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ABSTRACT 

Development of efficient gene prediction algorithms 
is one of the fundamental efforts in gene prediction 
study in the area of genomics. In genomic signal 
processing the basic step of the identification of pro-
tein coding regions in DNA sequences is based on the 
period-3 property exhibited by nucleotides in exons. 
Several approaches based on signal processing tools 
and numerical representations have been applied to 
solve this problem, trying to achieve more accurate 
predictions. This paper presents a new indicator se-
quence based on amino acid sequence, called as ami-
noacid indicator sequence, derived from DNA string 
that uses the existing signal processing based time- 
domain and frequency domain methods to predict 
these regions within the billions long DNA sequence 
of eukaryotic cells which reduces the computational 
load by one-third. It is known that each triplet of 
bases, called as codon, instructs the cell machinery to 
synthesize an amino acid. The codon sequence there-
fore uniquely identifies an amino acid sequence 
which defines a protein. Thus the protein coding re-
gion is attributed by the codons in amino acid se-
quence. This property is used for detection of period- 
3 regions using amino acid sequence. Physico-chemi- 
cal properties of amino acids are used for numerical 
representation. Various accuracy measures such as 
exonic peaks, discriminating factor, sensitivity, speci-
ficity, miss rate, wrong rate and approximate corre-
lation are used to demonstrate the efficacy of the 
proposed predictor. The proposed method is vali-
dated on various organisms using the standard data-
set HMR195, Burset and Guigo and KEGG. The si-
mulation result shows that the proposed method is an 

effective approach for protein coding prediction. 
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1. INTRODUCTION 

Over the past few decades, major advances in the field 
of molecular biology, coupled with advances in genomic 
technologies, have led to an exponential growth of ge-
nomic sequences. An important step in genomic annota-
tion is to identify protein coding regions of genomic 
sequences, which is a challenging problem especially in 
the study of eukaryote genomes. In eukaryote genome, 
protein coding regions (exons) are usually not continu-
ous [1]. Due to the lack of obvious sequence features 
between exons and introns, distinguishing protein coding 
regions effectively from noncoding regions is a chal-
lenging problem in bioinformatics. Gene Prediction re-
fers to detecting locations of the protein-coding regions 
of genes in a long DNA sequence. For most prokaryotic 
DNA sequences, the problem is to determine which 
segments, in the given sequence, are really coding se-
quences coding for proteins. For eukaryotic DNA se-
quences, the problem is to determine how many exons 
and introns (non-coding regions) are there in the given 
sequence and what are the exact boundaries between the 
exons and introns [2]. 

For the last few decades, the major task of DNA and 
protein analysis, has been on string matching, either with 
a goal of obtaining a precise solution, e.g., with dynamic 
programming, or more commonly a fast solution, e.g., 
with heuristic techniques such as BLAST and several 
versions of FASTA [3]. But any of the string matching 
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methodologies could not lead to satisfactory results. A 
variety of computational algorithms have been devel-
oped to predict exons. Most of the exon-finding algo-
rithms are based on statistics methods, which usually use 
training data sets from known exon and intron sequences 
to compute prediction functions. As examples, GenScan 
algorithm [1,2] measured distinct statistics features of 
exons and introns within genomes and employed them in 
prediction via hidden Markov model (HMM). 

Signal processing techniques offer a great promise in 
analyzing genomic data because of its digital nature. 
Signal processing analysis of bio-molecular sequences 
plays important role for their representation as strings of 
characters [4,5]. If numerical values are assigned to 
these characters, the resulting numerical sequences are 
readily applicable to digital signal processing. During 
recent years, signal processing approaches have been 
attracting significant attentions in genomic DNA re-
search and have become increasingly important to elu-
cidate genome structures because they may identify hid-
den periodicities and features which cannot be revealed 
easily by conventional statistics methods [6,7]. After 
converting symbol DNA sequences to numerical se-
quences, signal processing tools, typically, discrete Fou-
rier transform (DFT) or digital filter can be applied to 
the numerical vectors to study the frequency domain of 
the sequences [8]. For most of DNA sequences, one of 
the principal features is the periodic 3-nucleotide pattern 
which has been known phenomenon for eukaryotic ex-
ons. DNA periodicity in exons is determined by codon 
usage frequencies. There has been a great deal of work 
done in applying signal processing methods to DNA 
recently. The discrete Fourier transform and antinotch 
filter are applied based on the period-3 property. 

