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Abstract 
Forecasts can either be short term, medium term or long term. In this work, we consider short 
term forecast because of the problem of limited data or time series data that often encounter in 
time series analysis. This simulation study considers the performances of the classical VAR and 
Sims-Zha Bayesian VAR for short term series at different levels of collinearity and correlated error 
terms. The results from 10,000 iteration reveal that the BVAR models are excellent for time series 
length of T = 8 for all levels of collinearity while the classical VAR is effective for time series length 
of T = 16 for all collinearity levels except when ρ = −0.9 and ρ = −0.95. Therefore, we recommend 
that for effective short term forecasting, the time series length, forecasting horizon and the colli-
nearity level should be considered. 
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1. Introduction 
Forecasts from classical Vector Autoregression (VAR) models and the Bayesian VAR had gained great popular-
ity in the 1980s ([1] [2]). In recent times, the classical VAR models tend to over fit the data and overestimate the 
magnitude of the coefficients of distant lags of variables as a result of sampling error [3]. But the Bayesian VAR 
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is designed to improve macroeconomic forecast and to solve many problems associated with the classical VAR. 
The many advantages of the BVAR make it more useful in forecasting short term macroeconomic series. As 
observed by Bischoff et al., [2] that a small VAR, Bayesian or otherwise, can be useful for the purpose of fore-
cast only. 

Forecast can either be short term, medium term or long term. In this present work, our focus is on short term 
forecast because of the problem of limited data or time series that may be encountered in time series analysis. 

Short term forecasting is very useful for decision making in many fields of life. [4] uses the Bayesian VAR to 
model and forecast the intraday electricity load in the short term. [5] considers short term load forecasting me-
thods based on European data, while [6] [7] and [8] use different statistical models to forecast GDP in their re-
spective countries. [9] uses factor models for short term forecasting of the Japanese economy; [10] considers 
factors affecting short term load forecasting and, [11] in their review considers short term weather forecasting 
from the physic and mathematics point of view. For other examples on short term forecasting see [12] [13] and 
[14]. 

This present work is motivated by the work of Johnson, [15] who studies the effect of correlation and identi-
fication status on methods of estimating parameters of system of simultaneous equations using Monte Carlo ap-
proach. Also the work of Bischoff, Balay and Kang, [2] give rise to this present work. Bischoff, Balay and Kang 
suggest that if one only wants to forecast (i.e. not do “structural analysis”) a small VAR, Bayesian, otherwise, 
can be useful. Lastly this work is also motivated by the recent work by Dormann et al., [16] who observe in their 
simulation studies on GLM that correlation coefficient of 0.7r <  is an appropriate indicator when collinearity 
begins to severely distort model estimation and subsequent prediction. 

Therefore, the aim of this paper is to compare the performances of the classical VAR and Bayesian VAR for 
time series with collinear variables and correlated error terms in the short term. 

2. Review of Related Literatures 
The name “multicollinearity” was first introduced by Ragnar Frisch. In his original formulation the economic 
variables are supposed to be composed of two parts, a systematic or “true” and an “error” component. This 
problem which arise when some or all the variables in the regression equation are highly intercorrelated and it 
becomes also impossible to separate their influences and obtain the corresponding estimates of the regression 
coefficient [17]. Multicollinearity is a term that refers to correlation among independent variables in a multiple 
regression model; it is usually invoked when some correlations are “large” but an actual magnitude test is not 
well defined [18]. 

[19] proposed a statistic that measure the ‘distance’ of a cross-product matrix from the diagonal matrix ob-
tained by zeroing its off-diagonal elements and they found it useful in detecting near multicollinearity regression 
problems. It can also distinguished between apparent and real multicollinearity with positive probability. 

[20] worked out the statistical implications of the orthogonalization procedure in the general linear model. His 
work demonstrated that orthogonalization can worsen collinearity if measured by its effect on estimated va-
riances. 

[21] reported that parameter estimates may be poorly determined in-sample due to the sheer number of va-
riables, perhaps worsened by the high degree of collinearity manifested in the levels of integrated data. 

[22] investigated the non-uniqueness of collinearity using the static regression model and reported that any 
collinearity in the explanatory variables is irrelevant to forecasting so long as the marginal process remains con-
stant. 

[23] noted that since non-experimental data in general and economics data in particular, are often highly cor-
related, then from Bayesian viewpoint model specification is closely related to the problem of multicollinearity. 
In their approach they compared the predictive densities for an equation with and without the set of variables in 
question in order to gauge that the set may be safely omitted if the omission has little or no effect on the predic-
tive densities. They concluded that examination of changes in predictive means and of Generalized Variance 
Ratio (GVR) is a useful method of investigation model specification. 

