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Abstract 
This paper presents non-Darcy mixed convective flow of an incompressible and viscous fluid in a 
differentially heated vertical channel filled with a porous material in the presence of a tempera-
ture dependent source/sink. The analytical solution of fourth order non-linear ordinary differen-
tial equation for temperature field, which is formed by eliminating velocity field from system of 
governing equations in non-dimensional form, is obtained by using new modified Adomian de-
composition method (NMADM) in terms of various parameters. In order to illustrate the interac-
tive influences of governing parameters on the temperature and velocity fields, a numerical study 
of the analytical solution is performed with respect to three categories of transport processes i) 
when forced convection is dominated, ii) when forced and natural convection are equal and iii) 
when natural convection is dominated. Analysis of all categories has revealed that the tempera-
ture and velocity profiles are increasing function of modified Darcy number while decreasing 
function of Forchheimer number. 
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1. Introduction  
Non-Darcy mixed convective flow and heat transfer between two vertical walls and annuli filled with porous 
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materials have been extensively studied in the past and attracted attention of research workers due to its many 
engineering applications. Some of their related applications are, for example, geothermal energy extraction, 
nuclear waste disposal, thermal insulation, solid matrix heat exchanger, thermal energy storage in underground 
aquifers, etc. The analytic solutions corresponding to different physical situations in a vertical channel are pre-
sented by several authors [1]-[7]. 

The numerical calculation of the fully developed mixed convection in a heated vertical channel filled with a 
porous medium and imposed uniflux at the plates is performed by Chen et al. [8] using the Brinkman Forchhei-
mer-extended Darcy model. In this paper, both the buoyancy assisted and buoyancy opposed flows are consi-
dered. Murlidhar [9] studied mixed convective flow and heat transfer in the annular region between concentric 
cylinders filled with fluid-saturated porous material by using the Darcy model. Hadim and Chen [10] showed the 
Darcy number effects on the buoyancy-assisted mixed convection in the entrance region of a vertical channel 
with asymmetric heating for fixed values of Reynolds number, Forchheimer number, Prandtl number and mod-
ified Darcy number. The study performed by Vafai and Kim [11] in case of forced convection in a porous me-
dium bounded by two parallel plates has shown that for a high-permeability porous medium the thickness of the 
momentum boundary layer depends on both the Darcy number and the inertia parameter while that for a low- 
permeability porous medium depends only on the Darcy number. Nadeem and Akbar [12] presented an exact 
solution for the temperature field, while the velocity field of the model was solved by Adomian decomposition 
method. Neild et al. [13] have analyzed theoretically fully developed forced convection in a fluid saturated por-
ous medium channel bounded by parallel plates by obtaining general solution which has no restrictions and ex-
ists for all values of the Darcy number and Forchheimer inertia coefficient as well as also for a porous medium 
having effective viscosity different from the fluid viscosity. A regular perturbation technique has been employed 
by Beckett [14] to further investigate the nature of the known equations governing fully developed forced and 
free convective flow between heated verticals walls. The work of Chamkha [15] is focused on the laminar fully 
developed mixed convection flow of an electrically conducting fluid in a vertical channel in the presence of a 
magnetic field and heat generation or absorption effects. In this study various analytical solutions for the veloci-
ty and temperature fields were obtained for different special cases of heating and cooling of the wall. Recently, 
Khan et al. [16] have given the exact solutions for the unsteady flow induced by the time-dependent motion of a 
plane wall between two side walls perpendicular to the plane through porous medium by means of Fourier sine 
transform. 

The main purpose of the present paper is to examine non-Darcy mixed convection in a differentially heated 
vertical channel filled with a porous material in the presence of temperature dependent source/sink. The analyti-
cal solution of the temperature field has been obtained using new modified Adomian decomposition method 
given by Wazwaz and El-Sayed [17] in terms of the physical parameters appearing in the governing equations. 
Finally, results are presented by graphs corresponding to the temperature and velocity fields for different values 
of the governing parameters. 

