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Abstract 
Long period fiber gratings are emerging as a potential candidate in the list of surrounding refrac-
tive index optical fiber sensors. Their sensitivity can be enhanced greatly if the grating period, fi-
ber dimensions and surrounding refractive index are optimized in a way to operate at a point 
called turn around point on phase matching curves of these gratings. Turn around point LPFGs are 
well known for their ultrahigh sensitivity to external parameters. Potential of operating LPFG at or 
near turn around point has been investigated by many researchers in various applications in-
cluding physical parameter sensing, adulteration detection, radiation dose, etc. Since TAP LPFGs 
are in investigation phase therefore a lot of rigorous & efficient work in finding techniques for op-
timizing their potential as sensor in chemical, biochemical, structural health monitoring is still to 
be carried out. A brief review of work carried out in this domain till now is presented here and key 
findings from literature review are highlighted. 
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1. Introduction 
Long period fiber gratings are passive optical fiber sensors emerged in recent years. There are mainly two types 
of Index (refractive index) gratings in fiber optics: FBG (Fiber Bragg Gratings) & LPFG (Long Period Fiber 
Gratings). Structurally, both types of gratings are identical except that the periods of Fiber Bragg gratings are 
two orders of magnitude smaller than those of LPGs. FBGs induce contra directional coupling. Light energy 
from forward propagating modes is transferred to modes traveling in the opposite direction. FBGs are often re-
ferred to as short period, reflection gratings because of this effect. LPFGs, on the other hand, couple energy 
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co-directionally. Energy from the forward propagating incident modes is transferred to either forward propagat-
ing cladding or radiation modes depending on the structure of the waveguide [1]-[6]. 

Fiber Bragg gratings have already proved their excellence in physical parameter sensing, e.g. temperature, 
strain, torsion, bend, etc. and in many practical applications including structural health monitoring which is re-
quired for existing smart world era [7]. LPFGs are known to have high refractive index sensitivity in comparison 
to its counterpart Fiber Bragg Gratings. The evanescent field of coupled mode that extends more into the sur-
roundings in LPFGs enables it to be used as a significant surrounding refractive index sensor.  

Sensitivity of these gratings greatly depends upon the choice of grating period. Dispersion curves drawn be-
tween resonance wavelength (λres) and grating period (Λ) for higher order cladding modes indicate the presence 
of turn around point where the slope of the curve changes sign from positive to negative. LPFGs fabricated at  

these turn around points appear to be ultrahigh sensitive as the slope resd
d
λ
Λ

 of the dispersion curve is infinite.  

For lower order modes these turn around points occur at higher wavelengths outside the optical communication 
window. The possibility of interaction of evanescent field with surroundings improves with increase in order of 
the cladding mode being coupled to the fundamental mode due to larger coupling coefficients [8]. 

In this paper, systematic review of the LPFGs operating at turn around point is presented. Section 2 highlights 
the presence and significance of turn around points that exist on the characteristic curves of cladding modes. Fa-
brication techniques, methods used for tuning of turn around point have also been discussed in this section. Re-
ported applications of TAP LPFGs have been summarized in Section 3. Section 4 provides an overview of thin 
film coated LPFGs and recently reported applications of thin film coated LPFGs operating at turn around points. 
The paper is concluded in Section 5. 

2. Ultrahigh Sensitive TAP LPFGs 
Periodic modulation of refractive index in optical fiber causes coupling of fundamental core mode with either 
co-propagating or counter propagating cladding modes. Coupling of co-propagating fundamental guided mode 
LP01 and cladding modes represented by LP0m takes place in long period gratings according to the phase match-
ing condition, which results in series of attenuated resonance peaks in transmission spectrum. The phase match-
ing condition is given by 

01 ,
2π

cl mβ β− =
Λ

                                     (1) 

where β01 is propagation constant of the fundamental mode, βcl.m is propagation constant of mth cladding mode 
and Λ is period of grating. Long period fiber grating sensor configuration shown in Figure 1 represents the 
presence of evanescent field of coupled modes that can interact with surroundings. 

