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Abstract 
The problem of multiplicative noise removal has been widely studied in recent years. Many me-
thods have been used to remove it, but the final results are not very excellent. The total variation 
regularization method to solve the problem of the noise removal can preserve edge well, but 
sometimes produces undesirable staircasing effect. In this paper, we propose a variational model 
to remove multiplicative noise. An alternative algorithm is employed to solve variational model 
minimization problem. Experimental results show that the proposed model can not only effec-
tively remove Gamma noise, but also Rayleigh noise, as well as the staircasing effect is significantly 
reduced. 
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1. Introduction 
Image noise removal is one of fundamental problems of image processing and computer version. A real record-
ed image may be disturbed by some random factors, which is an unavoidable. Additive noise model [1]-[3] is 
always assumed as ,g u v= +  where u  is the original image and v  is the noise. The denoising problem is to 
recover u  from the observed image g . Removing additive noise, however, is already quite maturing now. 
Multiplicative noise widespread in our lives, such as: Ultrasound imaging, synthetic aperture radar imaging [4] 
[5], has more significance and challenging for us to remove. Rayleigh noise commonly occurs in ultrasound 
imaging. 

Classical variational model for multiplicative noise removal is aiming at Gaussian distribution [6]. But when 
the noise is disobedience Gaussian distributed, the effect of denoising is not very satisfactory. To solve the 
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problem that assuming multiplicative noise model is more reasonable and representative, in 2008, Aubert and 
Aujol [7] assumed the noise with Gamma distribution with mean 1. A variational model, named AA, used the 
distribution characteristics of Gamma multiplicative noise and maximizing a posterior (MAP) has been proposed,  

and its fidelity term expresses as log d dg u x y
u

 + 
 ∫ . Aiming at solving the problem of the fidelity term sick, a  

series of variation models have taken logarithmic transformation logz u=  [8] [9], and then get a new fidelity  
term written as ( )e d dzz g x y−+∫ . 

For solving problem that AA is not strictly convex, Huang, Ng and Wen [8] used a logarithmic transformation 
and proposed a new model (Named HNW model): 

( ) ( ){ }2
1 2min e d d d d d dz

z
z g x y z w x y Dw x yλ λ−+ + − +∫ ∫ ∫  

Numerical results show that noise removal ability of HNW is better than AA, but it produces “staircase ef-
fect”. Alternative iterative algorithm ensures that the solution of the model is unique, and the iterative sequence 
also converges to optimal solution of it. 

After, a body of variation models [7]-[13] of multiplicative noise removal has been proposed, and removing 
multiplicative noise abilities made considerable progress. Models not only can effectively remove the noise, but 
also to better protect the image edge and texture. When we get a model, and then must need a good algorithm to 
solve it. Numerical algorithm of variation model, today, includes ADMM [14] [15], ALM [16] [17], Newton 
iterative method [8] [9] [18] [19] and dual algorithm [20]-[22] and so on. HNW model has used adaptive alter-
nating iterative algorithm. That is to say, the model can be divided into two parts: one uses Newton iterative me-
thod, and the other uses dual algorithm. Iterative sequence obtained converges to the optimal value of the model. 

The rest of this paper is organized as follows. In Section 2, we introduce the proposed model how constructs it. 
Next section will give a new numerical algorithm. Convergence proof of the model will be launched in Section 4. 
In Section 5, we will show the experiments and its specific analysis. Finally, concluding remarks are given. 