2. New Modified Adomian Decomposition Method 
In order to illustrate the basic idea of this method, let us consider an ordinary differential equation taken by 
Wazwaz [18] as follows: 

( )Lu Ru Nu f x+ + = ,                                    (1) 

with prescribed boundary conditions. Here u is unknown function, L is an easily invertible linear operator having 
highest order derivative and R is a linear differential operator of order less than L. Nu represents the non-linear 
terms and f is the source terms. Applying the inverse operator 1L−  in both sides of Equation (1) and using the 
given boundary conditions, we have 

( ) ( ) ( )1 1u f x L Ru L Nu− −= − − .                                (2) 

Differences among different Adomian decomposition methods can be distinguish on the basis of dividing the 
source term ( )f x  into components. When ( )f x  is divided into 

i) one component then it is known as ADM, 
ii) two components then it is known as MADM, 
iii) n components then it is known as NMADM, where n is the degree of ( )f x . 
According to NMADM, we therefore express ( )f x  in the form 



A. K. Tiwari, P. Singh 
 

 
382 

( ) ( )0
n

iif x f x
=

= ∑ .                                     (3) 

The standard Adomian method defines the solution of u(x) by the series  

( ) ( )0
n

iiu x u x
=

= ∑ ,                                     (4) 

where the components 0 1, , , nu u u  are usually determined recursively using the new relationship expressed in 
the form 

( ) ( )
( ) ( ) ( )( ) ( )( )
( ) ( ) ( )( ) ( )( )

0 0

1 1
1 1 0 0

1 1
2 2 1 1

,

,

. 0k k k k

u x f x

u x f x L Ru x L Nu x

u x f x L Ru x L Nu x k n

− −

− −
+ + + +

=

= − −

= − − ≤ ≤

                   (5) 

3. Mathematical Analysis 
Consider the non-Darcy mixed convective flow of a viscous incompressible fluid between two vertical plane 
walls separated by a distance 2H and filled with a porous material in the presence of a temperature dependent 
source/sink and under a constant pressure gradient. We employ here a Cartesian coordinate system with origin at 
the central line of the channel having x′ -axis along the vertical direction and y′ -axis perpendicular to the 
walls. For fully developed laminar flow, the velocity has only a vertical component and is a function of y′  on-
ly. The equation of continuity is being identically satisfied. All the physical properties are assumed to be constant 
except the density variation in the buoyancy term which is satisfied by the Boussinesq’s approximation. If we 
define the dimensionless quantities as 

( )1
32

20
2 2

1 0

2
0

2
0

2

1

, , , , , ,

, , , ,

e f e e

e

f m

g T T HT Ty x u H p Hy x u p Gr
H H P T T

T TK F HP Q HDa F Q m
T TH K

β
θ

ν ρ ν ν

µ
µ α

′ ′−′ ′′ ′ ′ ′−
= = = = = =

′ ′−

′ ′′ ′ −
= = = =

′ ′−

               (6) 

the governing equations of the model such as conservation of momentum and thermal energy in non-dimensional 
form are obtained as follows (Chen et al. [7]): 

2
2

2

d 1 1
d

u GrFu u
Da Py

θ− − + = − ,                                 (7) 

2

2

d
d

u Q
y
θ

θ= + .                                       (8) 

The first term in the R.H.S. of Equation (7) is the Brinkman term, the second is the Darcy and the third is the 
Forchheimer term, hence the momentum transfer in the porous region is based on the Brinkman-Forchheimer-ex- 
tended Darcy model. The boundary conditions of the problem in non-dimensional form are obtained as 

0, 1 at 1; 0, at 1.u y u m yθ θ= = = = = = −                          (9) 

All the symbols used in the above equations are defined in the nomenclature. 
Now, putting the value of u from Equation (8) into the Equation (7), we get a fourth order non-linear ordinary 

differential equation in of the form: 

( ) 2 2
6 12 1yyyy yy yyC FQ F W FQθ θ θ θ θ θ− + + − − = − ,                       (10) 

where 

6 1
1 , Q GrC Q W

Da Da P
= − = − . 

