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Abstract

Characterizations of the classes of all choice functions that select the cores or the externally stable
cores induced by an underlying revealed dominance digraph are provided. Relying on such cha-
racterizations, the basic order-theoretic structure of the corresponding sets of revealed cores is
also analyzed. In particular, it is shown that the poset of all revealed cores ordered by set inclusion
is a median meet semilattice: therefore, any profile of revealed cores may be aggregated by means
of the simple majority rule.
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1. Introduction

The core of a game is the set of its undominated outcomes, with respect to a suitably defined dominance irref-
lexive relation, or loopless digraph. Now, consider the ongoing operation of a multi-agent system, e.g. an organ-
ization or indeed any decision-making unit whose outputs are aptly modeled as the outcomes of a game. Let us
then assume that the set of available options does in fact change at a faster pace than the behavioural attitudes of
the relevant players and the latter interact as predicted by the core of that game. It follows that the corresponding
choice behaviour of the given interaction system as recorded by its choice function should be constrained in
some way by its game-theoretic structure and thus somehow reveal that fact. But then, what are the characteris-
tic “fingerprints” of such a choice function, namely the testable behavioural predictions of the core as a solution
concept? Or more simply, which choice functions defined over arbitrary subsets of an “universal” outcome set
may be regarded as revealed cores? Let us call that issue, for ease of reference, the (full domain) core revelation
problem.
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Apparently, such a problem has never been addressed in its full generality in the extant literature. To be sure,
parts of the massive body of literature on “revealed preference” provide partial answers addressing the case of
nonempty cores, i.e. of acyclic revealed dominance digraphs (see e.g. [1]-[4]). Moreover, there is also some
work covering the case of possibly empty sets of undominated outcomes for an arbitrary—i.e. possibly not ir-
reflexive-binary relation R, hence putting aside the original game-theoretic interpretation of R as a dominance
relation (see e.g. [5], and [6]). But of course the dominance relation of a game in its usual meaning has to be ir-
reflexive (no outcome dominates itself), and the core of a game may well be empty, because its revealed domin-
ance digraph may have cycles. Here, we are interested precisely in the general version of the core revelation
problem for the full domain, namely in a characterization of all revealed cores as solutions for a certain “uni-
versal” outcome set and all of its subsets, including (locally) empty-valued cores.

The present paper is aimed at filling this gap in the literature by addressing the general core revelation prob-
lem with full domain as formulated above. It contributes to the extant literature in the following ways:

e it provides characterizations of all choice functions with full domain—proper or not—that represent revealed
cores,

e under several variants of the notion of core (Theorems 7, 10, and 14).

Moreover,

e A study of the basic order-theoretic structure of the corresponding classes of revealed core-solutions as ca-
nonically ordered by set-inclusion is also provided (Theorems 17, 20, 21 and 22). In particular, it is shown
that the class of all revealed cores (as opposed to, say, the class of nonempty-valued revealed cores) is a
meet sub-semilattice of the lattice of all choice functions, and in fact a median meet semilattice (see Theorem
17). A remarkable consequence of that fact is that any profile of revealed cores is amenable to aggregation
by the simple majority rule.

Thus, it turns out that each revealed core embodies a considerable part of standard maximizing choice, while
the global structure of (full domain) revealed cores retains the order-theoretic properties of the space of all (full
domain) choice functions that is most significant from the point of view of simple majority aggregation.

A further generalization of the core revelation problem to the case of choice functions with an arbitrary do-
main (along the lines of [6]) would be most helpful. That task is left as a topic for another paper.

The paper is organized as follows: Section 2 includes a presentation of the model and the main characteriza-
tion results; Section 3 provides some basic results concerning the order-theoretic properties of the classes of re-
vealed core-solutions previously characterized; Section 4 consists of a few concluding remarks.

2. Choice Functions and Revealed Cores

Let X be a set denoting the “universal” outcome set, with cardinality #X >3, and P(X) its power set. It is
also assumed for the sake of convenience that X is finite (but it should be remarked that the bulk of the ensuing
analysis is easily lifted with suitable minor adaptations to the case of an infinite outcome set). A choice function
on X (with full domain) is a deflationary operator on P(X) i.e. a function c:P(X)—P(X) such that
c(A)c A forany Ac X (empty choice sets are allowed). A choice function c is proper if ¢(A)=& when-
ever &=+ Ac X . We denote Cy the set of all choice functions on X, and C; the subset of all proper choice
functions on X. The proper subdomain of c¢eC, -written D¢-is the set of all subsets of X with a nonempty-va-
lued choice seti.e. D, ={Ag X:c(A)= @} . For any binary relation B XxX,andany Y < X, B* and
B¢ denote the asymmetric and symmetric components of B, respectively, while B, =B (Y xY) and
B=(XxX)\B.Recall that B< X xX is reflexive iff xBx for all xe X, irreflexive iff not xBx for all
xe X, total iff xBy or yBx for any X,ye X, asymmetric iff xBy entails not yBx for any Xx,ye X,
transitive iff xBy and yBz entail xBz forany x,y,ze X, quasi-transitive if B? is transitive, negatively
transitive if B is transitive. The transitive closure T(B) is the smallest transitive R o B. Moreover, B is
strictly acyclic iff its transitive closure is irreflexive, and a strict partial order iff it is both asymmetric and tran-
sitive.

Let Ac X xX be an irreflexive binary relation on X, denoting a suitably defined dominance relation:
(X,A) isthe corresponding dominance digraph. In particular, A is asymmetric if A=A".

Forany Y X, A, =AN(Y ><Y) denotes the dominance relation induced by A on Y (of course A, =A),
and (Y,A,) is the induced dominance subdigraph on Y. Broadly speaking, the core of (Y,A, ) is the set of

A, -undominated outcomes in Y, namely
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C(Y,Ay)={yeY:notzA,yforallzeY}.
The a-core of (Y,A,) isthesetof Aj-undominated outcomes inY, namely
C*(Y,4,)=C(Y,A7)={yeY ot z(a, )" yforall zeY}.

The core (a-core) of (Y,A,) is externally stable iff for any zeY\C(Y,A,) there exists yeC(Y,A)
suchthat yA,z (forany zeY\C®(Y,A,) thereexists yeC?*(Y,A,) suchthat y(A,) z, respectively).

A dominance digraph (X,A) is also said to be core-perfect or strictly acyclic (acyclic, respectively) if
C(Y,A,)#=@ (C*(Y,A, )=, respectively) forany Y < X .