2. The Proposed Model 
The difference between additive noise and multiplicative noise is whether the noise signal and the original im-
age signal are independent or not. Multiplicative noise, however, is not independent. In paper [23], multiplica-
tive noise model is assumed g u un= + . Inspired by it, assuming the noise model: 

g u un= +                                     (2.1) 

In which g is the observed image, u is the original image, n is multiplicative noise under Rayleigh distribution, 
and the probability density function of n is denoted as follows 

( )
2

2 2exp , 0
2

0, 0

n n n
p n

n
σ σ
  

− ≥  =   
 <

                           (2.2) 

where 2σ  is a constant. The smaller σ  is, the greater the intensity of the added noise. On the contrary, it is 
smaller. g and u are two independent random variables, so that, for any 0u > , there is 

( )1 |gp p g u
u u

  = 
 

                                 (2.3) 

To realize the estimate of the original image u, the estimate can be computed by   

( )ˆ arg max |uu p u g=  

Applying Bayes’s rule, it becomes 

( ) ( )
( )

|
ˆ arg maxu

p g u p u
u

p g
=                               (2.4) 
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Based on (2.4), minimize post mortem energy of its MAP method  

[ ] [ ] [ ]min | min |E u g E g u E u= +  

Logarithmic energy equation ( )logE P= − , we have 

( ){ } ( ) ( ){ }ˆ arg min log | arg min log | logu uu p u g p g u p u= − = − −                 (2.5) 

We can know the truth from the reference [24] 

( ) [ ]( )1 expp u E u
z

β= −                                  (2.6) 

Combining (2.2), (2.3), (2.5) with (2.6), we can get 

( ) ( ) ( ) ( )( )
2

2 2
2 2

1ˆ arg min log log log log exp
2u

gu u g E u
zu

σ β
σ

  = + − + + −    
∑ ∑  

, , ,g zβ σ  can be regarded as invariant in this function, so the minimum may be converted to the equivalent 
equation denoted as follows 

( )( )( )

( )

( )

( )

2
2

2

2

2

2

ˆ arg min log log exp
2

arg min log d d
2

arg min log d d
2

arg min log d d
2

u

u

u

u

gu u E u
u

gu x y E u
u

g gu x y E u
u

gu n x y E u

σ β

β
σ

β
σ

β
σ

   = + − −  
   
   = + +  
   
  = + ⋅ +  
  

  = + ⋅ +  
  

∑ ∑

∫

∫

∫

                  (2.7) 

From (2.1), we can derive that 

( )2g u
n

u
−

=                                      (2.8) 

If n  is instead of n in (2.7), we can get a fidelity term 

( ) 2

log d d
2D

g g u
u x y

u

 −
 +
 
 

∫                               (2.9) 

where D is a two-dimensional bounded open domain of R2 with Lipschitz boundary, then image can be inter-
preted as a real function defined on D. 

With using a logarithmic transformation logz u=  [18], we can get fidelity term 

( )2e 2 e d d
2

z z
D

g g z g z x y− + − + + 
 ∫                          (2.10) 

An unconstrained optimization problem can be solved by a composition function 

( ) ( )( )1 2minu f u f g u+                                (2.11) 

Variable splitting [17] is a very simple procedure that consists in creating a new variable, say v, to serve as the 
argument of 2f , under the constrain that ( )g u v= . The idea is to consider the constrained problem 

( ) ( )

( )
1 2,

min

s.t.
u v

f u f v

g u v

+

=
                                 (2.12) 

which is apparently equivalent to formula (2.11), and the Lagrange function can be written as follows 
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( ) ( ) ( ) 2

2
, ,

2
L u v E u v g u vµ

= + −  

where 

( ) ( ) ( )1 2,E u v f u f v= +  

We denote 

( ) ( )2, e 2 e d d d d
2 2

z z
D

D

gE z w g z g z x y Dw x yλ− = + − + + + 
 ∫ ∫  

To solve its minimum value, it is equivalent to this constrained optimization problem 

( ) ( ) 22
2min , min e 2 e d d d d

2 2 2
s.t .

z z
D D

gL z w g z g z x y z w Dw x y

z w

µ λ−  = + − + + + − +  
  

=

∫ ∫      (2.13) 