The DFT of a given input DNA sequence exhibits a 
peak at the frequency 2/3 due to periodicity in the se-
quence [9]. The DNA sequence consisting of indicator 
sequence {x(n)} of the four bases can be represented in 
corresponding binary sequences xA(n), xT(n), xC(n) and 
xG(n). The DFT of length N for input binary sequence 
xA(n) is defined by 
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Similarly, XT[k], XC[k] and XG[k] can be found out and 
the total power at frequency k then be expressed as 

2 22 2
( ) ( ) ( ) ( ) ( )A T C GS k X k X k X k X k      (2) 

The frequency spectrum of S[k], is found to exhibit a 
peak at k = N/3 which indicates the presence of a coding 
region in the gene. 

In digital filtering, for each indicator sequence xA(n), 

xT(n), xC(n) and xG(n), a corresponding filter output YA(n), 
YT(n), YC(n) and YG(n), respectively are computed. The 
sum of the square of magnitude of these filter outputs is 
expressed as  

22 2
( ) ( ) ( ) ( ) ( )A T C GY n Y n Y n Y n Y n    2

       (3) 

A plot of Y(n) has been used to extract the period-3 
region of the DNA effectively [9]. This principle has 
been applied in antinotch filter and multistage filter. The 
notch filter is a bandpass filter with passband centered at 
  = 2/3 and minimum stop-band attenuation of about 
13 dB. The antinotch filter is a power complementary of 
notch filter. 

In Ref. [6], Tiwari, et al. utilized Fourier analysis to 
detect the probable coding regions in DNA sequences, 
by computing the amplitude profile of this spectral 
component which is evidenced as a sharp peak at fre-
quency f = 1/3 in the power spectrum. The strength of 
the peak depends markedly on the gene. Anastassiou 
proposed a mapping technique to optimize gene predic-
tion using Fourier analysis and introduced color spectro-
gram for exon prediction [7]. Although this mapping 
technique produced comparatively good results than 
DFT but it was DNA sequence dependent and thus re-
quires computation of the mapping scheme before proc-
essing for gene prediction. To improve the filtering 
through DFT computation, P. P. Vaidyanathan, in [9], 
proposed digital resonator (antinotch filter) to extract the 
period-3 components. Short time Fourier transform 
(STFT) with entropy based methods is incorporated to 
increase its efficacy to identify the homogeneous regions. 
[10]. Identification of protein coding regions was devel-
oped using modified Gabor-Wavelet transform [11] for 
the having advantage of being independent of the win-
dow length. Entropy minimization criterion in DNA 
sequences is discussed by Galleani and Garello [12]. 
Tuqan and Rushdi [13] had explained 3-periodicity re-
lated to the codon bias using two stage digital filter and 
multirate DSP model. Criteria to select the numerical 
values to represent genomic sequences are discussed by 
Akhtar et al. [14,15]. 