Remark 1. It should be emphasized here that any dominance digraph may arise in a natural way from an
underlying game in coalitional form and from a related game in strategic form. Indeed, the dominance digraph

(X Ag) defined by the following rule can be attached in a natural way to any coalitional game

9=(N.X,E(=),,) *

For any x,ye X, X,ye X, xAjy iff there exist Ac X and Sc N such that xe AcE(S) and
z>y forall ieS and ze A (see[7] for further details).

Two binary relations R(c), R, induced by a choice function ceC, on X and defined as follows will play a
pivotal role in the ensuing analysis: for any x,ye X, xR,y ifand only if xe c({x, y}) while xR(c)y if
and only if there exists Y = X suchthat xec(Y) and yeVY.

A choice function ceC, isa revealed core-solution if there exists an irreflexive relation A < X x X such
that c(Y)=C(Y,A,) forany Y < X . Similarly, ceC, is a revealed a-core-solution (ES core-solution, ES
a-core-solution, respectively) if there exists an irreflexive relation A < X x X such that C(Y) =C? (Y,AY)
(c(Y)=C(Y,A,) with C(Y,A,) externally stable, c(Y)=C,(Y,A,), c(Y)=Ci(Y,A,), respectively)
forany Y < X . Then, we also say that ¢ is core-rationalizable (a-core-rationalizable, ES-core-rationalizable,
ES-a-core-rationalizable respectively) by the dominance digraph (X,A). Clearly, ES (a-)core-solutions are
refinements of (a-)core solutions. Revealed cores will also be used as a generic label to denote all the foregoing
choice functions.

The following choice functions provide some remarkable examples—and non-examples—of revealed cores.
In particular, the first one will also play a role in the proofs of some results in Section 3, while the second one is
a version of the well-known—and widely studied—*“satisficing behavior”.

Example 2. Notice that digraph (X,2) is also a dominance digraph, and C(A,&,)=C*(AQJ,)=A for
any Ac X (hence it is also-trivially-externally stable). Therefore, the identity operator ¢ :P(X ) - P(X)
is a revealed core-solution (a-core-solution, ES core-solution).

Example 3. Take @ < G < X and consider the nonempty valued dichotomic choice function
c® :ng)—> P(X) asdefined by the “lax” satisficing rule c®(A)=ANG forany Ac X if AnG=QJ,
and c;(A)=A otherwise. Now, posit A=Gx(X\G) ie. xAy iff xeG and ye X\G. It is easily
checked thatforany Y < X, ¢ (Y)=C(Y,A,)=C*(Y,A,) (which isalso externally stable).

Example 4. By way of contrast, take again @< G < X and consider the dichotomic choice function
c®:P(X)—>P(X) as defined by the “strict” satisficing rule c®(A)=ANG for any Ac X . It is easily
checked that c® is not a revealed core: to see this, take any xe X \G. Then, c® ({x})= & while for any
dominance digraph (X,A) andany xe X, it cannot be the case that xAx hence
Clixag ) =C(x}ay )=t . - .

he main objective of this article is precisely to provide a characterization of all revealed cores in C, , and
study their basic order-theoretic structure.

To begin with, let us consider two requirements concerning local existence of nonempty choice sets.

No-dummy property (ND): c({x})={x} forany xeX.

2-Properness (2-PR): c(A)= & forany Ac X suchthat #A=2.

It is easily checked that ND is satisfied by all revealed cores, while 2-PR is only violated by core solutions
when the underlying dominance digraph is not asymmetric. A stronger property that obviously entails both ND
and 2-PR is:

Properness (PR): c(A)=@ forany nonempty Ac X .

The following properties of a choice function ceC, play a prominent role, under various labels, in the

extant literature:
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Chernoff Contraction-consistency (C): forany A,Bc X suchthat Ac B, c(B)nAcc(A).

Concordance (CO): forany A B< X, c(A)nc(B)cc(AUB).

Superset consistency (SS): forany A,B< X ,if AcB and @=c(B)cc(A) then c(A)cc(B).

Property C is a contraction-consistency condition for choice sets in that it requires that any outcome chosen
out of a certain set should also be chosen out of any subset of the former: essentially, it says that any good rea-
son to choose a certain option out of a given menu should retain its strength in every submenu of the former
containing that option.

Conversely, property CO (also variously denoted as y or Generalized Condorcet-consistency) is an expan-
sion-consistency condition for choice sets, requiring that an outcome chosen out of a certain set and of a second
one should also be chosen out of the larger set given by the union of those two sets: it says that any good reason
to choose a certain option out of two given menus should retain its strength in the larger menu obtained by
merging those two menus.

Property SS is also an expansion-consistency requirement for choice sets: it rules out the possibility that the
choice set of a certain menu be nonempty and strictly included in the choice sets of a smaller menu.

We are now ready to prove the main results of this paper. Let us start from the following simple.

Claim 5. Let Rc X x X be any (binary) relation on X, and define A" < X x X by the following rule: for
any x,yeX, xARy iffnot yRx. Then,

(i) A =R

(i) forany Y < X, maxR, ={xeY :not yA®xforall y X} , and
max A ={xeY :not yRx forall y e X} ;

(iii) R is reflexive iff AR is irreflexive, and irreflexive iff AR is reflexive;

(iv) Ris total iff AR is asymmetric, and asymmetric iff AR is total;

(v) R is quasi-transitive iff A® is quasi- transmve

Proof. (i) Forany x,ye X , by definition xA*"y iffnot yARx iff not(not xRy)iff XRy.

(i) Let xeY, and xRy for all yeY : then, by definition, not yAfx forall yeY , and conversely if not
yARx forall yeY then not (not xRy) i.e. xRy for all yeY . Similarly, xeY and not yRx forall yeY :
then by definition xARy forall yeY ,and conversely.

(iii) Indeed, by definition for any xe X , not xA"x iff not (not xRx) i.e. xRx. Similarly, not xRx iff xARx.

(iv) Suppose A" is asymmetric: then, for any x,y e X, it may be the case that not yARx or not xARy
(or both). Now, if not yARx then xRy and if not xA®y then yRx, therefore R is total. Conversely, suppose R
is total. If xRy then not (not xRy) hence not ( yA®x ) and similarly yRx entails not ( xA®y ), thus in any case A"
is asymmetric. Similarly, R is asymmetric iff for any X,y e X it cannot be the case that xRy and yRx, i.e. by
definition iff it is not the case that not yA®x and not xA®y, namely A" is total.

(v) Suppose that R is quasi-transitive, and that both x(AR)a y and y(AR)a z. Then, by definition (not yRx

and xRy), and (not zRy and sz)le xR?y and yR®z,hence xR%z. Therefore, xRz and not zRx i.e. not zA"x
and xARz, namely x(A® . Conversely, suppose that AR is quasi-transitive, and that both xR®y and
yR%z. Then, by definition (ny and not ny) and (yRz and not zRy) i.e. by definition (not yA®x and xARy)
and (not zARy and yAfz), i.e. ngR) y and y(AR) hence x(AR) . Therefore, xA®z and not
zA®x ie. not zRx and xRz, namely XxR%z [

Remark 6. The content of the previous Claim is certainly not unknown, but | have been unable to find a ref-
erence in print to it except for the statement of point (iv) in [8], while Theorem 8 of [3] only includes a specia-
lized version of the same point.