3. Algorithms 
Inspired by the iterative algorithm of reference [8] and [18], in this paper, I will propose a new algorithm to 
solve (2.13). Starting from initial guess ( ) ( )0 0,z w , this method computes a sequence of iterates 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )0 1 0 2 1 3 2 1 1, , , , , , , , , , ,m m mz z w z w z w z w z− +
   

Such that 

( ) ( ) ( )

( ) ( )

21 2

2

21 1

2

min e 2 e d d
2 2

min d d
2 2

k kz z
z

D

k k
w

D

gz g z g z x y z w

w Dw x y z w

µ

λ µ

+ −

+ +

  = + − + + + − 
 


 = + −


∫

∫
               (3.1) 

To solve the problem (3.1), we need to divide it into the following three steps. 
The first step of the method is to solve a part of the optimization problem. The minimizer of this problem 

( ) ( ) ( ) 21 2

2
min e 2 e d d

2 2
k kz z

z
D

gz g z g z x y z wµ+ − = + − + + + − 
 ∫                 (3.2) 

Its discretization  

( ) ( ) ( ) ( ) ( ) ( )( ) ( )

( ) ( ) ( )( )

, ,2

0 0

2

0 0

,
min , e , 2 , e , d d

2

, ,

z i j z i j
z

i n j n

k

i n j n

g i j
g i j z i j g i j z i j x y

z i j w i j

−

≤ ≤ ≤ ≤

≤ ≤ ≤ ≤

   + − + +  
  


+ − 



∑ ∑

∑ ∑
 

Now, letting 

( )( ) ( ) ( ) ( ) ( ) ( ) ( )( )
( ) ( ) ( ) ( )( )

, ,2

21

,
, , e , 2 , e

2

, , ,
2

z i j z i j

k

g i j
f z i j g i j z i j g i j

z i j z i j w i jµ

−

+

= + − +

+ + −
                (3.3) 

Since f is continuous and derivable in the specified range, this function is equitant to solving the regular with 
2n  equations 

( )( ) ( )( ) ( ) ( ) ( ) ( )( ) ( ) ( ) ( )( ), , 12,
, , 1 e , e 1 , , 0

2
z i j z i j kg i j

h z i j f z i j g i j z i j w i jµ− +′= = + − + + − =  

We use CSM [25] to replace Newton iteration method [8] [9].  
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( ) ( )( )
( ) ( )( ) ( ) ( )( )
( ) ( ) ( ) ( )

1

1

, ,
,

, ,

k k
k

k k

h z i j h z i j
h z i j

z i j z i j

−

−

−
′ ≈

−
 

And then, we can get 

( ) ( ) ( ) ( )
( ) ( )( )

( ) ( )( ) ( ) ( )( )
( ) ( ) ( ) ( )( )1 1

1

,
, , , ,

, ,

k
k k k k

k k

h z i j
z i j z i j z i j z i j

h z i j h z i j
+ −

−
= − −

−
          (3.4) 

The second step of the method is to apply a TV denoising scheme to the image generated by the previous 
multiplicative noise removal step. The minimizer of the optimization problem 

( ) ( ) 21 1

2
min d d

2 2
k k

w
D

w Dw x y z wλ µ+ += + −∫                         (3.5) 

Denoting 

( ) ( )( )21, , , ,
2 2

k
x yF x y w w w Dw z wλ µ += + −  

Its corresponding Euler-Lagrange equation of the variational problem (3.5) as follows 

0yx ww
w

FF
F

x y

∂ ∂
+ − =  ∂ ∂ 

 

where 

,
2 2x y

yx
w w

wwF F
Dw Dw

λ λ
= =  

and 

( )
( )( )

2 2
1

3 22 2

2
0

2
xx y x y yy x k

x y

w w w w w w
z w

w w

λ
µ +

 − +  + − =  + 

 

In this paper, ( ),Dw i j  is the gradient at the location ( ),i j , ( ) ( ) ( )( ), , , ,x yDw i j w i j w i j=  and  