Mathematical expressions derived in [8] for calculating shift in resonance wavelength with respect to change 
in surrounding refractive index is given by  

res
res res

surr

d
dn
λ λ γ= ⋅ ⋅Γ                                     (2) 

where λres is resonance wavelength, nsurr is surrounding refractive index, γ is general waveguide dispersion and 
Γres represents surrounding refractive index dependence on waveguide dispersion respectively. Slopes of the 
phase matching curves drawn for B/Ge co-doped fiber, with cladding modes of order m = 8 to 20 change their 
sign from positive to negative at points called turn around points as indicated in Figure 2. These points offer ul-
trahigh sensitivity because a change in wavelength corresponding to change in grating period is infinite. Grating 
period may change due to change in effective refractive indices of modes which also depends on surrounding 
refractive index. Therefore any small change in surrounding refractive index may cause significant shift in re-
sonance wavelength. If Λ is short, the phase matching curves corresponding to coupling between core and high-
er order cladding modes are parabolas over the wavelength range of 800 - 2000 nm [8]-[11].  

Phase matching curves plotted between grating period and wavelength are essential in analysis of long period 
fiber gratings. Existence of turnaround point in the phase matching curves was revealed for first time in [8]. 
Coupling to higher order cladding modes increases sensitivity to surrounding refractive index because of exten-
sion of evanescent field in surrounding with increase in cladding mode order. Moreover coupling strength of  
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Figure 1. Long period fiber grating refractive index sensor. 

 

 
(a)                                                       (b) 

Figure 2. Phase matching curves (a) Modes m = 1 to m = 10 (b) Modes m = 11 to m = 20 [8]. 
 
fundamental mode and odd order cladding modes is better as compared to that with even order cladding modes. 
This is because odd order cladding modes have a peak of intensity that lies in the core. Transmission spectra of 
Long period fiber gratings designed to operate at TAP indicate that any change in SRI causes change in peak at-
tenuation at resonant wavelength which opens the possibility of simple & easy amplitude based demodulation 
technique. Further, if the SRI is more than refractive index of air i.e. if LPFG is immersed in a liquid, there are 
two resonant wavelengths in transmission spectrum and change in SRI causes shift in these two resonant wave-
lengths & therefore wavelength based demodulation can be used at the expense of decrease in sensitivity. 

LPFG with grating period 205 µm, in which coupling of LP0,11 mode with fundamental LP01 takes place ex-
actly at turn around point, is reported in [12]. Designed grating is used for fuel adulteration detection. Single at-
tenuation peak splits into two when grating is immersed in petrol having refractive index greater than 1.0 which 
is in line with [8]. Reducing cladding diameter of LPFG operated near TAP greatly enhances the sensitivity [13]. 
LPFG with a grating period of 165 µm in SMF-28e fabricated which results in coupling of fundamental mode 
with LP0,12 cladding mode. Figure 3 depicts transmission spectra of LPFG with SRI 1.0 and 1.333, after reducing 
the cladding diameter to different values [14]. It may be observed that transmission depth decreases with the in-
crease in reduction of the cladding diameter and single attenuation peak splits into two when SRI is more than 1.  

Grating period of less than 250 µm is required to enable coupling to higher order cladding modes. Therefore 
sophisticated techniques with high precision are required for fabrication of fiber gratings at turnaround points. 
CO2 laser scanning [12] [15]-[19], KrF excimer Laser [8] [14] [20]-[23] & Femtosecond laser [24]-[26] fabrica-
tion techniques have been used for fabrication of turn around or near turn around point long period fiber grating 
fabrication in different types of fibers. Recently TAP LPFG has been fabricated using KrF excimer laser in [9]. 
Gratings fabricated by CO2 scanning are thermally stable & require no post processing technique in long period  
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(a)                                                       (b) 