Genomic information is digital in a real sense; it is 
represented in the form of sequences of which each ele-
ment can be one out of a finite number of entities. Such 
sequences, like DNA and proteins, have been represented 
by character strings, in which each character is a letter of 
an alphabet. The first step in gene prediction principle in 
genomic signal processing involves conversion of string 
space into signal space of binary numbers called as the 
indicator sequence. Voss binary representation [16] is the 
fundamental approach of numerical representation. Var-
ious DNA numerical signal representations have been 
adopted using z-curve [17,18], complex numbers [19], 

Copyright © 2011 SciRes.                                                                             AJMB 



J. K. Meher et al. / American Journal of Molecular Biology 1 (2011) 79-86 81

quaternion [20], Gailos field assignment [21], EIIP [22, 
23], paired numeric [14] to make indicator sequence in 
DSP methods to improve the accuracy of exons predic-
tion. Another four-indicator sequence called as relative 
frequency indicator sequence based on various coding 
statistics like single-nucleotide, dinucleotide and trinu-
cleotide biases are incorporated into the algorithm to 
improve the selectivity and sensitivity of filter methods 
[24]. Real-number representation maps A = 1.5, T = –1.5, 
C = 0.5, and G = –0.5 similar to the complementary 
property of the complex method are used in [14]. 

Despite many progresses being made in the identifica-
tion of protein coding regions by computational methods 
the performances and efficiencies of the prediction me-
thods still need to be improved. It is indispensable to 
develop new prediction methods to improve the predic-
tion accuracy. The existing numerical encoding methods 
can be classified into four-indicator sequences, three- 
indicator sequences and single-indicator sequences 
based on computational overhead. The single-indicator 
sequ- ence reduces the computational overhead by 75% 
in compared to four-indicator sequence. 

A new method to predict protein coding regions is 
developed in this paper based on the amino acid indica-
tor sequence obtained from DNA string that exon se-
quences have a 3-base periodicity, while intron sequen- 
ces do not have this unique feature. The method com-
putes the 3-base periodicity and the background noise of 
the stepwise amino acid segments of the target amino 
acid sequences using distributions in the codon positions 
of the amino acid sequences. The proposed single indi-
cator sequence based on amino acids reduces further the 
computational load by one-third. 

The rest of the paper is organized as follows. Section- 
2 presents amino acid indicator sequence approach for 
identification of protein coding regions using Fourier 
transform and digital filter. Section-3 focuses on the re-
sults of the proposed methods with accuracy measures 
and validated with standard datasets such as HMR195, 
Burset and Guigo and KEGG. Section-4 presents the 
conclusions of this paper. 

2. PROPOSED AMINO ACID INDICATOR 
SEQUENCE 

It is known that each triplet of bases, called as codon, 
instructs the cell machinery to synthesize an amino acid. 
The codon sequence therefore uniquely identifies an 
amino acid sequence which defines a protein. Thus the 
protein coding region is attributed by the codons in 
amino acid sequence [2]. This property is used for detec-
tion of period-3 regions using amino acid sequence. The 
period-3 property is related to difference in the statistical 
distributions of codon sequence between protein-coding  

 

Figure 1. Central Dogma of molecular biology. 

and non-coding sections. This periodicity reflects corre-
lations between residue positions along coding se-
quences. 

The genetic information contained in DNA sequences, 
RNA sequences, and proteins is extracted in Genomic 
signal processing. A DNA sequence is made from an 
alphabet of four elements, namely A, T, C, and G mole-
cules called nuclotides or bases. This quarternary code 
of DNA contains the genetic information of living or-
ganisms. Similarly protein is also a discrete-alphabet 
sequences that imparts genetic information and large 
number of functions in living organism. A protein can be 
represented as a sequence of amino acids. There are 
twenty distinct amino acids, and so a protein can be re-
garded as a sequence defined on an alphabet of size 
twenty. The twenty letters used to denote the amino ac-
ids are the letters from the English alphabet such as 
ACDEFGHIKLMNPQRSTVWY. It is common that 
some letters representing amino acids are identical to 
some letters representing bases. For example the A in the 
DNA is a base called adenine, and the A in the protein is 
an amino acid called alanine. It is known that each gene 
is responsible for the creation of a specific protein when 
expressed and this is called as central dogma of molecu-
lar biology [2] as shown in Figure 1. 