For the solution of Equation (10), we use new modified Adomian decomposition method, proposed by Waz-
waz and El-Sayed [17] and for this purpose Equation (10) in operator form can be written as follows: 
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( ) 2 2
6 11 2yyyy yy yyL L C FQ FL W FQθ θ θ θ θ θ= − + + + + + .                       (11) 

Applying the inverse operator ( )1 . d d d d ,yyyyL y y y y− = ∫∫∫∫  Equation (11) can be written as 

( )
4

2 3 1 2 2
4 3 2 1 6 12 ,

24 yyyy yy yy
yC C y C y C y L L C FQ FL W FQθ θ θ θ θ θ−  = + + + − + + + + +             (12) 

where 1 2 3 4, , andC C C C  are constants and to be determined from the boundary conditions (9).  
Now, we can decompose θ θas 

4
0 iiθ θ

=
= ∑ ,                                       (13) 

and according to Equation (12) source function ( )f x  has the following form  

( )
4

2 3
4 3 2 1 .

24
yf x C C y C y C y= + + + −                              (14) 

As suggested by Wazwaz and El-Sayed [17], we get 

( )0 4y Cθ = ,                                     (15a) 

( ) ( ) ( ) ( )( ) ( ) ( )1 2 2
1 3 0 6 0 0 1 0 0

4
3 2 5 ,

2yyyy yy yyy C y L L y C FQ y FL y W y FQ y

C y W C y

θ θ θ θ θ θ−  = + + + − − 
= +

        (15b) 

( ) ( ) ( ) ( )( ) ( ) ( )2 1 2 2
2 2 1 6 1 1 1 1 1
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       (15c) 
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According to Equation (13), the expression for temperature field can be written as 

( ) ( ) ( ) ( ) ( ) ( )0 1 2 3 4y y y y y yθ θ θ θ θ θ= + + + + .                         (16) 

The symbols used in the above expressions as a constant are given in appendix. After obtaining the solution 
for temperature field in the form in Equation (16), we have derived the solution for velocity field by using Equa-
tion (8) but not presented here for the sake of brevity.  

4. Skin Friction and Nusselt Number at the Walls 
In order to measure the shear stress and the heat transfer rate at the boundaries, the expressions for the skin fric-
tion in non-dimensional form and Nusselt number on the channel walls have been obtained by using the follow-
ing relations respectively: 

1

d
d y

u
y

τ
=±

 
=  
 

                                    (17a) 

1

d
d y

Nu
y
θ

=±

 
=  
 

.                                   (17b) 

But they are not given here for the sake of brevity.  

5. Results and Discussions 
We investigate the interactive effects of the dimensionless parameters such as modified Darcy number Da, For-
chheimer number F, source/sink parameter Q and wall temperature ratio m, on heat and fluid flow between two 
vertical walls having differentially heating corresponding to the following categories of flow formation: 

i) when forced convection is dominated ( G P< ), 
ii) when both convections are equal ( Gr P= ), 
iii) when natural convection is dominated ( G P> ). 
In the presence of source ( )0Q > , the temperature and velocity profiles for different values of Da and F are 

presented in the Figures 1-3(a), Figures 1-3(b) for above mentioned categories respectively. Figure 1(a) re-
veals that the temperature profile decreases sharply very near to the walls and then by increasing rapidly it takes 
finally almost a flattened straight line in the middle region of the channel. As expected, we can observe from 
Figure 1(b) that reverse flow occurs near the walls and in the middle region flow is of parabolic type in case of 
forced convection dominated flow ( )Gr P< . When Grashof number is equal to the pressure gradient, then we 
can see by Figure 2(a), Figure 2(b) that by increasing near the walls both the temperature and velocity profiles 
attain almost same values in the middle region of the channel. In natural convection dominated flow (G > P), we 
can see from Figure 3(a) that the buoyancy force acts to increase the fluid temperature sharply in the region very 
close to the walls and then by decreasing attains almost same value in the central region of the channel. Almost 
same pattern can be seen from Figure 3(b) in the case of velocity profiles.  

In all three cases, we observed that the temperature and velocity profiles are increasing function of modified 
Darcy number while decreasing function of Forchheimer number. The effect of Darcy number is more visible in 
the case of natural convective dominated flow. The fluid velocity near the wall region slowly increases with the 
increase of Da, but it is more significant in the region near to the walls when flow is dominated by natural con-
vection. 

We have plottedin the Figure 4(a) and Figure 4(b) the temperature and velocity profiles in the presence of 
sink ( )0Q <  for different values of the physical parameters when Gr P< . In this case, we can observe that 
the temperature profiles have decreasing tendency and attain minimum values at the center. Effects of the para-
meters Da and F are only in the region near the walls. Figure 4(b) shows that reverse flow occurs near the walls 
due to increase in F and decrease in Da. The velocity profiles are maximum at the center. It should be noted that 
the dimensionless axial velocity at the central line of the channel is independent of the values of Da and F. Same 
type of flow formation is seen for other categories and hence not presented here. 