The following Theorem extends and/or supplements some previous characterization results for revealed cores
due to [1] and [2].

Theorem 7. Let ¢ eC, . Then, the following statements are equivalent:

(i) c satisfies ND, C and CO;

(ii) there exists an irreflexive A< X x X suchthat c(Y)=C(Y,A,) forany Y c X ;

(i) there exists a reflexive relation R < X x X such that c(Y) =maxR, forany Y cX.

(iv) R(c)=R., R(c) isreflexiveand c(Y)=maxR(c), forany Y cX.

Proof. (i) = (iv): Let ceC,. Now, foreach Y = X and xec(Y), xR(c)y forany yeY by definition
of R(c).Hence c(Y)c< max R(c)Y . Now, let ceC, also satisfy ND, C and CO, and X € max R(c)Y . Then,
by definition, xeY and for any yeY there exists Y, such that yeY, and XEC(Yy). It follows that
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xeY c Uer Y, and, by CO, xe C(Uer Yy) whence xec(Y) by C. Therefore, c(Y)=maxR(c), (clearly

it might be the case that maxR(c), =@ ). Notice however that, by ND, xec({x}) ie. xR(c)x for any
xe X . Thus, R(c) is reflexive, as required. Moreover, if xR(c)y then by C it must also be the case that
xec({x, y}) whence xR,y andthus R(c)=R; (since R, = R(c) by definition).

(if) < (iii) (see [1], Theorem 3): Let ceC, . Thus, by Claim 5 (ii), if there exists R< X x X such that
c(Y)=maxR, forany Y c X, then c(Y):ﬁx eY :not yA®xforallye X!, for any Y < X . Moreover, if
R is reflexive then by Claim 5 (iii) A" is irreflexive hence c(Y):(C Y, Ay ) Conversely if there exists an
irreflexive A< X xX suchthat c(Y)=C(Y,A,) forany Y <X then by Claim 5 (ii)-(iii) c¢(Y)=maxAJ
forany Y < X ,and A" is reflexive.

(iii) = (iv): See [1], Theorem 3. Moreover, observe that R, = R(c) by definition, and xR(c)y implies
X € max R(c)lxy = c({x, y}) i.e. xRy hence R, =R(c) (of course, this is an extension to arbitrary choice
functions of the proof of the same result for proper choice functions due to [2]).

(iv) = (iii): Trivial.

(iii) = (i): Suppose that there exists a reflexive relation R< X x X such that c(Y)=maxR, for any
Y < X . Clearly, by reflexivity of R, c({x}):max R ={x}, hence c satisfies ND. Moreover, for any
YcZc X andany xec(Z)=maxR,, it must also be the case that x e maxR, =c(Y) hence C is also sa-
tisfied by c. Finally, forany Y,Z < X and xe X, if xec(Y)=maxR, and c(Z)=maxR, then clearly
xemaxR, , whence xec(YuwZ) and CO is satisfied as well. L]

Remark 8. Notice that the equivalence between statements (ii) and (iii) of Theorem 7 above might in fact be
credited to [1] because it is strictly related (indeed, essentially equivalent) to a full-domain specialized version
of Theorem 3 of that paper, though the latter concerns nonempty core-solutions over an arbitrary domain
Dc P(X)\{Q} hence, strictly speaking, is a statement about a class of proper choice functions on arbitrary
domains. On the other hand, [9] has a similar result (see its Theorem 2.5), namely a characterization by the
conjunction of C and CO of the choice functions selecting the outcomes “permitted” by all outcomes—or “not
prohibited” by any outcome—according to an arbitrary “permission” or “prohibition” binary relation. A cha-
racterization of “sums” of revealed cores or “multi-criteria choice functions” by the conjunction of ND and C is
suggested in [10].

Remark 9. The foregoing characterization result is tight. To check that, consider the following examples.

1) Let c¢' €C, be defined as follows: for any Ac X, ¢'(A)=maxL, if A¢{x*}, and c' gx*}2=®
where L is a linear order on X and X" is its bottom element. Clearly, c¢' violates ND, but satisfies C and CO;

2) Let X ={x, y,zr}, and c¢"eC, be defined as follows: ¢"({h})={h} forany he X, c"({xy})={x},
c"({y.z})={y}, ¢"({xz})={z}, and c"(X)=X. It is immediately checked that c¢" satisfies ND and
CO, but violates C since e.g. yec" (X)n{x,y} but yec" ({xy});

3) Let c¢" eC, be defined as follows: for any Ac X, c"(A)=maxL, if #A<2 and c" (A)=0Q
otherwise, where L is a linear order on X. It is easily seen that ¢"' satisfies ND and C, but violates CO.

Next, we have a similar characterization result for revealed a-cores which is also an extension to the general
case of possibly non-proper choice functions of previous results as discussed below (see Remark 13).

Theorem 10. Let ¢ e C, . Then, the following statements are equivalent:

(i) c satisfies ND, 2-PR, C and CO;

(ii) there exists an irreflexive relation A< X xX suchthat c(Y)=C*(Y,A,) forany Y = X;

(iii) there exists a total relation R< X x X suchthat c(Y)=maxR, forany Y c X ;

(iv) R(c)=R., R(c) istotaland c(Y)=maxR(c), forany Y cX.

Proof. (i) = (iii): Let ceC, satisfy ND, 2-PR, C, and CO. Then, by ND, C and CO (and in view of
Theorem 7 above) there exists a reflexive relation R on X such that ¢(Y)=maxR, ={yeY :yRzforallzeY}
foreach Y < X . Thus, by 2-PR, R is total.