( ) ( ) ( )2 2, , , , , 1, 2, ,x yDw i j w i j w i j i j n= + = 

 
where 

( ) ( ) ( )1, , ,
,

0,x

w i j w i j i n
w i j

i n
 + − <= 

=  
and 

( ) ( ) ( ), 1 , ,
,

0,y

w i j w i j j n
w i j

j n
 + − <= 

=
 

Using gradient descent method to obtain (3.5) the optimization numerical solution as follows: 

( )( )
2 2

12
_

2
xx y x y yy x kw w w w w w

w t z w
Dwε

λ
µ + − +

= + −  
 

                     (3.6) 

where 

( )3 22 2
x yDw w wε ε= + +  

and iterative formula 
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( ) ( )1 _k kw w dt w t+ = + ×  

The third step is to analysis the condition to stop iterative. 
( ) ( )

( )

1

4max 10
k k

k

w w

w

+

−
−

<                                (3.7) 

4. The Convergence Analysis 
In this section, we will discuss the convergence of the iterative algorithm. First, we know that ( ),L z w  is a 
strictly convex function in (2.13), so there must be a unique minimum, denoted by ( )* ,L z w . We will combine 
the discrete form (2.13) formula to give the optimal solution iterative algorithm. We have the following theo-
rem: 

Theorem 1. For any given initial value ( ) ( )0 0,z w , ( ) ( )( ),k kz w  is convergence to the optimal solution of 
problem ( ),L z w . 

To prove this theorem, we will give the following lemmas, and the appropriate proof. 
Lemma 1. Sequence ( ) ( )( ),k kL z w  is convergence.  
Proof. It follows from the alternating iterative process in algorithm that 

( ) ( )( ) ( ) ( )( ) ( ) ( )( )1 1 1, , ,k k k k k kL z w L z w L z w+ + +≥ ≥                       (4.1) 

It is obvious that sequence ( ) ( )( ),k kL z w  is non-creasing. We note that it is bounded from below by the 
minimum value ( )* ,L z w . We know from [26] [27] that ( ),L z w  has the fixed point property. Hence 

( ) ( )( ),k kL z w  converges to ( )* ,L z w . So we have 
( ) ( )( ) ( )*lim , ,k k

k
L z w L z w

→∞
=                              (4.2) 

Lemma 2.The function ( ),L z w  is coercive. 
Proof. Let ,h vS S  is a represent of the one-sided difference matrix on the horizontal and vertical direction, 

respectively: 

h

v

S
S

S
 

=  
 

 

The matrix S is not a full-rank. The discrete total variation of regularization term of model (2.13) as follows 

( )( ) ( )( )
( ) ( )

2 2

, , ,
1 , 1 ,

, , 1
1 ,

d d

1 1
2 2

x y
i j i j i j

i j n i j n

x y
i j i j

i j n

Dw x y Dw w w

w w Sw

≤ ≤ ≤ ≤

≤ ≤

= = ∇ + ∇

≥ ∇ + ∇ =

∑ ∑∫

∑
 

Denote ( ) ( )2
1 22 1, , ,L z w z w L z w Sw= − =  and 

( ) ( ) ( )1 2, | , , 0
2 2

z w L z w L z wλ µ Ω = + = 
 

 

Next we will discuss two cases: 1) ( ),z w ∉Ω  with ( )
2

,z w →∞ ; 2) ( ),z w ∈Ω  with ( )
2

,z w →∞ . 