Figures 5(a)-7(a), Figures 5(b)-7(b) illustrate the effects of wall temperature ratio (m) on temperature and 
velocity profiles corresponding to cases three types of categories. From these figures in the presence of source  
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Figure 1. Effects of the modified Darcy number Da and Forchheimer number F on the temperature and the velocity profiles 
by 1(a) and 1(b) respectively in the presence of source for when forced convection is dominated and here Q = 5.0, m = 1.0.     
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Figure 2. Effects of the modified Darcy number Da and Forchheimer number F on the temperature and the velocity profiles 
by 2(a) and 2(b) respectively in the presence of source for when both convections are equal and here Q = 5.0, m = 1.0.         
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Figure 3. Effects of the modified Darcy number Da and Forchheimer number F on the temperature and the velocity profiles 
by 3(a) and 3(b) respectively in the presence of source parameter for when natural convection is dominated and here Q = 5.0, 
m = 1.0.                                                                                                  
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Figure 4. Effects of the modified Darcy number Da and Forchheimer number F on the temperature and the velocity profiles 
by 4(a) and 4(b) respectively in the presence of sink for when forced convection is dominated and here Q = −5.0, m = 1.0.      
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Figure 5. Effects of the modified Darcy number Da and Forchheimer number F on the velocity profiles by 5(b) in the 
presence of sink for when both convections are equal and here Q = −5.0, m = 1.0.                                      
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Figure 6. Effects of the wall temperature ratio m and source/sink parameter Q on the temperature and the velocity profiles 
profiles by 6(a) and 6(b) respectively for when forced convection is dominated and here Da = 0.01, F = 0.2.                  
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Figure 7. Effects of the wall temperature ratio m and source/sink parameter Q on the temperature and the velocity profiles 
profiles by 7(a) and 7(b) respectively for when both convections are equal and here Da = 0.01, F = 0.2.                    
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Figure 8. Effects of the wall temperature ratio m and source/sink parameter Q on the temperature and the velocity profiles 
profiles by 8(a) and 8(b) respectively for when natural convection is dominated and here Da = 0.01, F = 0.2.                    
 
parameter, it shows that when m increases, the flow near wall 1 is more and more accelerated and flow reversal is 
observed in the vicinity of wall 2. Meanwhile wall 1 becomes increasingly hotter relatively to wall 2 and the 
temperature profiles approaches a linear distribution. In the presence of sink parameter, the temperature profile 
slopes on both walls remain constant in accordance with the differentially heating conditions. As Gr P>  i.e. 
forced convection to natural convection, wall 1 becomes increasingly cooler relatively to wall 2. This observation 
can be explained by the fact that the axial convective heat transport near the left wall becomes more and more 
important (Figure 6, Figure 7 and Figure 8(b)). 

A close study of the Table 1 and Table 2 for different values of modified Darcy number Da, Forchheimer 
number F, wall temperature ratio m and source/sink parameter Q presents the dependence of skin friction and 
Nusselt number corresponding to three categories at the walls 1y = ±  respectively. The values for skin friction 
and Nusselt number have been determined on both the walls by using the Equations (17a, b) and they are given 
in Table 1 and Table 2. It is clear from these tables that skin friction for each category increases with wall tem-
perature ratio m and Forchheimer number F. On comparing the skin friction for each category of the wall at y = 
1.0 and y = −1.0, it is observed that it increases with Da when 0S ≥  while when 0S <  decreases with Da at 
the wall y = 1 and reverse behavior was found at wall y = −1. The Nusselt number at the left wall (y = −1) in 
each category becomes negative, which means physically that heat flows from porous region towards the walls.  
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Table 1. Numerical values of dimensionless Skin-friction at channel walls.                                           

Q Categories 

At right wall (y = 1.0) At left wall (y = −1.0) 