(i) < (iii): Suppose that there exists a total relation R X x X such that c(Y)=maxR, for any
YcX .
Then, as recorded by Claim 5 (ii) C(Y)={X€Y :not yARx forall ye X} forany Y < X . By Claim5 (iv) A®

is asymmetric since R is total, hence in particular c(Y): C Y,A$): c? (Y,A?) for any Y < X . Conversely,
suppose that there exists a dominance digraph (X , A) such that

c(Y):(Ca(Y,AY):{XEY :not yA*x forall y e X}, for any Y < X . Then, as recorded by Claim 5 (ii)
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c(Y)=max(A® j:by Claim 5 (iv), (Aa * s total since A® is asymmetric.
(i) = (i): Suppose that there exists a dominance digraph (X,A) such that c(Y)=C*(Y,A,) for any
Y X .Forany xe X ,not XA, x ienot XAx by irreflexivity of A whence by definition

c({x}) =C? ({x},A{X}) = (C({x},A{X} ) ={x} and ND is therefore satisfied by c. Furthermore, forany x,ye X,

Ay {6 ¥).(y,x)} hence A% L e{@{(xy)}.{(v.)}}. If A}, =@ then Ca({x,y},A{xyy}):{x,y},
otherwise (Ca({x, y},Aw})z{x} or (Ca({x, y},A{x'y})z{y},respectively, hence in any case

c({xy})=C ({x Y}, A, )# D thus csatisfies 2-PR.

Also, forany Y,Z = X suchthat Y =Z,andany xec(Z)nY =C*(Z,A,)NY , it must be the case that
not zAjx forall zeZ hence in particular not zA{x forall zeY, ie. xeC*(Y,A,)=c(Y) and c also
satisfies C.

Moreover, let Y,Z < X and xec(Y)nc(Z)=C*(Y,A,)nC*(Z,A,). Then, by definition, not yA;x
forall yeY andnot zAJx forall zeZ hencenot uAjx forall ueYuZ ie.
xeC*(YUZ,A, ,)=c(YUZ) and CO is satisfied by c.

(iii) < (iv): See the proof of Theorem 7 above. [

Remark 11. The foregoing characterization result is also tight. To see this, consider the following examples.

1) Let ¢ €C, asdefined above (see Remark 9). Clearly, c¢' violates ND, but satisfies 2-PR, C and CO;

2) Let ¢" eC, be defined as follows: ¢" ({x})={x} forany xe X, and ¢" (A)=@ forany Ac X
such that #A > 2. It is easily checked that ¢" does indeed satisfy ND, C and CO, but clearly violates 2-PR;

3) Let X ={x,y,z}, and ¢" eC, as defined above (see Remark 9). It is immediately checked that c"
satisfies ND, 2-PR, and CO, but violates C;

4) Let ¢" eC, as defined above (see Remark 9). It is easily seen that c¢"' satisfies ND, 2-PR and C, but
violates CO.

Corollary 12. (see also [2] [4]) Let c e Cy, . Then, the following statements are equivalent:

(i) c satisfies C and CO;

(ii) there exists a strictly acyclic dominance digraph (X,A) such that c(Y)=C(Y,A,)=C*(Y,A,) for
any Y < X;

(iii) there exists a total relation R< X x X suchthat c(Y)=maxR, forany Y c X ;

(iv) there exists a relation R< X x X suchthat c(Y)=maxR, forany Y c X .

(v) R(c)=R,, R(c) istotal,and c(Y)=maxR(c), forany Y cX.

Proof. (i) = (ii): Since ceCy, c is proper hence in particular it also satisfies ND and 2-PR. Therefore, by
Theorem 10 (ii) above, there exists a dominance digraph (X,A) suchthat c¢(Y)=C"(Y,A,) forany YcX.
Moreover, since by hypothesis ¢ is proper, C* (Y,AY ) #& forany Y < X hence (X,A) must be acyclic.

In particular, Ca({x, y},A{X,y}) #@ forany x,yeX, therefore A is asymmetric as well. Thus, (X,A) is

indeed strictly acyclicand C(Y,A,)=C*(Y,A, )= forany Y < X .

(ii) = (i): See the proof of Theorem 7 above.

(i) < (iii): Obvious, by Theorem 10 above, since, again, ¢ e C; entails that c satisfies ND and 2-PR.

(iii) < (iv): Suppose there exists R< X x X such that c¢(Y)=maxR, forany Y c X . Since ceCy,
c(Y)=@ forany Y < X . Hence, in particular, for any x,ye X, c({x, y}) # . It follows that R is total.
The reverse implication is trivial.

(iii) < (v): See the proof of Theorem 6 above, and of course [2]. [

Remark 13. Actually, it is well-known that a proper c satisfies both C and CO if and only if there exists a bi-
nary relation R on X such that c(Y)=maxR, ={yeY:yRz forall zeY} for each Y < X and, moreover,
R=R(c)=R, as defined above -indeed, R(c)=R, for any choice function that satisfies C (see e.g. [2] [4]).
Also notice that the equivalence between (ii) and (iii) is due to [3]. Thus, Corollary 12 is—essentially—a res-
tatement of the Sen-Plott-Suzumura characterization of revealed “rational” (proper) choice functions or, equi-
valently, revealed non-empty core solutions.

Let us now turn to characterizations of revealed externally stable core-solutions. Since externally stable cores
(of nonempty sets) are nonempty the corresponding choice functions are proper: thus, given the traditional focus
on proper choice functions, this subclass of revealed cores is the most widely studied, and best known (thanks
again to [1] and [4]; it should also be recalled here that externally stable cores are in particular a subclass of
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unique Von Neumann-Morgenstern stable sets). Therefore, for the sake of convenience, we collect in the fol-
lowing Theorem a few notable characterizations of revealed externally stable cores (to the best of the author’s
knowledge, only some of them are already known and available in print, namely those recorded in [4] which
correspond to the first equivalence of the following Theorem, as mentioned explicitly in its proof below).

Theorem 14. Let ¢ e C, . Then, the following statements are equivalent:

(i) c satisfies PR, C, CO and SS;

(ii) there exists a quasi-transitive relation R< X x X such that c(Y)=maxR, =& for any nonempty
YcX;

(iii) there exists a total and quasi-transitive relation R< X x X such that c¢(Y)=maxR, =& for any
nonempty Y < X ;

(iv) R(c)=R., R(c) istotal and quasi-transitive, and c(Y)=maxR(c), & forany Y < X.

(v) there exists a reflexive and negatively transitive relation R < X x X such that c¢(Y)=maxR, =& for
any nonempty Y < X ;

(vi) there exists a negatively transitive relation R X x X such that c(Y)=maxR, =& for any nonemp-
ty Y X;

(vii) there exists an irreflexive relation A < X x X such that ¢(Y)=C(Y,A,)=C*(Y,A,) with C(Y,A,)
externally stable, forany Y < X ;

(viii) there exists an irreflexive and transitive relation A < X x X such that
c(Y)=C(Y,A,)=C*(Y,A, )= D foranynonempty Y < X ;

(ix) there exists a a strict partial order A< X x X such that c(Y)=C(Y,A,)=C*(Y,A, )= for any
nonempty Y < X .

Proof. (i) = (ii) ([10]): By Theorem 2.6 of [4], if c satisfies PR, C, CO and SS then there exists a (reflexive
and) quasi-transitive relation R X x X such that c(Y)=maxR, =& for any nonempty Y < X . But of
course PR entails that c({x, y}) = max R{X'y # forany Xx,ye X, henceRis total as well.

