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Abstract 
Meta-heuristic algorithms proved to find optimal solutions for combinatorial problems in many 
domains. Nevertheless, the efficiency of these algorithms highly depends on their parameter set-
tings. In fact, finding appropriate settings of the algorithm’s parameters is considered to be a non- 
trivial task and is usually set manually to values that are known to give reasonable performance. 
In this paper, Ant Colony Optimization with Parametric Analysis (ACO-PA) is developed to over-
come this drawback. The main feature of the ACO-PA is the ability of deciding the appropriate pa-
rameter values within the predefined parameter variations. Besides, a new approach which en-
ables the pheromone information value to be proportional to the heuristic information value is 
introduced. The effectiveness of the proposed algorithm is investigated through the application of 
the algorithm to the construction site layout problems taken from the state-of-art. Results show 
that the ACO-PA can reduce transportation cost up to 16.8% compared to the site layouts gener-
ated by Genetic Algorithms and basic ACO. Moreover, the effects of parameter settings on the gen-
erated solutions are investigated. 
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1. Introduction 
Lately, mathematical optimization models [1]-[5], artificial intelligence techniques such as neural networks [6] 
[7], Genetic Algorithms (GA) [8]-[13] and particle swarm optimization algorithms including Ant Colony Opti-

 

 

*Corresponding author. 

http://www.scirp.org/journal/jbcpr
http://dx.doi.org/10.4236/jbcpr.2015.34022
http://dx.doi.org/10.4236/jbcpr.2015.34022
http://www.scirp.org
http://creativecommons.org/licenses/by/4.0/


G. Calis, O. Yuksel 
 

 
222 

mization (ACO) [14]-[17] have been proposed to solve optimization problems. The decision to choose one of 
these algorithms depends on the computational time, solution quality, interaction of parameters, complexity and 
behavior of the algorithms when larger problems are used. Among these methods, ACO algorithms have proved 
to find best solutions for optimization problems [18]. ACO algorithms are population-based optimization ap-
proaches that maintain a population of artificial ants which mimic the behavior of real ants. They were first in-
troduced by Dorigo et al. [19] and were applied to the traveling salesman problem. Refined versions of ACO 
have been proposed to design and implement solutions to combinatorial problems such as routing [20], assign-
ment [21], and scheduling problems [22]. Gagne et al. [23] showed that ACO has competitive and advantageous 
behavior for larger problems as compared to the GA, Simulated Annealing (SA), Random Search Pairwise In-
terchange (RSPI), and branch-and-bound algorithm. Gagne et al. [23] indicate that ACO has equal or better so-
lution quality and lower computational times for larger problems. Milena and Borovska [24] compared the effi-
ciency of parallel computational models for ACO, GA, and SA for finding near optimal solution in Traveling 
Salesman Problem (TSP) and concluded that ACO performed better in terms of speedup and solution quality.  

One of the key points for getting high-quality solutions by ACO is the parameters and the main drawback is 
the absence of a general strategy for choosing values for these parameters. In fact, finding appropriate settings of 
an algorithm’s parameters is considered to be a non-trivial task. ACO algorithm parameters are usually set 
manually to values that are known to give reasonable performance. These parameter values do not vary from 
one problem domain instance to another and are fixed throughout the entire run. A better approach for the de-
termination of these parameter values is a fine tuning process which generally results in better solutions; how-
ever, in many instances, only several values are tested for parameter tuning and are fixed throughout the entire 
run [25]-[27]. 

In this paper, Ant Colony Optimization with Parametric Analysis (ACO-PA) is proposed to overcome this 
drawback, and, thus, to improve the solution. The main feature of the ACO-PA is the ability of deciding the ap-
propriate parameter values within the predefined parameter variations. The proposed algorithm is applied to the 
construction site layout problem. An objective function which is related to the total of personnel movement and 
the distance between facilities is adopted for reducing the transportation time. Next, the effects of parameter set-
tings on the results are investigated. The remaining of the paper is organized as follows. The next section fo-
cuses on the ant colony optimization algorithms. In Section 3, application of the proposed algorithm to construc-
tion site layout is introduced. Next, benchmark case studies, numerical analysis and conclusions are presented. 