F = 0.2 
m = 0.5 

Da = 0.01 

F = 0.2 
m = 1.0 

Da = 0.01 

F = 1.0 
m = 1.0 

Da = 0.01 

F = 1.0 
m = 0.5 

Da = 0.05 

F = 0.2 
m = 0.5 

Da = 0.01 

F = 0.2 
m = 1.0 

Da = 0.01 

F = 1.0 
m = 1.0 

Da = 0.01 

F = 1.0 
m = 0.5 

Da = 0.05 

5 

i) 3.82514 3.89299 4.1029 4.08650 1.97408 3.89299 3.96088 1.84139 

ii) 1.29565 1.61654 1.6658 1.32525 0.323148 0.616548 0.624665 0.1652 

iii) 0.42969 0.440571 0.8364 0.488220 0.24551 0.44057 0.007820 0.00477 

0 

i) 3.00068 3.19296 3.6410 3.24082 2.255497 3.18796 3.22421 2.81004 

ii) 1.49129 1.79016 2.1718 1.61191 1.71632 1.79266 2.38322 1.82967 

iii) 0.97701 1.77142 1.8718 1.05870 1.42852 1.776423 2.09665 1.49581 

−5 

i) 4.19511 4.84815 4.8692 3.90279 4.08168 4.73043 5.58713 5.55570 

ii) 3.40051 3.83252 3.9902 3.00829 3.80597 3.86243 5.48712 5.48357 

iii) 3.13667 3.72504 3.8168 2.8008 3.71639 3.72070 5.45826 5.43080 

 
Table 2. Numerical values of dimensionless Nusselt number at channel walls.                                           

Q Categories 

At right wall (y = 1.0) At left wall (y = −1.0) 

F = 0.2 
m = 0.5 

Da = 0.01 

F = 0.2 
m = 1.0 

Da = 0.01 

F = 1.0 
m = 1.0 

Da = 0.01 

F = 1.0 
m = 0.5 

Da = 0.05 

F = 0.2 
m = 0.5 

Da = 0.01 

F = 0.2 
m = 1.0 

Da = 0.01 

F = 1.0 
m = 1.0 

Da = 0.01 

F = 1.0 
m = 0.5 

Da = 0.05 

5 

i) 0.241903 0.208009 0.27780 0.29610 −0.20800 −0.60056 −0.23450 −0.15620 

ii) 0.13017 0.09215 0.10850 0.16350 −0.90782 −0.09279 −0.06770 −0.16060 

iii) 0.26350 0.08780 0.22730 0.29890 −0.18240 −0.08570 −0.16520 −0.26460 

0 

i) 0.77320 0.46930 0.64540 0.75000 −0.31510 −0.46380 −0.18430 −0.29520 

ii) 0.96470 0.74550 0.83420 0.95000 −0.44070 −0.74560 −0.31730 −0.43870 

iii) 1.02970 0.83350 0.89320 1.02024 −0.48500 −0.83360 −0.36102 −0.48094 

−5 

i) 1.54960 1.22200 1.22210 1.41892 −0.64670 −1.22320 −0.26430 −0.43160 

ii) 1.56722 1.29240 1.34240 1.43290 −0.62317 −1.29298 −0.24740 −0.41050 

iii) 1.5600 1.31870 1.44144 1.44580 −0.62600 −1.31183 −0.24917 −0.4740 

 
However, the Nusselt number at the right wall (y = 1) in each category positive, which indicates physically that 
heat flows from the walls into the porous region. We observed that Nusselt number for each category decreases 
with wall temperature ratio m and increases with Forchheimer number F. On comparing the Nusselt number for 
each category of the wall at y = 1.0 and y = −1.0, it is observed that it increases with Da when 0S >  while 
when 0S ≤  decreases with Da at the wall y = 1 and reverse behavior was found at wall y = −1. 

6. Conclusion 
New modified Adomian decomposition method has been used to find the analytical solution of the governing 
equations describing the non-Darcy mixed convective flow of an incompressible and viscous fluid in a differen-
tially heated vertical channel filled with a porous material in the presence of a temperature dependent source/ 
sink. The effect of all physical parameters appearing in the governing equations is more visible when natural 
convection is dominated in comparison with fully forced convection in the presence of source parameter. The 
impact of all categories is more effective in the presence of source than sink. Also, it has been observed that the 
numerical values of all skin friction components increase with the increase of wall temperature ratio (m) and 
Forchheimer number (F). Increasing value of Gr from P i.e. forced convection to natural convection induces 
flow acceleration near both walls and consequently flow deceleration in the central line of the channel. Even-
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tually this tendency can lead to flow reversal at the centerline but the corresponding value of Gr either greater, 
equal or less than P is of questionable physical signification (see discussion by Barletta and Zanchini [19] on 
stability). 