[24] revealed through their Monte Carlo simulation experiment that multicollinearity can cause problems in 
theory testing (Type II errors) under certain conditions which includes: when multicollinearity is extreme; when 
multicollinearity is between 0.6 and 0.8, and when multicollinearity is between 0.4 and 0.5. 

[25] studied graphical views of suppressor variables and multicollinearity in multiple linear regression. 
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[26] investigated the Type II error rate of the OLS estimators at different levels of multicollinearity and sam-
ple sizes through Monte-Carlo studies. Their work revealed that increasing the sample size reduces the type II 
error rate of the OLS estimator at all levels of multicollinearity. 

[27] considered the available options available to researchers when one or more assumptions of an ordinary 
Least Squares (OLS) regression model are violated. Ayyangar paid particular attention on the problems of 
skewness, multcollinearity and heteroskedasticity and autocorrelated error terms on OLS models using SAS 
with illustration to health care cost data. 

[15] studied the effects of correlation and identification status on methods of estimating parameters of system 
of simultaneous equations model using Monte Carlo approach. The Monte Carlo approach for the performances 
of the estimating methods at different levels of correlation, sample sizes and identification status were reported. 

[28] considered the various performances of Akaike Information Criterion (AIC), Bayesian Information Cri-
terion (BIC) and Mallow Cp statistic in the presence of a multicollinear regression using simulated data from 
SAS programme. Their work revealed that the performances of AIC and BIC in choosing the correct model 
among collinear variables are better when compared with the performances of Mallow’s Cp. 

[29] studied the effects of multicollinearity and the sensitivity of the estimation methods in simultaneous equ-
ation model for different levels of different levels of multicollinearity. He considered Ordinary Least Squares 
(OLS), 2 Stage Least Squares (2SLS) and 3 Stage Least Squares (3SLS) methods of estimation. His result re-
vealed preference of 3SLS over 2SLS and OLS. 

[30] noted that multicollinearity problems are almost always present in time-series data generated by natural 
experiments. He also noted that multicollinearity becomes “harmful” when there is an R2 in the predictor matrix 
that is of the same order of magnitude as the R2 of the overall model. 

[31] studied the effect of multicollinearity on some estimators (Ordinary Least Squares, Cochran-Orcut 
(GLS2), Maximum Likelihood Estimator (MLE), Multivariate Regression, Full Information Maximum Likelih-
ood, Seemingly Unrelated Regression (SUR) and Three Stage Least Squares (3SLS)). Results showed that mul-
tivariate regression, FIML, SUR and 3SLS estimators are preferred at all levels of sample size.  

[32] studied the performances of Bayesian Linear regression, Ridge Regression and OLS methods for model-
ing collinear data.  

[16] who observed in their simulation studies on GLM that correlation coefficient of 0.7r <  was an appro-
priate indicator for when collinearity begins to severely distort model estimation and subsequent prediction. 

[33] compared the forecasting performances of the Reduced form Vector Autoregression (VAR) and Sims- 
Zha Bayesian VAR (BVAR) in a situation where the endogenous variables are collinear at different levels and at 
different short terms time series lengths assuming harmonic decay.  

Sources of multicollinearity includes: the data collection method employed; constraints on the model or in the 
population being sampled; model specification; and overdetermined model. Multicollinearity especially in time 
series data may occur if the regressors included in the model share a common trend, that is, they all increase or 
decrease over time. 

[34] identified some consequences of multicollinearity. They include: 
1) Although BLUE, the OLS estimators have large variances and covariances making precise estimation dif-

ficult. 
2) Because of consequence 1, the confidence interval tends to be much wider, leading to the acceptance of the 

(zero null hypothesis) and the t-ratio of one or more coefficients tends to be statistically insignificant. 
3) Although the t-ratio of one or more coefficients is statistically insignificant, R2, the overall measure of 

goodness-of-fit can be very high. 
4) The OLS estimators and their standard errors can be sensitive to small change in the data. 

3. Model Description  
3.1. Vector Autoregression (VAR) Model  
VAR methodology superficially resembles simultaneous equation modeling in that we consider several endo-
genous variables together. But each endogenous variable is explained by its lagged values and the lagged values 
of all other endogenous variables in the model; usually, there are no exogenous variables in the model [34]. 

Given a set of k time series variables, [ ], ,  t it Kty y y ′=  , VAR models of the form 
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1 1t t p t p ty A y A y u− −= + + +                                 (1) 

provide a fairly general framework for the Data General Process (DGP) of the series. More precisely this model 
is called a VAR process of order p or VAR(p) process. Here [ ]1 , ,t t Ktu u u ′=   is a zero mean independent 
white noise process with non singular time invariant covariance matrix ∑u and the Ai are (k × k) coefficient ma-
trices. The process is easy to use for forecasting purpose though it is not easy to determine the exact relations 
between the variables represented by the VAR model in Equation (1) above [35]. Also, polynomial trends or 
seasonal dummies can be included in the model. 