The information of expression of particular protein 
from a gene is contained in a code which is common to 
all life. The gene gets duplicated into the mRNA mole-
cule which is then spliced so that it contains only the 
exons of the gene. Each triplet of three adjacent bases of 
mRNA is called a codon. There are 64 possible codons. 
Thus the mRNA is nothing but a sequence of codons. 
Each codon instructs the cell machinery to synthesize a 
protein using the genetic code. When all the codons in 
the mRNA are exhausted we get a long chain of amino 
acids. This is the protein corresponding to the original 
gene. 

In practice numerical values are assigned to the four 
letters in the DNA sequence to perform a number of 
signal processing operations such as Fourier transforma-
tion, digital filtering, time-frequency plots such as wave- 
let transformations. Similarly, once we assign numerical 
values to the twenty amino acids in protein sequences 
we can do useful signal processing.  

The new proposed predictor is based on the analysis of  
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Table 1. The genetic code. 

S.N. Amino acids Codon 
1 A   Alanine GCA, GCC, GCG, GCT 
2 C   Cysteine TGC, TGT 
3 D   Aspartic acid GAG, GAT 
4 E   Glutamic acid GAA, GAG 
5 F   Phenylalanine TTC, TTT 
6 G   Glycine GGA, GGC, GGT, GGG 
7 H   Histidine CAC, CAT 
8 I    Isoleucine ATA, ATC, ATT 
9 K   Lysine AAA, AAG 

10 L   Leucine 
TTA, TTG,CTA, CTC, 
CTG, CTT 

11 M   Methionine ATG 
12 N   Asparagine AAC, AAT 
13 P   Proline CCA, CCC, CCG, CCT 
14 Q   Glutamine CAA, CAG 

15 R   Arginine 
AGA, AGG, CGA, CGC, CGG, 
CGT 

16 S   Serine 
AGC, AGT, TCA, TCC, 
TCG, TCT 

17 T   Threonine ACA, ACC, ACG, ACT 
18 V   Valine GTA, GTC, GTG, GTT 
19 W  Tryptophan TGG 
20 Y   Tyrosine TAG, TAT 

 
amino acid sequence. In this work the DNA sequence is 
converted to amino acid sequence i.e., the A, T, C, G 
language is converted to amino acid language [14]. Three 
characters consisting of nucleotides are represented as 
codon consisting of twenty alphabets of aminoacids. The 
mapping from amino acids to codons is many-to-one 
(Table 1). For a given DNA sequence xB(n), where B is 
nucleotide bases, the corresponding amino acid sequence 
is obtained as xR(n), where R represents 20 amino acids. 
For example  

 
ATGGGTCCAGCTCCAGTTTTCCC

AAATTCGCGGAAGCCGGCGACACTBx n


 






 

   MGPAPVFPNSRKPATRx n   

The most relevant for the application of signal proc-
essing tools is the assignation of properties of amino 
acid alphabets to form amino acid indicator sequence. 
There are several approaches to convert genomic infor-
mation in numeric sequences using different representa-
tions. Physico-chemical properties of amino acids such 
as volume, charge, area, EIIP, dipole moment, alpha etc 
obtained from Hyperchempro 8.0 software of Hyper-
CubeInc, USA are used in this paper for analysis of the 
proteins (Table 2). The resulting numerical sequence by 
substituting these values is called amino acid indicator 
sequence. 

Each amino acid is associated with a unique number 
of alpha propensities. The indicator sequence is obtained 
by spreading the numerical value on the amino acid se-
quence. 

{1.501 1.058 0.519 1.409 0.519 1.694 1.966

0.519 0.434 0.774 0.240 0.181 0.519 1.409 0.828}
AAx 

 

Table 2. Physico-chemical properties of amino acids. 