References 
[1] Szeri, A.Z. and Rajagopal, K.R. (1985) Flow of a Non-Newtonian Fluid between Heated Parallel Plates. International 

Journal of Non-Linear Mechanics, 20, 91-101. http://dx.doi.org/10.1016/0020-7462(85)90003-4 
[2] Aung, W. and Worku, G. (1986) Theory of Fully Developed Combined Convection Including Flow Reversal. ASME 

Journal of Heat Transfer, 108, 485-488. http://dx.doi.org/10.1115/1.3246958 
[3] Nelson, D.J. and Wood, B.D. (1989) Fully Developed Combined Heat and Mass Transfer Natural Convection between 

Parallel Plates with Asymmetric Boundary Conditions. International Journal of Heat and Mass Transfer, 32, 
1789-1792. http://dx.doi.org/10.1016/0017-9310(89)90060-4 

[4] Hamadah, T.T. and Wirtz, R.A. (1991) Analysis of Laminar Fully Developed Mixed Convection in a Vertical Channel 
with Opposing Buoyancy. ASME Journal of Heat Transfer, 113, 507-510. http://dx.doi.org/10.1115/1.2910593 

[5] Kou, H.S. and Huang, D.K. (1997) Fully Developed Laminar Mixed Convection through a Vertical Annular Duct 
Filled with Porous Media. International Journal of Heat and Mass Transfer, 24, 99-110.  
http://dx.doi.org/10.1016/S0735-1933(96)00109-1 

[6] Boulama, K. and Galanis, N. (2004) Analytical Solution for Fully Developed Mixed Convection between Parallel Ver-
tical Plates with Heat and Mass Transfer. ASME Journal of Heat Transfer, 126, 381-388.  
http://dx.doi.org/10.1115/1.1737774 

[7] Umavathi, J.C. and Malashetty, M.S. (2005) Magnetohydrodynamic Mixed Convection in a Vertical Channel. Interna-
tional Journal of Non-Linear Mechanics, 40, 91-101. http://dx.doi.org/10.1016/j.ijnonlinmec.2004.05.018 

[8] Chen, Y.C., Chung, J.N., Wu, C.S. and Lue, Y.F. (2000) Non-Darcy Mixed Convection in a Vertical Channel Filled 
with a Porous Medium. International Journal of Heat and Mass Transfer, 43, 2421-2429.  
http://dx.doi.org/10.1016/s0017-9310(99)00299-9 

[9] Muralidhar, M. (1989) Mixed Convection Flow in a Saturated Porous Annulus. International Journal of Heat and 
Mass Transfer, 32, 881-888. http://dx.doi.org/10.1016/0017-9310(89)90237-8 

[10] Hadim, A. and Chen, G. (1994) Non-Darcy Mixed Convection in a Vertical Porous Channel. Journal of Thermophysics 
and Heat Transfer, 8, 805-808. 

[11] Vafai, K. and Kim, S.J. (1989) Forced Convection in a Channel with a Porous Medium: An Exact Solution. Journal of 
Heat Transfer, 111, 1103-1106. http://dx.doi.org/10.1115/1.3250779 

[12] Nadeem, S. and Akbar, N.S. (2009) Effects of Heat Transfer on the Peristaltic Transport of MHD Newtonian Fluid 
with Variable Viscosity: Application of Adomian Decomposition Method. Communications in Non-Linear Sciences 
and Numerical Simulation, 14, 3844-3855. http://dx.doi.org/10.1016/j.cnsns.2008.09.010 

[13] Nield, D.A., Junqueira, S.L.M. and Large, J.L. (1996) Forced Convection in a Fluid-Saturated Porous-Medium Chan-
nel with Isothermal or Isoflux Boundaries. Journal of Fluid Mechanics, 322, 201-214.  
http://dx.doi.org/10.1017/S0022112096002765 

[14] Beckett, P.M. (1980) Combined Natural and Forced Convection between Parallel Vertical Walls. SIAM Journal on Ap-
plied Mathematics, 39, 372-384. http://dx.doi.org/10.1137/0139031 