2. Ant Colony Optimization Algorithms 
In the application process of ACO to optimization problems, a pheromone value ijτ  is associated with each 
edge (i, j). The pheromone value represents the attractiveness of a specific edge for the ants, according to the 
experience gained at runtime: the higher the amount of pheromone on an edge, the higher the probability that 
ants choose it when constructing solutions. Pheromone values are iteratively updated by two ways: pheromone 
evaporation and pheromone deposit. In addition to the pheromone trails, the ants’ solution construction process 
is also biased by a heuristic value, which represents the attractiveness of each edge (i, j). Besides, the relative in-
fluence of the pheromone (α) and heuristic values (β) contribute to the ants’ solution construction. The role of 
these parameters in biasing the ants’ search is intuitively similar. Higher values of α emphasize differences in 
the pheromone values, and β has the same effect on the heuristic values. The initial value of the pheromones, 0 ≤ 
α ≤ 1, has a significant influence in the convergence speed of the algorithm and the evaporation rate parameter, 0 
≤ ρ ≤ 1, is used to avoid unlimited accumulation of the pheromone trails, and, thus, allows the algorithm to for-
get previous bad choices. (1 − ρ) represents the evaporation. If ρ is low, the influence of the pheromone values 
will persist longer, while high values of ρ allow a fast forgetting of previously very attractive choices and, hence, 
allow a faster focus on new information that becomes included into the pheromone matrix. Another parameter is 
the number of ants in the colony. For a given maximum computation time, the number of ants is a critical pa-
rameter for determining the tradeoff between the number of iterations that can be done and how good the solu-
tion construction at each of the iterations is. 

There is an ongoing interest on parameter tuning in the ACO literature. In general methods for parameter set-
tings can be divided into three main approaches. Method of pre-scheduled variations of parameters propose to 
decrease or increase linearly over the run of the algorithm. In adaptative approaches, some parameters are modi-
fied according to some rules that changes the behavior of the algorithm. λ-branching factor [28], entrophy-based 
measures for the pheromone, dispersion of solutions generated by the algorithm and the quality of the solutions 
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generated [29] [30] can be listed among these rules. In search-based parameter adaptation methods, the algo-
rithm tunes itself by incorporating the parameters into the search task. However, few of the studies analyze the 
effect of individual parameters, and thus, the decision of which parameters to adapt and how to adapt them con-
tinue to be mostly arbitrary. The proposed algorithm, Ant Colony Optimization with Parametric Analysis (ACO- 
PA) would be beneficial not only to decide parameter settings which may be worth varying during runtime, but 
also to understand how to perform variations.  

3. Application of ACO-PA to Construction Site Layout Problem  
3.1. Problem Definition 
A construction site layout problem is the allocation of a number of predetermined facilities to a number of pre-
determined locations. A well-planned site layout is vital for any construction project, since space is one of the 
most important resources at a construction site. Furthermore, it has significant impact on construction cost and 
time, especially in the case of large projects in which traveling between facilities can be time consuming. Spatial 
problems may also occur during the setup of temporary facilities due to the limited amount of available space. 
This task is typically carried out by project managers or decision makers based on trial-and-error, experience, 
and intuition. However, as not all of the options are evaluated in these decision making processes, the outcome 
might be an improper layout, which can result in increased transportation time and costs. Possible alternatives 
for any construction site layout increases exponentially with the number of facilities.  

The problem could be modeled as a quadratic assignment problem, in which equal numbers of facilities and 
locations exist. If the number of locations is more than that of facilities, dummy facilities should be added to 
make the numbers equal. In this study, it is assumed that there are equal numbers of facilities as well as loca-
tions, namely equal-area facility layout problem, and each of the predetermined location is available for ac-
commodating the largest facility. The predetermined locations are represented as rectangles. The objective of 
construction site layout is to minimize the total traveling distance of personnel trips between facilities.  

The total distance is defined as Equation (1) and Equation (2) 
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where TD is the total traveling distance; n is the number of facilities; δxi is the permutation matrix variable (=1 if 
the facilities is assigned to site i); fij is the frequencies of trips made by construction personnel between facilities 
i and j; and dij is the distance between locations i and j. If the two locations are next to each other, then the dis-
tance is calculated as the distance between the centers of the two locations. If there is more than one path linking 
the two locations, then the shorter path is defined as the distance between two locations. 