Amino acid Alpha EIIP Dipole moment
A 1.409 0.0373 5.937 
R 0.240 0.0959 37.5 
N 0.434 0.0036 18.89 
D 0.192 0.1263 29.49 
C 1.069 0.0829 10.74 
Q 0.333 0.0761 39.89 
E 0.175 0.0058 42.52 
G 1.058 0.0050 0.0 
H 0.558 0.0242 20.44 
L 1.702 0.0000 3.782 
I 1.990 0.0000 3.371 
K 0.181 0.0371 50.02 
M 1.501 0.0823 8.589 
F 1.966 0.0946 5.98 
P 0.519 0.0198 7.916 
S 0.774 0.0829 9.836 
T 0.828 0.0941 9.304 
W 1.314 0.0548 10.73 
Y 0.979 0.0516 10.41 
V 1.694 0.0057 2.692 

 

One of the advantages of using amino acid indicator 
sequences lies in reducing computational load by 
one-third as compared to processing DNA indicator se-
quence.  

This technique has been used to identify the coding 
region which can predict whether a given sequence 
frame, limited to a specific length N, belongs to a coding 
region or not. This is done by sliding frame in which the 
amino acids of length N of the frame are rated. After that 
the frame is shifted through a fixed number of samples 
of residues downstream. The output of every rated win-
dow belongs to residues at the specific position. The 
existence of three-base periodicity exhibited by the se-
quence as a sharp peak at frequency f = 1/3 in the power 
spectrum in the protein coding regions helps in the pre-
diction of exons. 

The discrete Fourier transform (DFT) has been used to 
predict coding regions in equivalent amino acid se-
quences of DNA string. As a consequence of the non-uni- 
form distribution of codons in coding regions, a three- 
periodicity is present in most of genome coding regions, 
which show a notable peak at the frequency component 
N/3 when calculating their DFT. The DFT of length N for 
input amino acid indicator sequence xAA(n) is defined by 
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for AA = amino acids. The absolute value of power of 
DFT coefficients is given by 
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The plot of S(k) against k, results in peak at k = N/3 due 
to the period-3 property, that indicates the presence of 
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coding regions. 
Taking into account the validity of this result the an-

tinotch filter has been applied to amino acid sequences to 
predict coding regions, using a sliding frame along the 
sequence. In digital filtering method for indicator se-
quence xAA(n), corresponding filter output YAA(n) is 
computed where AA represents 20 amino acids. The sum 
of the square of magnitude of these filter outputs is ex-
pressed as 

1
2

0

( ) | ( ) |
N

AA
n

Y n Y n




                (6) 

A plot of Y(n) has been used to extract the period-3 
region of the of the sequence effectively. Prediction of 
protein coding regions can be summarized as the fol-
lowing sequence of steps.  

1. Convert DNA string to equivalent amino acid se-
quence with three character code. 

2. Substitute physico-chemical properties of amino 
acid to construct indicator sequence. 

3. Apply this sequence to DFT or digital filter to de-
tect period-3 regions. 

4. Observe peaks for determining protein coding re-
gions. 

5. Evaluate assessment parameters to check accuracy. 

3. RESULT AND DISCUSSION 

In this paper we propose the technique of using amino 
acid indicator sequence for prediction of protein coding 
region in gene sequence. We have used digital filtering 
techniques, such as antinotch filter to detect the protein 
coding segments using the existing indicator sequences as 
well as the proposed single indicator sequences based on 
physico-chemical properties for several organisms. 
Mainly, three data sets Burset and Guigo [25], HMR195 
[26] and KEGG [27] are used for validation of proposed 
method. The proposed methods performed well in a good 
number of cases.  

The accuracy measures for evaluating the different 
methods used in this paper are exon-intron discrimina-
tion factor D [23], sensitivity (SN), specificity (SP), miss 
rate (MR), wrong rate (WR) [3,15] and approximate cor-
relation [28]. The discriminating factor is defined as  

Lowest of exon peaks

Highest peak in noncoding regions
D      (7) 

The miss rate and wrong rate are defined as 

R

ME
M

AE
                  (8) 

R

WE
W

PE
                   (9) 

where ME = missing exons, AE = actural exons, WE =  

Table 3. Summary of performance evaluation of amino acid 
indicator sequence. 