Figure 3. (a) Transmission Spectra of cladding ethed LPFG in air (b) Transmission Spectra of cladding ethed LPFG in wa-
ter (Plot 1: TAP 20 dB, Plot 2: TAP 7 dB, Plot 3: TAP 3 dB, Plot 4: TAP 2 dB) [14]. 

 
gratings. Operating LPFG exactly at TAP requires high precision in fabrication, a slight change in effective re-
fractive indices of modes cause turn around point to shift. Exposure to UV [27], Gamma radiation [16], taper 
tuning [16], etching of cladding [14], overlay coating [28] is reported for tuning of long period grating at turn 
around point. Investigation of transmission spectra of LPFG is also carried out in photonic crystal fibers [25] [26] 
apart from standard single mode & photosensitive fibers.  

3. Refractometric Sensors based on TAP LPFG 
Propagation characteristics of modes in optical fiber with long period fiber gratings are strong function of the 
refractive index of surrounding medium. These refractometric sensors have attracted attention in the field of 
food quality control, structural health monitoring and biomedical applications recently.  

Performance of Turnaround point LPFGs have been investigated in a variety of applications including tem-
perature, strain & refractive index sensitivity. Errors in refractive index sensing may result due to temperature 
variations that needs to be considered. Temperature compensated TAP LPFG have also been reported in [23]. 

Fuel adulteration detection results using non TAP LPFG [20] & TAP LPFG [12] have been presented to de-
pict the ultrahigh sensitivity of TAP LPFGs. Transmission spectra shown in Figure 4 & Figure 5 indicate that 
sensitivity of non TAP LPFG is 0.6 nm/% & that of TAP LPFG is 0.949 nm per percentage change in concen-
tration of kerosene in petrol from 0 to 10%. Slight improvement in sensitivity is obtained by reducing cladding 
diameter as indicated in Figure 4(b). 

Ultra high sensitivity of turn around point long period gratings can be used for improving the adulteration de-
tection of the edible food products like oils, milk. Appreciably high sensitivity of turnaround point long period 
gratings in different applications have been summarized in Table 1. 

4. Thin Film Coated TAP LPFGs 
Sensitivity of long period gratings can be improved by coating thin films of nm thickness and having refractive 
index greater than that of silica. Figure 6 shows four layer model used for analysis of thin film coated LPFGs 
with core, cladding, overlay and surroundings as each layer of the structure having refractive indices n1, n2, n3 
and n4 respectively. Long period gratings offer appreciable shift in wavelength towards longer wavelengths 
when the SRI is less than that of the cladding & is attributed to total internal reflection.  

When SRI is more than that of cladding, shift is towards shorter wavelengths and is quite small to be consi-
dered for demodulation. The reduced sensitivity of LPFG when SRI is greater than cladding is attributed to 
weak Fresnel’s reflections. This can be enhanced by nm thick layers of thin films of high refractive index mate-
rials, e.g. tricosenoic acid, titanium dioxide, PDDA polymer, etc. [29]-[34]. 

Coating of thin film material on long period fiber grating increases effective refractive indices of the cladding 
modes. After certain thickness of the film, cladding modes become guided in the overlay hence evanescent field  
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(a)                                                        (b) 

Figure 4. (a) Transmission Spectra of LPFG with different Kerosene in petrol (b) Transmission Spectra of ethed LPFG 
with different percentage of Kerosene in petrol [20]. 

 

 
(a)                                                        (b) 

Figure 5. (a) Transmission Spectra of TAP LPFG with different percentage of Kerosene in petrol A1: 10%, A2: 50 % (b) 
Shift in TAP LPFG resonance peak as a function of Kerosene in petrol [12]. 

 
Table 1. Reported TAP LPFGs for various applications. 