3.2. Solution Steps of the ACO-PA 
Main aspects of the ACO-PA algorithm are heuristic information, solution construction, pheromone updating 
rule, local search and termination rule. Steps established for the proposed algorithm are as follows. 

Step 1. Heuristic information: Heuristic information is defined in accordance with the problem characteris-
tics, which enable the ACO-PA algorithm to be more applicable in solving any combinatorial problem. 

The heuristic information (e) is given by Equation (3) 

ij i je f d= ⋅                                           (3) 

The heuristic desirability (η) is defined as Equation (4) 
1ij ijeη =                                           (4) 

The vector dj represents the sum of the distances from location j to all other locations, which mean that the 
lower the value of dj is, the more the location is closer to the center. The vector fi presents the sum of flows from 
facility i to all other facilities, where the higher the value of fi shows the more important the facility is. This 
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formulation reveals the importance of facilities with higher flows and locations having less distance potentials; 
as the total traveling distance cost is directly proportional to the distances and flows between facilities. 

Step 2. Solution construction: At each construction step, an ant k places an unassigned facility i to an avail-
able location with a probability of 
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                               (5) 

where τij is the pheromone trail at iteration t. It should be noted that α and β are the parameters that determine 
the relative influence of the pheromone and heuristic information, respectively. k

iN  is the set of locations that 
are still available in the neighborhood of node i. During the first solution construction, the initial pheromone 
value is generally defined as a “very little value” in the literature. This approach causes the pheromone value to 
be non-problem-specific. Moreover, the relative importance of the pheromone information value to the heuristic 
information value is being neglected. In the proposed algorithm, the initial pheromone value is defined accord-
ing to the objective function value of the first solution which is generated by using only heuristic information. 
This approach enables the pheromone information value to be proportional to the heuristic information value 
and that any of the values would not dominate the solution construction.  

The assignment sequence of the facilities is generally decided according to the flow rate in an ascending or 
vice versa orders. However, keeping the same assignment sequence, especially on small-dimensional problems, 
causes continual increase in pheromone information values and that the algorithm cannot generate different so-
lutions. To avoid this early convergence to a specific solution, the ACO-PA uses the first assignment sequence 
of the facilities in a non-decreasing order of the flow fi. After determining heuristic and pheromone information, 
facilities are randomly sorted to construct solutions.  

Step 3. Pheromone updating: The pheromone trail update is applied after a complete solution is constructed. 
Pheromone trails of all couplings (i, j) are updated in accordance with Equation (6)  
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is the amount of pheromone added by ant k is given by Equation (7) 
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0               otherwise
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          (7) 

where kCψ  is the kth ant solution and Q is a constant value. In general Q is considered as 1. In the proposed al-
gorithm, ACO-PA, Q is taken as the value of pheromone trail evaporation rate ρ so that the proportion of 
pheromone and heuristic information values are maintained. 

Step 4. Local search: Local search procedure is added to the algorithm to avoid finding a local optimum so-
lution. Although there are several different local search strategies, one of them (2-opt) has been found as the 
most promising one, which was also selected for the developed algorithm. Local search starts from an initial so-
lution and tries to improve the solution by local chances. If a layout with less objective function value could be 
found by swapping two distinct nodes in the current assignment, then the current solution is replaced by that as-
signment’ and the search continues until no better solution is found.  

Step 5. Parameter analysis: In the proposed model, parameter values are defined within the prescheduled 
parameter variations. The algorithm also enables to set maximum and minimum limits for parameter values and 
steps. The algorithm changes one parameter value at a time and evaluates the solution according to the objective 
function. Therefore, the algorithm has the ability of generating more layout options and deciding the optimal 
solution among them. 

Step 6. Termination rule: ACO algorithm can be terminated in several ways, such as, constructing solutions 
for a maximum number of iterations, running the algorithm for a stipulated time or until a stagnation situation is 
encountered in which all ants converge into the same solution. In the proposed model, the algorithm runs for a 
certain number of iteration to avoid stagnation in early stages. The flowchart of the proposed algorithm is illus-
trated in Figure 1. 
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Figure 1. Flowchart of the ACO-PA model.                                                        

4. Benchmark Case Studies 
The proposed algorithm was coded in C++ and executed on IntelCore2 Duo processor at 2.66 GHz and 4 Gb of 
RAM. A comparison with previously proposed algorithms is conducted to demonstrate the effectiveness of 
the developed algorithm. Three case studies were selected from the literature [8] [31] [32]. These case studies 
were selected as they used the same construction site layout problem, and, thus, they can act as a good bench-
mark.  