(ii) = (i) ([10]): See again [4], Theorems 2.5, 2.6 and 2.7.

(i) < (iii): Let be Rc X xX quasi-transitive and such that c(Y)=maxR, =& for any nonempty
Y < X . Of course, PR entails that in particular c({x, y}) = max R{ # forany x,ye X, hence R is total
as well. The reverse implication is trivial.

(iii) < (iv): See the proof of Theorem 7 above.

(iii) < (v): Let R< X x X be total and quasi-transitive, and x,y,z e X such that not xRy and not yRz.
Hence, yRx and zRy since R is total. Therefore, by definition, yR®x and zR%. By quasi-transitivity, it follows that
zR%, whence in particular not xRz i.e. R is negatively transitive. Moreover, totality implies reflexivity of R.
Conversely, let R < X x X be reflexive and negatively transitive. Suppose there exist x,y e X such that not
xRy and not yRx: then, by negative transitivity, not xRx, a contradiction since R is reflexive. Thus, R is also total.
Moreover, let xR% and yR®z. Then, in particular, not yRx and not zRy. It follows that, by negative transitivity, not
ZRx whence, by totality, xRz. Thus, XR% i.e. R is quasi-transitive as well.

(v) < (vi): Let Rc XxX be a negatively transitive relation such that c(Y)=maxR, #& for any non-
empty Y < X . Then in particular, c({x})z max R{X} # for any xe X, hence R is reflexive as well. The
reverse implication is trivial.

(ili)= (vii): Letbe R< X x X total, quasi-transitive and such that c(Y)=maxR, =& for any nonempty
Y < X . Clearly, by construction, c(Y)={xeY:xRyforallyeY} ie.
c(Y)= {x eY:not yARxforallyeY|= (C(Y,A5) forany Y < X (see Claim 5 (i) above). Moreover, by Claim
5 (iii), A" isasymmetric since R is total, hence C(Y,A})=C?(Y,A7). Now, take any y, eY\C(Y,A}). By
definition, there exists y,eY such that y,Aly,. If y,eC(Y,A,) we are done. Suppose then that
Y, eY\(C(Y,A$2 as well: thus, there exists y,eY such that y,Aly,. It follows, by finiteness of Y and
nonemptiness o (C(Y,A?) , that there exists a finite k such that y,Aly,, for any i=2,---,k, and
Yy € (C(Y,A$ .Since A" is asymmetric, it also follows that y,Aly,, hence C(Y,A}) is externally stable.

(vii) = (i): Suppose that there exists a dominance digraph (X,A) suchthat c(Y)=C(Y,A,)=C*(Y,A,)
with C(Y,A,) externally stable, for any Y < X . By definition of external stability, c(Y)=& for any
nonempty Y < X , hence c satisfies PR. Moreover, by Theorem 7 (ii) above (or, for that matter, by Theorem 8
(ii)), it also satisfies C and CO. Finally, consider Y = Z < X such that c(Z)cc(Y), and suppose there
exists yec(Y)\c(Z) ie. yeC(Y,A,)\C(Z,A,). Then, by external stability of C(Z,A,), there exists
2eC(Z,A,)=C(Y,A, )Y such that zAy, a contradiction since ye C(Y,A, ). Therefore, c satisfies SS

Xy}
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as well.

(viii) < (iii): Suppose that there exists a dominance digraph (X,A) such that A is transitive (hence in
particular quasi-transitive) and c(Y)=C(Y,A ) C*(Y,A, )= for any nonempty Y < X . Then, by Claim
5 (i)-(ii) above, @;tc(Y) C(Y.Ay)= (CgY AR 2 max RA for any nonempty Y < X . Moreover, by Claim
5(v), R* is quasi-transitive. Also, notice that since by hypotheS|s A is both irreflexive and transitive, it must
be asymmetric as well. Therefore, by Claim 5 (iv), R is total. Conversely, suppose that there exists a total and
quasi-transitive relation R < X x X such that c(Y)=maxR, =& for any nonempty Y — X . Then, by
Claim 5 (ii) c( ) maxR, =C (Y AR);&@ for any nonempty Y < X . Moreover, by Claim 5 (iii), (v), and
in view of quasi-transitivity and totallty of R, AR is both quasi-transitive and asymmetric, hence transitive as
well, and such that C, (Y,A$)=(Cf} (Y,A?) as required.

(viii) < (ix): Suppose that there exists a dominance digraph (X,A) such that A is transitive and
c(Y)=C(Y,A,)=C*(Y,A, )= D for any nonempty Y = X . Again, irreflexivity and transitivity imply
asymmetry of A, which is therefore a strict partial order. The reverse implication is trivial. [

Remark 15. Observe that the characterization result of revealed externally stable cores in terms of properties
of choice functions included in Theorem 14 is also tight. To see this, consider the following examples.

1) Let c¢' eC, as defined above (see Remark 9). Clearly, c¢' violates PR,but satisfies C, CO and SS;

2) Let X ={x,y,z}, and c" eC, as defined above (see Remark 9). It is immediately checked that c"
satisfies PR,CO and SS, but violates C;

3)Let X ={x,y,z},and ¢c" eC, suchthat c" ({u})= u} forany ueX, ¢ ({xy})={xy},

v ({y.z})={y.z}, " ({x,z})z{x,z} and c" ({xy,2})= . Clearly, ¢V satisfies PR, C and SS.
However, ¢ fails to satisfy CO since z < (c" ({x, ( ))\c"’( xy.2});
J

2})ne
4)Let X ={xy,z},and c" eC, suchthat ¢'({u})={u} forany ueX, c'({xy})={x},
¢ ({y.z})={y}, ¢’ ({x,z}):{x,z} and ¢’ ({x,y,z})={x} . Clearly, ¢’ satisfies PR, C and CO but fails

to satisfy SSsince @=c¢’ ({x,y.z})=c’ ({x.z}).

Remark 16. Notice again that Theorem 14 above is essentially a refinement of well-known results due to
Suzumura (see e.g. [4], Theorems 2.8 and 2.10) and [3], whose Theorems 3, 4, and 7 amount essentially to the
equivalence between statements (iii), (iv) and (vii). It should also be mentioned here that the conjunction of C
and SS turns out to be equivalent (see e.g. [4]) to another well-known and widely used property, namely:

Path Independence (P1): forany A Bc X, ¢(AuB)=c(c(A)uc(B)).

Thus, the equivalent statements of Theorem 14 are also equivalent to the statement “c € C, satisfies PR, PlI
and CO”.