The process is stable if 

( )1det 0 for 1p
K pI A z A z z− − − ≠ ≤                            (2) 

In that case it generates stationary time series with time invariant means and variance covariance structure. 
Therefore To estimate the VAR model, one can write a VAR(p) with a concise matrix notation as 

[ ] [ ]
1

1 1 1where , , ,   ,   , ,
t

T t o T

t p

Y BZ U

y
Y y y Z Z Z Z

y

−

− −

−

= +

 
 = = = 
  

  

                     (3) 

Then the Multivariate Least Squares (MLS) for B yields 

( ) 1B̂ ZZ Z Y−′ ′=                                     (4) 

It can be written alternatively as 

( ) ( )( ) ( )1ˆ
kVec B ZZ Z I Vec Y−′= ⊗                              (5) 

where ⊗  denotes the Kronecker product and Vec the vectorization of the matrix Y. This estimator is consistent 
and asymptotically efficient. It furthermore equals the conditional Maximum Likelihood Estimator (MLE) [36]. 

As the explanatory variables are the same in each equation, the multivariate least squares is equivalent to the 
Ordinary Least Squares (OLS) estimator applied to each equation separately, as was shown by [37]. 

In the standard case, the MLE estimator of the covariance matrix differs from the OLS estimator. 

1

1ˆ ˆ ˆMLE estimator    
T

t t
tT =

′∑ = ∑                                (6) 

OLS estimator for a model with a constant, k variables and p lags, in a matrix notation, gives 

( )( )1ˆ ˆ ˆ
1

Y BZ Y BZ
T kp

′∑ = − −
− −

                             (7) 

Therefore, the covariance matrix of the parameters can be estimated as 

( )( ) ( ) 1 ˆˆˆCov Vec B ZZ −′= = ⊗∑                                (8) 

3.2. Bayesian Vector Autoregression with Sims-Zha Prior 
In recent times, the BVAR model of [38] has gained popularity both in economic time series and political analy-
sis. The Sims-Zha BVAR allows for a more general specification and can produce a tractable multivariate nor-
mal posterior distribution. Again, the Sims-Zha BVAR estimates the parameters for the full system in a multiva-
riate regression [3]. 

Given the reduced form model 

1 1

1 1 1 1 1
0 0 0 0 0where  ,  , 1, 2, ,  , and

t t t p p t

l l t t

y c y B y B u

c dA B A A l p u A A Aε

− −

− − − − −

= + + + +

′= = − = = Σ =





 

The matrix representation of the reduced form is given as 
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( ) ( )
( )

1 1
, ~ 0,

T m T mp T mmp m
Y X U U MVNβ
× × + ×+ ×
= + Σ  

We can then construct a reduced form Bayesian SUR with the Sims-Zha prior as follows. The prior means for 
the reduced form coefficients are that B1 = I and 2 , , 0pB B = . We assume that the prior has a conditional 
structure that is multivariate Normal-inverse Wishart distribution for the parameters in the model. To estimate 
the coefficients for the system of the reduced form model with the following estimators 

( ) ( )
( )( )

( ) ( )

11 1

1 1 1

ˆ

ˆ ˆˆ

where the Normal-inverse Wishart prior for the coefficients is 

~ ,  and ~ ,

X X X Y

T Y Y X X S

N IW S v

β β

β β β β

β β

−− −

− − −

′ ′= Ψ + Ψ +

′ ′ ′ ′Σ = − +Ψ + Ψ +

Σ Ψ Σ

 

This representation translates the prior proposed by Sims-Zha form from the structural model to the reduced 
form ([3] [39] and [38] [40]).  

The summary of the Sims-Zha prior is given in Table 1. 

3.3. Simulation Procedure 
The simulated data will be generated for time series lengths of 8 and 16. The choice of the length chosen is to be 
able to study the models in the short run [41]. This study also considered ten (10) multicollinearity levels as ρ 
=(0.8, −0.8, 0.85, −0.85, 0.9, −0.9, 0.95, −0.95, 0.99, −0.99). 

The simulation procedure is given in the following steps. 
Step1: we generated a VAR (2) process that obeys the following form 

1 1 1 1

2 2 2 21 2

5.0 0.5 0.2 0.3 0.7
10.0 0.2 0.5 0.1 0.3t t t t

y y y u
y y y u

− −

− −            
= + + +            − − −            

 

Our choice for this form model is to obtain a stable process and a VAR process that is not affected by overpa-
rameterization [8].  

Step2: let the desired correlation matrix be 
1    

   1
R

ρ
ρ
 

=  
 

 then the Choleski factor P is 
2

1 0

1
P

ρ ρ

 
=  

−  
 

and then the simulated data in Step 1 is pre-multiplied by the Choleski factor so that the simulated data is scaled 
to have the desired correlation level [41]. 

