ∫ ∫

∫ ∫ ∫
 

In the same way,we calculate that  

( )
A

1d ;
6

pC f µ =∫  ( )
A

1d ;
9

pC g µ =∫  ( )
A

1d .
2

pC h µ =∫   
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Then, we get 

( ) ( )

( )( ) ( )( ) ( )( )

1 1 1
1

2 2 2

A

1 1 1

A A A

3 1 1 1d
2 6 3 2

d d d .

p

p p pp p p

C f g h

C f C g C h

µ

µ µ µ

      + + = < + +            

= + +

∫

∫ ∫ ∫

 

If there is a finite nonnegative measurable function, the Minkowski inequality for Choquet integral holds or 
not. First, we have to prove the following corollary. 

Corollary 2. Let [ ]1 2, , , : X 0,nf f f → ∞ . When any two of 1 2, , , nf f f  are comonotone, then any two of  

these functions 
1

1

pn

i j
i

f f
−

=

 
 
 
∑  ( )1, 2, ,j n=   are comonotone, for any 1p > . 

Corollary 3. Let ( )X, ,µΣ  be a fuzzy measure space and A∈Σ , [ ]1 2, , , : X 0,nf f f → ∞  be measurable 
functions. When any two of 1 2, , , nf f f  are comonotone , then the inequality 

( ) ( )( ) ( )( ) ( )( )
1 1 1

1 2 1A A A
d d dp p pp p p

n nC f f f C f C fµ µ µ+ + + ≤ + +∫ ∫ ∫               (12) 

holds, for any 1 p≤ < ∞ . 

5. Lyapunov Inequality for Choquet Integral 
Theorem 4 (Lyapunov inequality). Let ( )X, ,µΣ  be a fuzzy measure space and A∈Σ  be a measurable set, 

[ ]: X 0,f → ∞  be a measurable function. Let ( ), , 0,p q w∈ ∞ , ( ), 0,1s t∈ , when ( )0,r∈ ∞  satisfies this  

equality, 1 1s t s t
r p q w

− −
= + + . Then the inequality 

1

A A A A

s t s t
r p q wf f f f − −≤                               (13) 

holds. 

Proof. Let 1
pp
rs

= , 1
qq
rt

= , 
( )1 1

ww
r s t

=
− −

, then 
1 1 1

1 1 1 1
p q w
+ + = , for any 1 1 1, , 1p q w > . By Theorem 2, 

we have 

( ) ( ) ( )

( )( ) ( )( ) ( ) ( )( )
( )( ) ( )( ) ( )( )

( )

11 1 11 1

1

A A
11 1

1

A A A

1

A A A

d d

d d d

d d d

r s tr rs rt

r s t wrsp rtq wp q

r s trs rt
p q wp q w

C f C f f f

C f C f C f

C f C f C f

µ µ

µ µ µ

µ µ µ

− −

− −

− −

=

≤

=

∫ ∫

∫ ∫ ∫

∫ ∫ ∫

 

And by ( )( )
1

A A
dr r

rf C f µ= ∫ , we get the inequality 

1

A A A A .s t s t
r p q wf f f f − −≤                                (14) 

Remark 1. Let ( )X, ,µΣ  be a fuzzy measure space and A∈Σ  be a measurable set, we have 

( )( )
1

A A
dp p

pf C f µ= ∫  

for any ( )0,p∈ ∞ . 
Corollary 4. Let ( )X, ,µΣ  be a fuzzy measure space, A∈Σ  be a measurable set and [ ]: X 0,f → ∞  be a 

measurable function. Let ( )1 2, , , 0,np p p ∈ ∞ , ( )1 2, , , 0,1nt t t ∈ , when ( )0,r∈ ∞  satisfies  
1 2

1 2

1 n

n

tt t
r p p p
= + + + , and 1 2 1nt t t+ + + = . Then, we have the inequality 
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1 2

1 2A A A A .n

n

t t t
r p p pf f f f≤                                (15) 

6. Conclusion 
In this paper, we prove the Hölder inequalities for any arbitrary fuzzy measure based on Choquet integral 
whenever any two of these integrated functions f, g and h are comonotone. As its application, we also prove 
Minkowski inequality and Lyapunov inequality for Choquet integral. Moreover, we also obtain whenever any 
two of these integrated functions 1 2, , , nf f f  are comonotone, the Hölder inequality, Minkowski inequality 
and Lyapunov inequality hold for Choquet integral. 
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