It should be remarked that the characterizations provided above are in general quite straightforward exten-
sions to arbitrary choice functions (with full domain) of previously known results concerning proper choice
functions (with full domain). Indeed, the gist of the results offered in the present section may be summarized as
follows:

(i) remarkably, the characterizations of general revealed cores and a-cores considered here consist of the very
same properties used to characterize their nonempty-valued counterparts as supplemented with very mild-look-
ing local nonemptiness requirements for choice sets of singleton and two-valued subsets, respectively;

(ii) the exact correspondence between revealed core-solutions and maximizing “rational” choice functions is
confirmed to hold within the general space of arbitrary choice functions: the alleged extra-generality of the lat-
ter subclass that has sometimes been alluded to in the literature (as e.g. in [4], p. 21) does not materialize within
the space of (total) choice functions and is therefore strictly confined to the realm of partial choice functions;

(iii) finally, and most notably, the class of general revealed cores turns out to inherit some of the supplemen-
tary order-theoretic structure enjoyed by its larger ambient space as compared to the smaller and less regular
space of proper choice functions: that is precisely the topic of the next section.

3. Posets and Semilattices of Revealed Cores

Let us now turn to a global description of the order-theoretic structure of the class of all revealed core-solutions
(a-core-solutions, nonempty-valued core-solutions, externally stable core-solutions, respectively).
A partially ordered set or poset is a pair P =(P,<) where Pisasetand < is a reflexive, transitive and an-
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tisymmetric binary relation on P (i.e. forany xeP, x<x and forany Xx,y,zeP, x<z whenever x<y
and y<z,and x=y whenever x<y and y<z). Forany xeP we posit (x]={yeP:y<x}.A coa-
tom of a poset P =(P,<) with a top element or maximum 1, isany jeP which is covered by 1,-written
j<l,-ie. j<1, and I=j forany leP suchthat j<I<1,.The setofall coatoms of P is denoted A;.
Dually, an atom of P is any jeP which is an upper cover of 0, -written 0, < j-i.e. 0, <j and I=j for
any leP suchthat 0, <I< j.The setof all atoms of P is denoted A

Aposet P=(P,<) isameetsemilattice (join semilattice, respectively) if forany x,y € P the < -greatest
lower bound XAy (the < -least upper bound Xxv Yy, respectively) of {x, y} does exist. Moreover, P is a
lattice if it is both a meet semilattice and a join semilattice.

A lattice P =(P,<) is bounded if there exist both a bottom element 0, and a top element 1, (hence in
particular a finite lattice is also bounded), distributive iff xA(yvz)=(xAy)v(xaz) forany x,y,zeP,
complemented if it is bounded and for any Xxe P there exists x'e P suchthat xvx'=1, and xA X =0,,
and Boolean iff it is both distributive and complemented.

A meet semilattice P = (P,g) is lower distributive if ((x] , g(x]) is a distributive lattice for any xe P, and

has the coronation (or join-Kelly) property if—for any x,y,zeP - ((XV y)v z) exists in P whenever
Xxvy,xvz and yvz alsoexist. A meet semilattice is median if it is lower distributive and has the coronation
property.

The set C, of all choice functions on X can be endowed in a natural way with the point-wise set inclusion
partial order < by positing, for any c,c’eC,, c<c' iff c¢(A)cc'(A) for each Ac X . Clearly, the
identity operator ¢ is its top element, and the constant empty-valued choice function ¢ its bottom element.
It is well-known, and easily checked, that (C,,<) is in fact a Boolean lattice with join v = (i.e. set-union)
and meet A= (i.e. set-intersection), both defined in the obvious component-wise manner: see e.g. [11].

Forany x,ye X suchthat x#y, ¢, €C, and c, €C, aredefinedas follows: forall Ac X,
¢, (A)=A\{y} if {x,y}c A,and c} (A)=A otherwise,and c ({z})={z} forall zeX,

cy ({xy})={y}.and ¢, (A)=@ forall Ac X suchthat A={x,y} and #A=1. Moreover,
C+={c:y:x,ye X, X # y},and C7={c;y X, ye X, X# y}.

The minimum ND choice function ¢ is defined by the following rule: for any xe X , ct ({x})={x}, and
cld (Y)=@ forany Y X suchthat #Y 1.

Now, let C; < C, denote the set of all revealed core-solutions on X, C;* — Cy the set of all revealed

asymmetric core-solutions, Cj’ =Cj nCj5 the set of all revealed nonempty-valued core-solutions, and C;*
the set of all revealed externally stable core-solutions on X, respectively). We also denote with a slight abuse of
notation (C; ,g) , (C;a,g), (Cf,g) and (C;es,g) the corresponding subposets of (C,,<) (where <
denotes < m(C; xCy ) < m(C;a X C;a) , <=< m(Cf xC;°) and <=< m(C*eS X C*es) respectively). We
have the following.

Theorem 17. The poset (C; ,<) of revealed core-solutions is a sub-meet-semilattice of (CX ,\) with c"
itself as its top element, but not a sub-join-semilattice of (C, ,g) It also satisfies the coronation property
hence it is a median meet semilattice. The bottom element of (C;’( ,g) is the minimum ND choice function ci¥
Moreover, the set of coatoms of (C; ,<) is C,_, and the set of its atoms is C_.

Proof. Let c,c’eCy , and consider cnc'. Clearly, forany xe X, (cnc’)({x})=c({x})nc'({x})={x}
sincecand c' satisfy ND: hence c~c’ does also satisfy ND.

Moreover, forany Ac Bc X ,sincecand ¢’ both satisfy C,

(cnc’)(B)nA=(c(B)nc'(B))nA=c(B)n(c'(B)nA)
=(ce(B)nA)(¢'(B)nA)cc(A) e (A)=(cnc)

hence cnc' satisfies C.
Finally, since cand ¢’ satisfy CO, forany A,Bc X,

(cne)(A)n(enc)(B)=(c(A)ne(B))n(c'(A)nc'(B))

cc(AuB)nc'(AuB)=(cnc’)(AUB)
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and CO also holds for c~c'. It follows that, by Theorem 7 above, cnc'eCjy, whence (C;,g) is a
sub-meet-semilattice of (CX ,g) : in particular, it follows that (C; , <) is lower distributive.

Furthermore, let us suppose that c,,c,,c;,¢, UC,,c, UC,,C, Uc, € Cy . Then, take (c,uc,)uc, as defined
in the obvious way. It is immediately checked that (c, uc,)uc, does satisfy ND and C, by construction.