In case 1 (C1), it is assumed that each of the predetermined location is available for accommodating every fa-
cility [31]. The facilities to be located within the site boundaries are shown in Table 1. 

The frequencies of trips (in one day) between facilities are as listed in Table 2. As seen from table, the fre-
quency of the trips from one facility to another and the other way around are the same and that the matrix is 
symmetric. For example, the daily trips from site office to concrete batch workshop and vice versa are 9. 

The distances of the available locations are as listed in Table 3. It should be noted that the site does not offer 
alternative roads from one location to another. 
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Table 1. The facilities to be located.                                                                          

Site facilities Abbreviations 

Site office SO 

False work shop FS 

Labor residence LR 

Storeroom 1 S1 

Storeroom 2 S2 

Carpentry workshop CW 

Reinforcement steel workshop RW 

Side gate SG 

Electrical, water and other utilities control room UR 

Concrete batch workshop BW 

Warehouse W 

 
Table 2. The frequency of trips between facilities in one day.                                                      

  SO FS LR S1 S2 CW RW SG UR BW W 

 SO 0 5 2 2 1 1 4 1 2 9 1 

 FS 5 0 2 5 1 2 7 8 2 3 8 

 LR 2 2 0 7 4 4 9 4 5 6 5 

 S1 2 5 7 0 8 7 8 1 8 5 1 

 S2 1 1 4 8 0 3 4 1 3 3 6 

F= CW 1 2 4 7 3 0 5 8 4 7 5 

 RW 4 7 9 8 4 5 0 7 6 3 2 

 SG 1 8 4 1 1 8 7 0 9 4 8 

 UR 2 2 5 8 3 4 6 9 0 5 3 

 BW 9 3 6 5 3 7 3 4 5 0 5 

 W 1 8 5 1 6 5 2 8 3 5 0 

 
Table 3. Distances between available locations (m).                                                            

  1 2 3 4 5 6 7 8 9 10 11 

 1 0 15 25 33 40 42 47 55 35 30 20 

 2 15 0 10 18 25 27 32 42 50 45 35 

 3 25 10 0 8 15 17 22 32 52 55 45 

 4 33 18 8 0 7 9 14 24 44 49 53 

 5 40 25 15 7 0 2 7 17 37 42 52 

D= 6 42 27 17 9 2 0 5 15 35 40 50 

 7 47 32 22 14 7 5 0 10 30 35 40 

 8 55 42 32 24 17 15 10 0 20 25 35 

 9 35 50 52 44 37 35 30 20 0 5 15 

 10 30 45 55 49 42 40 35 25 5 0 10 

 11 20 35 45 53 52 50 40 35 15 10 0 
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The construction site, where two permanent buildings are to be constructed, is shown in Figure 2 [31]. 
In case 2 (C2), it is assumed that side gate and main gate are assigned to locations 1 and 10, respectively [8]. 

This case was defined to represent a real life solution approach in a construction site, which is usually determin-
ing the side and main gates before the construction starts as the location of gates are important for access and, 
thus, transportation. Therefore, these gates have to be positioned on predetermined locations.  

In case 3 (C3), it is assumed that site office, labor residence concrete batch shop cannot be allocated to the 
relatively smaller locations 7 and 8 [32]. Case 3 was used to illustrate the constraint in which facilities that are 
relatively larger than other facilities cannot be accommodated to every possible location. Unequal area con-
straint has to be stated to ensure that no larger facilities are positioned to smaller locations. 

5. Numerical Analysis 
In the first solution construction, which is used to define the initial pheromone values, parameters were set to α 
= 0.1, β = 2 and ρ = 0.1 where α, β, and ρ are the parameters that show relative influence of pheromone trail, 
heuristic information, and pheromone trail evaporation rate, respectively. Number of ants was set to 10 and Q is 
taken as the value of pheromone trail evaporation rate ρ. The parameter settings were taken from the literature 
[33] [34] as recommended. Variations of parameters and their steps were defined as follows: 

{ }0,0.05,0.1, , 4.90,4.95,5α ∈   

{ }0,0.05,0.1, , 4.90,4.95,5β ∈   

{ }0,0.05,0.1, ,0.85,0.90,0.95ρ ∈   

{ }Number of ants 1,2, ,19,20∈   

5.1. Comparison with the Best-Known Solutions 
A comparison between the ACO-PA and the best-known results in the literature for the benchmark case studies 
are shown in Table 4 and Figure 3. 