For (i), we note that 
[ ] [ ] [ ] [ ] [ ] [ ]( ) [ ]

2
2

1
e 2 e

2
i i

n
z zi

i i i i
i

g
z g g z−

=

 
+ − + +  

 
∑  is strictly convex function with respect  

to z. therefore we obtain 

[ ] [ ] [ ] [ ] [ ] [ ]( ) [ ] [ ]( )
2 2

2

1 1
e 2 e ln 1

2
i i

n n
z zi

i i i i i
i i

g
z g g z g−

= =

 
+ − + + ≥ +  

 
∑ ∑                 (4.3) 

By using the above inequality, we have 
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( ) [ ]( ) ( ) ( )
2

1 2
1

, ln 1 , ,
2 2

n

i
i

L z w g L z w L z wλ µ
=

≥ + + +∑  

Considering ( ),z w ∉Ω  with ( )
2

,z w →∞ , it is not difficult to obtain 

( ) ( )1 2, ,
2 2

L z w L z wλ µ
+ →∞  

We can get that ( ),L z w  also tends to infinity. 
For (ii), considering ( ),z w ∈Ω , we obtain z w c= = . As ( )

2
,z w →∞ , i.e. c →∞ , it is easy to show 

that 

( ) [ ] [ ] [ ] [ ] [ ] [ ]( ) [ ]
2

2

1
, e 2 e

2
i i

n
z zi

i i i i
i

g
L z w z g g z−

=

 
≥ + − + + →∞  

 
∑  

So ( ),L z w  is coercive function based on the definition of mandatory given by the following. 
Definition 3. Let { }1f → +∞: H R  is a bounded function, in which H  is a Bananch space. If there 

has ( )f x →+∞  for any x →∞  as x∈H , we will call f as a convex function. 
Proof of theorem 1. Since sequence ( ) ( )( ),k kz w  is bounded based on the reason that ( ),L z w  is a coercive  

function and strictly convex function, the set of fixed points are just minimizers of ( ),L z w , and indeed there is  

one and only one minimizer of ( ),L z w . Now we thus extract a convergent subsequence ( ) ( )( ){ },i ik kz w , and let 

( ) ( )( ){ } ( )* *lim , ,i ik k
i z w z w→∞ =  

Moreover, we have, for any ik N∈  and ,z w  
( )( ) ( ) ( )( )

( )( ) ( ) ( )( )

1

1 1

, ,

, ,

i i i

i i i

k k k

k k k

L z w L z w

L z w L z w

+

+ +

≥

≥
 

Let us denote by ẑ  a cluster point of ( ){ }1ikz + , we may immediately obtain from (4.1) that 

( ) ( ) ( )* * * *ˆ, , ,L z w L z w L z w= =  

We can get conclusion that 
*ẑ z= , according to the definition of (3.2). Because ẑ  and *z  are the mini-

mizer of (3.2), hence, ( )1 *lim i
i

k
k z z+
→∞ = . Following a similar analysis, we can show that ( )1 *lim i

i

k
k w w+
→∞ = . 

From literature [26], we can know that ( )* *,z w , the fixed point, is the minimizer of ( ),L z w . Because there is 
only one fixed point, it can be deduced 

( ) ( )( ) ( ) ( ) ( )* * * * *lim , , , ,k k
k z w z w L z w L z w→∞ = = =  

So ( ) ( )( ),k kz w  is convergence to the optimal solution of problem ( ),L z w . 

5. Experimental Results 
In this section, we will experiment on Lena and Cameraman. Different strength Gamma and Rayleigh noises are 
added to the original image, and then comparing effects of the proposed model proposed model denosing with 
HNW. In our experiments, Figure 1(a) is original image of Lena; Figure 1(b) is Cameraman. Figures 2-5 are 
noised images distorted by Rayleigh and Gamma noise with different strength. 

In Figure 3 and Figure 4, denosing results of Lena obtained by the proposed model and HNW model are in-
cluding noise removal image—The clearer image is, the well model is; residual plot-More image’ signal has been 
kept, more bad experimental results; gray value curve figure—The blue color represents the original image of 
the selected signal, and red signal represents denoised part. If red and blue colors are fitting well, we could say 
that the denosing effect is better. From Figure 3, we can clearly see that the proposed model has more effective  
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(a)                                  (b) 

Figure 1. Original images. (a) Lena. (b) Cameraman.                                                   
 

  
(a)                                  (b) 

Figure 2. Noisy images for Lena. (a) L = 20 Gamma. (b) 2 15σ =  Rayleigh.                                 
 
than HNW for Lena with Gamma L = 20, because gray distribution is reasonable and fitting degree of denoised 
image is stronger than HNW model. The result of denosed aiming at the noise under the Rayleigh distributed 
multiplicative noise 2 15σ =  in Figure 4. There is obviously see that denoising effect is much better than 
HNW model, residual plots and experimental signal diagram are also optimistic. 