Thus, we only have to check that (c,uc,)uc, does also satisfy CO. In order to check this last point,
considerany A,Bc< X ,and xe((c,uc,)uc,)(A)n((g ucz)uc3)(B)

By definition, it follows that xec (A)nc; (B ) for some i, j=1,2,3. Hence, in particular, it also follows
that xe(c uc;)(A)m(c uc;)(B) for some i,j=1,23. Now, by hypothesis, (c uc;)eCy hence it
satisfies CO. Therefore, x<(c uc;)(AUB)c ((cl uc,)uc,)(AUB) and (¢ uc,)uc, also satisfies CO.
As a consequence, (c1 ucz)uc3 e C} : thus, (CX ,\) has the join-Kelly property and is therefore a median
meet-semilattice as claimed.

It is easily checked that c', the top element of (Cy, <), does also satisfy ND, C and CO hence as observed
above ceC; (see Example 2).

Now, consider c as defined above: it satisfies ND, by definition, and, being nonempty-valued precisely on
singletons, it trlvraIIY satrsfres C and CO as well. Thus, e Cy - On the other hand, for any ceC;, ¢ must
satisfy ND, hence

Next, take any ¢, € C+. Notice that, by definition, c,, satisfies ND. Also, if A< B < X then the follow-
ing cases may be distinguished: a) {x,y}< A;b) {x, yig A and {x,y}<B;c) {xy}ZB.If {x,y}cA
then c, (B)nA=A\{y}=c, (A);if {x y}gA and {x,y} =B then
c;y(B)mA_(B\{y})mA A\{y} < A=c, (A);if {x,y} B then c; (B)nA=A=c, (A): thus in any
case C holds. Furthermore, let z¢ c:y(Au B): then by definition z=Yy and {x, y} < AUB. Assume now
that yec, (A)ncy, (B ) Then, {x,y}Z A and {x,y}ZB while ye AnB. It followsthat x¢ AUB,a
contradrctlon Thus, CO is also satrsfled by cXy , Theorem 7 applres and c eCy .

Moreover, by definition c; <c” ie. Cy <c” and Cy #c"

Let ceCy; be such that (:X),<c<c'd , and assume that cy #C i.e. there exists A'c X such that
¢, (A)c c(A') c A'. Clearly, by Theorem 7, ¢ satisfies ND, C and CO. If c¢c=c" there is nothing to prove,
so assume that there also exists B< X such that c, (B)cc(B)c B. Notice that by definition of c, ,
Cy (A)c A" entails A'o{x,y} and ¢ (A)= A’\{y?, hence in particular c(A’)=A". Also, there exists
ZE(B\C(B)gm(B\c:y(B) . By definition of c;, again, ze(B\c} (B)) entails Bo{x,y}, z=y and
¢, (B)=B\{y} (whence Xxec; (B)nc(B)). Therefore, xec(B)n{x,y} whence by C, xec({x, y})

Suppose first that c({x, y})={xy},and consider B\{x} . Clearly, by definition,
¢y (B\{x})=c(B\{x})=B\{x}. Thus, yec({x,y})nc(B\{x}) hence, by CO, yec(B):a contradiction,
since y=zeB\c(B). Suppose then c({x, y}) ={x} : since by hypothesis c e C;, there exists an irreflexive
digraph (X,A) such that c(A)=C(A,A,) for any Ac X . Therefore, c({x, y}):{x} entails xAy that
in turn entails ygc(A’) since. A'2{x,y}: acontradiction again because c(A')=A’.

It follows that if ¢, <c< ¢ theneither c=c or c =C,, i€ ¢, isindeedacoatomof (C}, <).

Conversely, let ¢ be a coatom of (CX ,g) and suppose c¢C,. Then, for any pair of distinct x,y e X,
neither ¢, <c nor c<c, i.e.thereexist A Bc< X such that c(A)chy(A) and ¢, (B)cc(B). Thus,
by definition, c; (B) B\{yy and c¢(B)=B{x,y},while there exists ze A such that zecy (A)\c(A).
Hence, consider any xe A\{z}: then, there exists B’ such that {x,z}cB'c X and ¢(B')=B'. By C,
{x.z}=c(B)n{x.z} cc({x,z}) ie c({xz})={x,z} = A for any xeA while zgc(A), which contra-
dicts CO in view of finiteness of X.

To check that each ¢, e C_ isanatom of (Cj,<), notice first that c, e C5 . Indeed, c,, satisfies ND by
construction. Also, if Ac B then c;y(B)mA;t entails that either A:Bz{z} for some ze X, or
Ac Bg{x, y} i.e. either A is a singleton or A=B. Thus, in any case, if Ac B then by definition
¢, (B)nAcc, (A) hence c, satisfies C. Moreover, for any A,Bc X, if xec, (A)nc, (B) then by
definition of ¢, either A=B={x} or(AUBe{AB} and AUB={x,y}):thus, inany case,
xec, (AUB) and CO is also satisfied by c, . Next, observe that ¢ (A)= cH (A) forany A={x,y},and

Cy ({x ¥})={x} while clt ({x.y})=@. Thus, for any ceCy (indeed, for any ceC,) if cl <c<c,

then either c=cl or c=cj,.
Conversely, assume that c is an atom of (C; ,<) and c¢C_. Then, by definition of C_, c(A)=& for
any A such that #A =2, and there exists B < X such that #B8>3 and c(B)=@. It follows that, for any
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xec(B) and any yeB\{x}, c(B)n{x, y}g®=c({x, y}) therefore violating C, a contradiction by
Theorem 7.

To check that (C;‘( ,g% is not a sub-join-semilattice of (C,,<), just consider without loss of generality
X ={x, y,zé, R={(xx ,(y,y),(z,z%,gy,x),(y,z),(x,z)} and
R ={(xx).(y.¥).(z.2).(x.y).(z.¥), :

Now, posit ¢, (A):C(A,Ai) and c, (A):(C(X,Aifl) for any Ac X . By definition (C(X,AR):{y},

(C({x,z},A?XYZ}):{x}, (C(X,ARA):{Z}, and (C({x,y},A?xily}):{x} hence (c, uc,)(X)={y,z}, while

xe(c uey)({xy})n(c ve,)({xz}), which contradicts CO. "

Remark 18. Notice that finiteness of X has been used in the proof above in order to show that the set of
coatoms of (C},<) is contained in C*. The latter statement clearly holds for an infinite X as well provided
CO is replaced with the following stronger version of “Concordance” .

CO*: for any family {A} _  of subsets of X, ﬂc(A)gc(UAj.

2]

iel iel

Remark 19. Since gc; ,<) is a semilattice with a top element (and indeed a finite one, under finiteness of
X), it follows that it is also a lattice with meet = ~ and join of a pair given by the meet of the (nonempty) set of
upper bounds of that pair (see e.g. [12]), which is however not a sublattice of (C,,<).