Assessment Parameters 
Dataset

D SN SP WR MR AC
Burset and 

Guigo 
3.8 1 0.85 0 0.33 0.93

HMR195 3.5 1 0.82 0 0.25 0.91
KEGG 2.2 1 0.75 0 0.28 0.89

 
wrong exons, PE = predicted exons.  

We define TP (true positives) as the number of coding 
regions predicted as coding; TN (true negatives) as the 
number of noncoding regions predicted as noncoding, FP 
(false positives) as the number of noncoding regions 
predicted as coding, and FN (false negatives) as the 
number of coding regions predicted as noncoding. Based 
on these parameters, sensitivity and specificity are de-
fined as 
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These are widely used measures of accuracy for gene 
prediction programs. Another measure that captures both 
specificity and sensitivity is AC (approximate correla-
tion). AC is defined by 
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   (12) 

If D is more than one (D > 1), all exons are identified. 
High sensitivity and specificity are desirable for higher 
accuracy. Low miss rate and wrong rate are desirable for 
better result. The list of genes of organisms is processed 
with the proposed single-indicator sequences using fil-
tering method and corresponding gene prediction meas-
ures have been evaluated. Table 3 summarizes the ob-
servations of eight genes from Burset and Guigo dataset, 
HMR195 and KEGG dataset. In all the examples cited, 
the proposed encoding methods show better discrimina-
tion compared to the method using multiple indicator 
sequences. The simulation result shows high discrimi-
nating factor, sensitivity and specificity with low miss 
rate and wrong rate for the proposed methods. 

Table 3 summarizes the average performance of pro-
posed method on each dataset. The simulation results 
using filtering approach on list of selected genes from 
three datasets are shown in Table 4. It is found that the 
single-indicator sequences based on amino acid sequence 
show high peak at protein coding locations.  
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Table 4. Simulation results on selected genes from Burset and 
Guigo dataset, HMR195 and KEGG dataset. 

Gene Name, 
Acc. No. 