In Figure 6 and Figure 7, experimental results for Cameraman destroyed by L = 10 and 2 20σ = . In Figure 
6, for removing noised image Cameraman, our model is clearer. In Figure 7, the residual plot has no obviously 
light part, that is to say, our model is slightly better. Whether for simple texture Cameraman or complex texture 
Lena image, the proposed model has better than HNW. 

In order to better illustrate the effectiveness ofthe proposed model, this paper will use the additional data to 
show it. These are iteration time (T), signal to noise ratio (SNR), mean square error (MSE), peak signal to noise 
ratio (PSNR), and relative error rate (ReErr). T is time to work-the smaller timeis, the well model is. For SNR or 
PSNR, the larger the value, the smaller noise. For MSE or ReErr, the value is smaller, indicating that denoising 
effect is positive. Table 1 and Table 2 show the experimental data. Datasshow that whether for Gamma noise or 
Rayleigh noise, or simple or a little texture detail-rich images, the proposed model is better than NHW model to 
obtain considerable experimental data. 
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HNW denosing                                 proposed model denosing 

  
HNW residual plot                            proposed model residual plot 

  
HNW curve figure                             proposed model curve figure 

Figure 3. Restored images for Lena L = 20.                                                           
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HNW denosing                                 proposed model denosing 

  
HNW residual plot                                proposed model residual plot 

  
HNW curve figure                       proposed model curve figure 

Figure 4. Restored images for Lena 2 15σ = .                                                        
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L = 10 Gamma                                    2 20=σ  Rayleigh 

Figure 5. Noisy images for Cameraman.                                                    
 

  
HNW denosing                              proposed model denosing 

  
HNW residual plot                          proposed model residual plot 
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HNW curve figure                           proposed model curve figure 

Figure 6. Restored images for Cameraman L = 10.                                                                 
 

  
HNW denosing                        proposed model denosing 

  
HNW residual plot                    proposed model residual plot 
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HNW curve figure                            proposed model curve figure 

Figure 7. Restored images for Cameraman 2 20σ = .                                                                 
 
Table 1. Data for lena.                                                                                                   

  T SNR MSE PSNR ReErr 

L = 20 
Gamma 

HNW 16.052 20.497 138.624 61.586 0.094 

proposed 6.474 22.373 95.575 65.304 0.076 

2 15σ =   
Rayleigh 

HNW 10.998 24.343 65.998 69.007 0.061 

proposed 4.540 24.385 65.500 69.084 0.060 

 
Table 2. Data for cameraman.                                                                                         

  T SNR MSE PSNR ReErr 

L = 10 
Gamma 

HNW 92.228 11.799 1880.960 35.508 0.257 

proposed 8.487 12.730 665.292 45.901 0.231 

2 20σ =  
Rayleigh 

HNW 11.404 21.290 121.872 62.878 0.088 

proposed 4.056 22.457 103.332 64.524 0.075 

6. Conclusion 
In this paper, we propose a variational method for removing multiple multiplicative noises, and give a new nu-
merical iterative algorithm. We proved the sequence obtained converges to the optimal solution of the model. 
Final experiments show that whether Gamma noise or Rayleigh noise, denoising and edge-protection ability of 
the proposed model are stronger than HNW model, at the same time, staircasing effect (image has the same gray 
in some regions) is greatly suppressed. But, proposed model has only dealt with two noises. Next work, we wish 
that we can find a model to remove many more kinds of multiplicative noises and make sure it has unique solu-
tion! 
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