Thus, the poset of revealed core-solutions enjoys the remarkably regular structure of a median meet-semilat-
tice. Notice that an important consequence of that fact is the following: any profile of revealed cores admits me-
dians and the latter coincide with the simple majority consensus revealed core if the profile consists of an odd
list of revealed cores. Therefore, in case several revealed cores are to be considered for aggregation, due per-
haps to locally missing or unreliable data and/or plurality of information sources, an amalgamation process by
means of the simple majority aggregation rule is available (see e.g. [11] for some results on posets and lattices
of other classes of choice functions and related aggregation rules in the same vein).

The posets of revealed a-core-solutions, nonempty-valued core-solutions, and externally stable core-solutions
are considerably less regular, as recorded by the following results, namely:

Theorem 20. The poset (C;a,g) of revealed a-core-solutions has a top element, ¢, and C_ is the set of
its coatoms, but it is neither a sub-meet-semilattice nor a sub-join-semilattice of (CX ,g). The minimal elements
of (C;a,g) are the choice functions ceC, that satisfy ND, 2-PR, C, CO and such that (a) #C(A)Sl for
any Ac X and(b)not D, c D, forany c' that satisfies ND, 2-PR, C and CO.

Proof. To check that ¢' is indeed the top element of C;a,g) it is only to be observed—in view of Theo-
rem 7—that ¢ does in fact also satisfy 2-PR. Similarly—in view of Theorem 7 and of the proof of Theorem
17 provided above—to see that C, is the set of coatoms of C;‘f‘,g) it is only to be checked that any
c,, €C, does also satisfy 2-PR (which is clearly the case, by definition).

The proof of Theorem 17 already establishes that C;‘j",g) is not a sub-join-semilattice of (CX ,g) since,
as it is easily checked, ¢, and c, as defined there do belongto C;°.

Next, consider c,, and c, defined as follows: assume without loss of generality X ={x,y,z}, and take
A" ={(xy).(x2).(v.2)}, AV ={(xy).(x.2),(z,y)} (notice that both (X,A'“ and (X,A'V) are asym-
metric digraphs); then, for any Ac X, posit ¢, (A)=C(AA}') and ¢, (A)=C(AA} ). Clearly, by defi-
nition, {c,,,c, } =Cy.

However, (c,, mc,v)({y,z}):({y,z},A{'U'Z})GC({y,z},A;\y"z}):{y}m{z}:Q.

Therefore, c,, mc, Vviolates 2-PR hence by Theorem 7 ¢, nc,, & C;*. It follows that (C;"‘,g) is not a
sub-meet-semilattice of (C,,<).

The last statement about minimal elements of (C;a,? is a straightforward consequence of Theorem 10. =

Theorem 21. The poset (C;ﬂg) of nonempty-valued core-solutions has a top element, ¢, and C, is the
set of its coatoms, but it is neither a sub-meet-semilattice nor a sub-join-semilattice of (Cx,g). The minimal
elements of (C;"‘,g) are the single-valued choice functions that satisfy C and CO.

Proof. First, notice that by definition c¢' is proper, hence c e Cy since as previously shown it is a
core-solution. Also, it is immediately checked that, by definition, any CX*y is proper. Therefore, the proof of
Theorem 17 also establishes that C, is the set of coatoms of (C;’,<). In the same vein, it is immediately
checked that c,,c,,c,,.C, -as defined above in the proofs of the two previous Theorems-are also proper. It
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follows, by those proofs, that (C;‘j,g) is neither a sub-meet-semilattice nor a sub-join-semilattice of (C,,<).
The final statement about minimal elements of (Cy,<) isan immediate consequence of Corollary 12. [

Theorem 22. The poset (C;‘fs,g) of revealed externally stable core-solutions, has a top element, ¢, and
C. s the set of its coatoms, but it is neither a sub-meet-semilattice nor a sub-join-semilattice of (C,,<). The
minimal elements of C;‘(a,g) are the single-valued choice functions that satisfy C, CO and SS.

Proof. Observe that for any AcBc X, if ¢ (B)<c"(A) then of course Bc A ie. B=A whence
¢ (A)=c"(B) and SSis clearly satisfied by c“. In view of Theorem 14, this establishes that ¢ is also the
top element of (C;*,<). Also, it is immediately checked that any c; satisfies SS: indeed, let A,B< X be
such that AcB and @#c, (B)cc, (A). Since Ac B, the following jointly exhaustive cases are to be
distinguished: a) {x,y}< AnB;b) {x,y}Z AUB;c) {x,y}=B and {x y}Z A.Undera),
¢, (A)=A\{y} and c; (B)=B\{y} hence c; (A)cc; (B). Under b), c; (A)=A and c; (B)=B
hence again c;, (A)cc; (B). Underc), c; (A)=A and c; (B)=B\{y} whence A=B ie. AcB.By
hypothesis, c, (B)cc,, (A) hence B\{y}cAcB:thus, yg A and B=Au{y} and therefore
¢, (B)=B\{y}=A=c, (A). It follows that c, does in fact satisfy SS. Therefore, the proof of Theorem 17
also establishes that C, is the set of coatoms of (C;‘fs,g).

Finally, it is immediately checked by direct inspection that c,,c,,c,,,c, —as defined above in the proofs of
Theorems 17 and 20—do also (trivially) satisfy SS. It follows, by the very same proofs, that (C;es,g) is
neither a sub-meet-semilattice nor a sub-join-semilattice of (CX ,<). The final statement about minimal ele-
ments of (C}*,<) isan immediate consequence of Theorem 14. n

Thus, while only the poset of revealed core-solutions is a (meet) sub-semilattice of (CX ,<) all the posets of
revealed cores defined above share their top element and set of coatoms.

4. Concluding Remarks

Choice functions with full domain which may be regarded as core-solutions or externally stable core solutions of
an underlying dominance digraph (X,A) have been characterized both in the general case and for asymmetric
dominance digraphs. Both characterizations combine a version of the usual mix of contraction consistency and
expansion consistency conditions which are required for the special case of proper i.e. nonempty-valued choice
functions with a suitable local nonemptiness requirement for choice sets. The characterizations provided above
have also been shown to be helpful for a simple analysis of the basic order-theoretic structure of revealed cores.
In particular, as mentioned in the Introduction, every revealed core embodies a considerable part of the structure
of standard maximizing choice functions, while the global structure of (full domain) revealed cores retains pre-
cisely the median semi-latticial properties of the space of all (full domain) choice functions that are most signif-
icant from the point of view of simple majority aggregation. The latter property, however, is not shared by
asymmetric or externally stable revealed cores.

An obvious extension of the present paper should address the characterization problem for revealed cores on
arbitrary domains. That open issue is left as a topic for further research.
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