 

 
Figure 2. Location representation of the construction site.                            
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Figure 3. Objective function values for case studies.              

 
Table 4. Comparison between existing state-of-art studies and proposed ACO-PA algorithm.                                

 Facility  SO FS LR S1 S2 CW RW SG UR BW W 

Lo
ca

tio
n 

[31] C1 8 6 9 7 4 3 5 10 1 11 2 

ACO-PA  1 10 4 5 3 8 6 9 7 2 11 

[8] C2 11 5 8 7 2 9 3 1 6 4 10 

ACO-PA  9 11 6 5 8 2 4 1 3 7 10 

[32] C3 11 5 9 7 2 8 3 1 6 4 10 

ACO-PA  11 9 6 5 8 3 7 1 4 2 10 

 
In C1, none of the facilities were assigned to the locations that were proposed by Gharaie et al. [31]. Rein-

forcement steel workshop, which has the maximum flow of 55 trips per day, was assigned to location 6, which 
has the minimum total distance (242 m). Side gate was located to the right side of the construction side. This al-
location might enable material entrance an ease as it is on the road side. Besides offering reasonable location se-
lections, ACO-PA was able to generate a layout where total travel distance was reduced by 3.2% compared to 
the literature.  

In C2, it can be seen that the ACO-PA met all the constraints, which were to assign side gate and warehouse 
to locations 1 and 10, respectively. Apart from these two facilities, none of the facilities were assigned to the 
same locations that were proposed by Li et al. [8]. Reinforcement steel workshop, which has the maximum flow 
of 55 trips per day, was assigned to location 4, which has relatively less total distance to all available locations 
(259 m). Labor residence was assigned to location 8, and that moving around became easier for workers as loca-
tion 8 was in the center of both buildings. With the generated site layout, total travel distance was reduced by 
16.6% with ACO-PA compared to the literature.  

In C3, side gate and warehouse had the priority to be assigned as their locations were predetermined in the 
problem. Next, site office, labor residence, and concrete batch workshop were assigned as they had area con-
straints. According to the generated site layout by ACO-PA, all the constraints were met and total travel distance 
was reduced by 16.8% compared to the literature.  

With respect to computational processing time, the optimal solution was found in 1.15 seconds on Intel Core 
2 Duo processor at 2.66 GHz and 4 Gb of RAM. A comparison of computational time cannot be provided due to 
the lack of related information in the studies taken from the literature.  

With the case studies, the proposed model is applied to both equal-area and unequal area facility layout where 
feasible solutions are generated. In equal-area facility layout, each of the predetermined places is capable of ac-
commodating any of the facilities as in C1. On the other hand, in unequal-area facility layout, like in C2 and C3, 
the number of predetermined places should be equal to or greater than facilities so that no larger facilities are as-
signed to smaller locations. Objective values of C2 and C3 are slightly higher than the results of C1. This indi-
cates that the unequal-area constraints can affect the layout solution. It is observed that the ACO-PA performed 
better under constraints. As more constraints are defined, the better objective function values are found. 
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5.2. Comparison among Parameters  
These parameter values show that the influence of heuristic and pheromone information do not dominate the so-
lution construction regardless of introducing constraints to the problem. Parameter settings used in each case and 
the objective function values are as in Table 5, in which α, and β are the parameters that show relative influence 
of pheromone trail and heuristic information, respectively, and ρ is the pheromone trail evaporation rate. 

As can be seen from Figure 4 and Table 5, parameter values differ from case to case. Although some of the 
best solutions were generated by using the same values for some parameters (i.e. relative influence of phero-
mone trail and heuristic information had zero value for both C2 and C3 cases), it is not possible to generalize the 
values even for the same optimization problem and that assigning constant values to parameters might cause low 
effectiveness in the optimization process. Therefore, it could be concluded that every problem has its own ap-
propriate parameter value, and there is no similarity among the cases. On the other hand, the number of ants is 
robust at a value of 1.00 which indicates that the other parameters are dominant in finding the optimal solution 
and thus identifying the best settings for those parameters have priority than of identifying the number of ants. 