[15] Chamkha, A.J. (2002) On Laminar Hydromagnetic Mixed Convection Flow in a Vertical Channel with Symmetric and 
Asymmetric Wall Heating Conditions. International Journal of Heat and Mass Transfer, 45, 2509-2525.  
http://dx.doi.org/10.1016/S0017-9310(01)00342-8 

[16] Khan, M., Hyder Ali, S., Hayat, T. and Fetecau, C. (2008) MHD Flows of a Second Grade Fluid between Two Side 
Walls Perpendicular to a Plate through a Porous Medium. International Journal of Non-Linear Mechanics, 43, 302-319.  
http://dx.doi.org/10.1016/j.ijnonlinmec.2007.12.016 

[17] Wazwaz, A.M. and El-Sayed, S.M. (2001) A New Modified of the Adomian Decomposition Method for Linear and 
Nonlinear Operators. Applied Mathematics and Computation, 122, 393-405.  
http://dx.doi.org/10.1016/S0096-3003(00)00060-6 

[18] Wazwaz, A.M. (2006) The Modified Decomposition Method for Analytic Treatment of Differential Equations. Applied 
Mathematics and Computation, 173, 165-176. http://dx.doi.org/10.1016/j.amc.2005.02.048 

[19] Barletta, A. and Zanchini, E. (1999) On the Choice of Reference Temperature for Fully Developed Mixed Convection 
in a Vertical Channel. International Journal of Heat and Mass Transfer, 42, 3169-3181.  
http://dx.doi.org/10.1016/S0017-9310(99)00011-3 

http://dx.doi.org/10.1016/0020-7462(85)90003-4
http://dx.doi.org/10.1115/1.3246958
http://dx.doi.org/10.1016/0017-9310(89)90060-4
http://dx.doi.org/10.1115/1.2910593
http://dx.doi.org/10.1016/S0735-1933(96)00109-1
http://dx.doi.org/10.1115/1.1737774
http://dx.doi.org/10.1016/j.ijnonlinmec.2004.05.018
http://dx.doi.org/10.1016/s0017-9310(99)00299-9
http://dx.doi.org/10.1016/0017-9310(89)90237-8
http://dx.doi.org/10.1115/1.3250779
http://dx.doi.org/10.1016/j.cnsns.2008.09.010
http://dx.doi.org/10.1017/S0022112096002765
http://dx.doi.org/10.1137/0139031
http://dx.doi.org/10.1016/S0017-9310(01)00342-8
http://dx.doi.org/10.1016/j.ijnonlinmec.2007.12.016
http://dx.doi.org/10.1016/S0096-3003(00)00060-6
http://dx.doi.org/10.1016/j.amc.2005.02.048
http://dx.doi.org/10.1016/S0017-9310(99)00011-3


A. K. Tiwari, P. Singh 
 

 
390 

Nomenclature 
Da Modified Darcy number, defined in Equation (1) 
F  Forchheimer number, defined in Equation (1) 
F ′  Inertial coefficient, defined in Equation (1) 
g  Acceleration due to gravity 
Gr  Grashof number or free convection parameter, defined in Equation (1) 
H ′  half distance between both walls 
K ′  Permeability of the porous medium 
m  wall temperature ratio, defined in Equation (1) 
p′  fluid pressure 

P  constant pressure gradient, d
d
pP
x

= −  

p  Dimensionless fluid pressure defined in Equation (1) 
Q  dimensionless source/sink parameter defined in Equation (1) 
Q′  Source/sink parameter 
T ′   Fluid temperature 

0T ′   mean temperature 
1T ′   Temperature of the left wall 
2T ′   Temperature of the right wall 

u  Dimensionless velocity component 
u′   Velocity component component 
x, y  Dimensionless Cartesian coordinates  

,x y′ ′  Cartesian coordinates 

Greek Symbols 

mα  Effective thermal diffusivity 
β   Volumetric coefficient of thermal expansion 
θ   Dimensionless fluid temperature, defined in Equation (1) 
λ   Dimensionless frequency parameter defined in Equation (1) 
λ′   Frequency parameter 

fµ  Fluid viscosity  
eµ  Effective viscosity  
eν   Effective kinematic viscosity  
fρ  Fluid density 
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