Type of Fiber Grating  
Period 

TAP/Near  
TAP 

Cladding  
Mode 

Detection  
Range Application Sensitivity 

B/Ge co-doped SMF 208 TAP LP0,11 1.397 - 1.432 Fuel Adulteration  
 

0.949 nm/% change in 
Kerosene in Petrol 

SMF-28e 165 TAP LP0,12 1.335 - 1.360 SRI Sensitivity 1847 nm/RIU 

B/Ge codoped SMF 206 Near TAP LP0,11 6 - 65 KGy Gamma radiation  
dose 

80 nm for 65 KGy  
& 35 nm for 6 KGy 

SMF-28 230.89 TAP Not Specified 1.333 - 1.353 Tempaerature, Strain 
& SRI Sensitvity 

1.63 nm/˚C, 37 pm/µƐ  
& 2500 nm/RIU 

B/Ge co-doped SMF 180 TAP LP0,12 325 - 1300 µƐ Strain 1.77 dB/µƐ 

B/Ge codoped SMF 206 Near TAP LP0,11 0 - 1300 µƐ Strain 1.33 dB/µƐ 
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of guided modes having significant energy is available near the surrounding for interaction. The reorganization 
of modes depends on overlay material thickness & refractive index and also on surrounding refractive index. 
The transition of modes occurs faster for higher refractive index overlays [34]-[36]. Transmission spectra of thin 
films of various refractive indices & thickness on LPFG are analyzed in [30]. 

Temperature compensated chemical sensor using silica nano particles as overlay is reported in [37]. Coating 
is done on a pair of cascaded turnaround point long period fiber gratings. Detection of very low concentration 
Escherichia coli bacteria with ultra high sensitivity of 2321 nm/RIU is reported in [38]. In [39] Al2O3 is used as 
nano film material and transition region found to be in range 1.4524 - 1.461 with 3000 nm/RIU for 100 nm 
thickness of overlay which might not be possible with uncoated LPFG as shown in Figure 7(a). With further in-
crease in thickness, transition region shifts to lower refractive index range. Long period gratings operating at 
TAP and coated with thin films of high refractive index materials have been reported in [34] [37]-[42] for 
chemical/biochemical sensing applications. 

TAP LPFG coated with (PDDA/SiO2)10 film has been investigated for sensitivity to Ammonia in water. 
Transmission spectra with different concentrations of Ammonia indicated in Figure 7(b). The minimum detec-
tion level is found to be 0.14 ppm & response time of sensor is approximately 100 seconds [34]. Filtering cha-
racteristics of single and multiple, π phase shifted, thin film coated turn around point LPFGs have been simu-
lated and analyzed in [43]. Parameters obtained need to be optimized for a particular application. 

 

 
Figure 6. Four layer geometry for thin film coated LPFGs. 

 

 
(a)                                                       (b) 

Figure 7. Response of resonance wavelength for different Al2O3 nano film thickness [39] (b) Transmission spectra of thin 
film coated PMTP LPFG for different Ammonia Concentration in water [34]. 
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5. Conclusion 
SRI sensitivity improvement of TAP LPFGs can be observed in terms of significant wavelength shift & ampli-
tude variations of the attenuation bands enabling use of wavelength and amplitude based on demodulation tech-
niques respectively. Most of the SRI sensors based on long period operating at turn around points have been in-
vestigated in applications where the SRI is less than that of cladding. To operate these gratings as sensors in ap-
plications with SRI greater than that of cladding, coating of high refractive index materials can be done, which 
causes reorganization of the cladding modes and enhances the possibility of surrounding region to interact with 
evanescent field of cladding modes. Efficient optimization techniques for overlay material thickness and its re-
fractive index for tuning the transition region in desired refractive index range are required to utilize LPFG in 
commercial applications. Further variation in physical parameters may result in false readings so some compen-
sation techniques for these parameters are also required to be analyzed and implemented carefully. Performance 
of TAP LPFGs, thin film coated TAP LPFGs and a combination of these can be investigated in medical diag-
nostics, food quality control and biochemical hazard detection. 
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