In this study, the initial value of pheromones (τ0) is defined as a function of the objective function value of the 
initial solution, where only heuristic information is used. Therefore, the value τ0 is avoided to be too high or too 
low with this improvement. If the initial value of τ0 is too low, then the search is quickly biased towards the first 
solutions of the ants and this leads to the exploration of inferior zones in the search space. However, if the initial 
pheromone values are too high, then many iterations are wasted in waiting until enough pheromone evaporation 
is done and, thus, the pheromone added by ants can start to bias the search [35]. In addition, the constant Q in 
the pheromone trail update rule is taken as the value of the evaporation rate in the ACO-PA, which enables the 
amount of pheromone evaporated and added to be proportional to each other. 

Furthermore, 3-D surface map indicating the effect of α and ρ variations on cost function of C1 case is given 
in Figure 4. As can be derived from the surface map, deviation of the parameter result in fluctuations of the cost  

 

 
Figure 4. 3-D surface map illustrating the effect of model parameters α and ρ on Case 1.                                

 
Table 5. Parameter values determined for the best solutions.                                                       

Case Relative influence  
of heuristic trail (β) 

Relative influence  
of pheromone trail (α) 

Pheromone trail  
evaporation rate (ρ) Number of ants 

C1 0.30 1.25 0.90 1.00 

C2 0.00 0.00 0.35 1.00 

C3 0.00 0.00 0.60 1.00 
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function, and it is not possible to observe a tendency (or pattern). Even though this graph indicating the effects 
of two parameters on one case, other parameter (β) also exhibited the same influence, and conclusions were 
found to be same in all cases. 

6. Conclusions 
In this study, an improved ACO algorithm, ACO-PA, was proposed for the construction site layout problem and 
was applied to case studies with different constraints. The construction site layout problem is formulated as a 
quadratic assignment problem with an objective function of minimizing the total transportation distance, and, 
thus, total transportation cost. The proposed algorithm is applied to three case studies in which feasible solutions 
for both equal-area and unequal area facility layouts are generated. 

The developed algorithm introduced several improvements, which enhances the solution construction process. 
Firstly, a new approach to define initial pheromone values was integrated to existing ACO frameworks. The first 
solution was constructed according to only the heuristic information and initial pheromone values were defined 
using the objective function value of this solution. This approach enabled the initial pheromone values to be 
proportional to the heuristic information values and that the solution construction was not dominated by the in-
formation which had higher values. The ratio between heuristic and pheromone information should prove to be 
useful to speed the convergence. 

Secondly, the developed algorithm is capable of deciding the better parameter settings for α, β and ρ, where α, 
and β are the parameters that show relative influence of pheromone trail and heuristic information, respectively, 
and ρ is the pheromone trail evaporation rate. The maximum-minimum limits and steps are defined for each of 
the parameters. The algorithm changes one parameter value at a time and evaluates the solution according to the 
objective function. Therefore, the algorithm finds out the proper parameter settings automatically, which leads to 
the best solution. It should also be noted that the effect of model parameters, namely α, β, and ρ, is noteworthy 
and the surface map illustrating the effect of these parameters on the variation of the cost function showed us the 
difficulty of selecting manually. 

There are several advantages of applying the ACO-PA algorithm to site layout problems. First, key facilities 
can be assigned to certain locations. In site layout planning, the project manager would assign facilities one by 
one to locations that are left over based on experience, trial-and-error, or intuition. In the ACO-PA algorithm, 
more layout choices can be considered and evaluated in a reasonable time. Secondly, the ACO-PA algorithm 
uses pheromone and heuristic information which make the algorithm more effective and controllable in the solu-
tion of real-life problems. The developed algorithm should enable construction managers and site engineers to 
plan and optimize the utilization of construction site space in order to minimize the total traveling distance. The 
developed ACO-PA algorithm has a number of possible extensions which are currently being pursued by the 
authors. These include developing hybrid systems based on ACO-PA, incorporating multi-objectives in the op-
timization and extending the research to the dynamic construction site layout planning problem. Future studies 
may also focus on expanding the application areas of the proposed algorithm to other construction tasks such as 
equipment routing planning and material storage layout on site. 
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