Numerical 
Representations

Accuracy Measures 

Voss D SN SP MR WR AC
Real numbers 2.75 1 0.66 0 0.5 0.84

Raltive frequency 2.1 1 0.66 0 0.5 0.84
EIIP 3 1 0.66 0 0.5 0.84

Amino acid 2 1 0.66 0 0.5 0.84

HSODF2,  
X74614, 

Homo Sapiens 
ODF2 gene 

Voss 3.5 1 0.75 0 0.33 0.89
Real numbers 11 1 1 0 0 1 

Raltive frequency 12 1 1 0 0 1 
EIIP 14 1 1 0 0 1 

Amino acid 20.6 1 1 0 0 1 

PP32R1, 
AF00A216, 

Homo Sapiens 
Voss 22 1 1 0 0 1 

Real numbers 1.2 1 0.75 0 0.25 0.9
Raltive frequency 1 1 0.66 0 0.5 0.83

EIIP 1.04 1 0.66 0 0.5 0.83
Amino acid 1.5 1 0.75 0 0.25 0.91

Humbetgloa, 
26462, 
human 

betaglobin 
Voss 1.8 1 0.75 0 0.25 0.91

Real numbers 1.45 1 0.66 0 0.33 0.89
Raltive frequency 1 1 0.66 0 0.33 0.89

EIIP 1.04 1 0.5 0 0.5 0.78
Amino acid 4 1 0.5 0 0.5 0.78

CLDN3, 
AF007189, 

Homo sapiens 
Claudin 3 

Voss 1.1 1 0.66 0 0.33 0.86
Real numbers 2.2 1 0.66 0 0.5 0.86

Raltive frequency 1.33 1 0.66 0 0.5 0.86
EIIP 3 1 0.66 0 0.5 0.86

Amino acid 1.33 1 0.66 0 0.5 0.86

D p19, 
AFO61327, 

Homo sapiens 
cyclin-dependent 
kinase 4 inhibitor Voss 2.5 1 0.66 0 0.5 0.86

Real numbers 2 0.66 0.66 0.5 0.5 0.66
Raltive frequency 1.33 1 0.66 0 0.5 0.86

EIIP 3.2 1 0.66 0 0.5 0.86
Amino acid 5 1 1 0 0 1 

GalR2, 
AF042784, 

Musculus galin 
receptor 

type 2 gene Voss 5.2 1 1 0 0 1 
Real numbers 2 1 0.66 0 0.5 0.86

Raltive frequency 1.3 1 0.66 0 0.5 0.86
EIIP 1.8 1 0.66 0 0.5 0.86

Amino acid 2 1 1 0 0 1 

NC_002650 Tre-
ponema Denticola 
U9b Plasmid pTS1 

Voss 2.2 1 1 0 0 1 
Real numbers 1.1 1 0.6 0 0.5 0.86

Raltive frequency 1.3 1 0.6 0 0.5 0.86
EIIP 1.3 1 0.75 0 0.33 0.89

Amino acid 1.4 1 0.75 0 0.33 0.89

NC_004767 Heli-
cobacter pylory 
plamid pHP51 

 1.8 1 0.75 0 0.33 0.89

 
The gene sequences “F56 F11.4a” from “Chromo-

some III” of the organism “C.elegans” (Accession 
Number AF099922), HUMELAFIN (D13156) of 
Homo sapiens and ODF2 of Homo sapiens are used 
for detecting protein coding regions. All the exons of 
three genes mentioned above are correctly identified 
as shown in Figure 2. In particular Figure 2(a) shows 
the exon prediction results for gene F56 F11.4a 
showing five peaks corresponding to the exons loca-
tions. The simulation result using MATLAB 7.0 
shows that of the proposed technique identifies even 
short sequence. This is observed in first peak of gene 
F56 F11.4a, whereas it is not pronounced in tradi-
tional methods. Similarly Figure 2(b) shows two 
peaks for two exons in gene Humelafin and Figure 
2(c) shows two peaks for two exons in gene ODF2. 
The length of amino acid sequence is one-third of that  

  

 

 

Figure 2. Gene prediction using Amino acid indicator 
sequence of genes (a) F56F11.4a of C.Elegans chro-
mosome III showing five exons (b) HUMELAFIN of 
Homo sapiens showing two exons (c) ODF2 of Ho- 
mo sapiens showing two exons. 
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of DNA sequence. Hence the exon locations need to be 
mapped due to reduction of size of the string. 

The proposed indicator sequence consisting of alpha 
propensity, dipole moment and EIIP of amino acids are 
used for numerical representation and produce sharp 
peaks at exon locations as well as suppresses the false 
exons. False exons are the peaks observed in intron loca-
tions which do not take part in protein coding. Thus the 
proposed method is more sensitive to detect true exons 
which take part in protein coding. Again the execution of 
reduced sequence due to representation of codons i.e., 
amino acid sequence reduces the computation time to 
one-third as compared to the execution of whole se-
quence of original DNA sequence. Thus the proposed 
method in not only fast but also efficient. 

4. CONCLUSIONS 

The new proposed predictor for protein coding regions 
based on the amino acid indicator sequence has good 
efficacy. The efficacy of the proposed predictor was 
evaluated by means of accuracy measures such as exonic 
peaks, discriminating factor, sensitivity, specificity, ap-
proximate correlation, wrong rate and miss rate which 
shows better performance in coding regions detection 
when compared to the existing methods. The execution 
of reduced sequence due to representation of codons i.e., 
amino acid sequence reduces the computation time to 
one-third as compared to the execution of whole se-
quence of original DNA sequence. Again the filtering 
technique with amino acid indicator sequence enables to 
detect smaller exon regions by showing high peak and 
minimizes the power in introns giving more suppression 
to the intron regions. Thus the proposed method is not 
only fast but also more sensitive. 
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