Step 3: the VAR and BVAR models of lag length of 2 was be used for modeling and forecasting simulated 
data to obtain the RMSE and MAE. 

Step 4: Step 1 to Step 3 was repeated for 10,000 times, and the averages of the criteria were used to access 
the preferred model. A sample of simulated data is presented in Table 2 below. 

 
Table 1. Hyperparameters of Sims-Zha reference prior. 

Parameter Range Interpretation Range Interpretation 

0λ  [0, 1] Overall scale of the error covariance matrix 

1λ  >0 Standard deviation around A1 (persistence) 

2λ  =1 Weight of own lag versus other lags 

3λ  >0 Lag decay 

4λ  ≥0 standard deviation of intercept 

5λ  ≥0 Scale of standard deviation of exogenous variable coefficients 

μ5 ≥0 Sum of coefficients/Cointegration (long-term trends) 
μ6 ≥0 Initial observations/dummy observation (impacts of initial conditions) 
v >0 Prior degrees of freedom 

Source: Brandt and Freeman, [3]. 
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Table 2. Sample of Simulated data for T = 16. 

T 
ρ = −0.99 Residuals 

y1 y2 [U, 1] [U, 2] 

1 6.0853378 −4.699854321   

2 8.3361587 −7.662052368 −0.7440477 0.7748210 

3 −1.4119188 2.549041262 0.2270471 −0.3013146 

4 1.6662033 −0.878217866 0.5898282 −0.6190964 

5 1.9049119 −0.455346148 0.6080660 −0.6421680 

6 4.5498919 −3.60183345 1.4032863 −1.5356158 
7 1.836577 −0.801168974 0.2527919 −0.1563110 
8 1.7007428 −0.544318103 0.1370333 −0.1499999 
9 2.2602923 −1.158178434 0.4050407 −0.3836562 
10 2.0551198 −0.897890179 0.2085433 −0.1174189 
11 2.0660043 −0.891296203 0.7917755 −0.7295352 
12 2.5693203 −1.430130241 −1.4718452 1.3755778 
13 0.1955522 0.800465005 −0.2213798 0.2439514 
14 0.6950544 0.494571004 −1.4442621 1.4103745 
15 1.1474605 0.006271441 −0.7418776 0.8303912 
16 1.043101 0.203232356   

 Estimated correlation r = −0.9970061 Estimated correlation of the residual r = −0.996 

3.4. Model Specification  
The time series were generated data using a VAR model with lag 2. The choice here is to obtain a bivariate time 
series with the true lag length. While the VAR and BVAR models of lag length of 2 will be used for modeling 
and forecasting purpose.  

For the BVAR model with Sims-Zha prior, we will consider the following range of values for the hyperpara-
meters given below and the Normal-Inverse Wishart prior. 

We consider two tight priors and two loose priors as follows: 

( )
( )

0 1 3 4 5 5 6

0 1 3 4 5 5 6

0 1 3 4

The Tight priors are as follows
BVAR1 0.6,  0.1, 2, 0.1, 0.07, 5

BVAR2 0.8,  0.1, 2, 0.1, 0.07, 5
The Loose priors are as follows
BVAR3 0.6,  0.15, 2, 0.

λ λ λ λ λ µ µ

λ λ λ λ λ µ µ

λ λ λ λ

= = = = = = = =

= = = = = = = =

= = = = =( )
( )

5 5 6

0 1 3 4 5 5 6

15, 0.07, 2

BVAR4 0.8,  0.15, 2, 0.15, 0.07, 2

λ µ µ

λ λ λ λ λ µ µ

= = =

= = = = = = = =

  

where nμ is prior degrees of freedom given as m + 1 where m is the number of variables in the multiple time se-
ries data. In work nμ is 3 (that is two (2) time series variables plus 1(one)). 

The choice of Normal-inverse Wishart prior for the BVAR models follow the work of [42] that Normal Wi-
shart prior tends to performed better when compared to other priors. In addition [38] proposed Normal-Inverse 
Wishart prior because of its suitability for large systems while [43] reported that the most advantage of Wishart 
distribution is that it guaranteed to produce positive definite draws. Our choice of the overall tightness 

0 0.6 and 0.8λ =  is in line with work of [44]. In this work we assumed that the bivariate time series follows a 
quadratic decay. The Quadratic Decay (QD) model has many attractive theoretical properties that is why it is 
been applied to many fields of endeavour ([45] [46] and [47]).  

The following are the criteria for forecast assessments used: 

1) Mean Absolute Error (MAE) has a formular 1MAE

n

i
i

j

e

n
==
∑

. This criterion measures deviation from the  
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series in absolute terms, and measures how much the forecast is biased. This measure is one of the most com-
mon ones used for analyzing the quality of different forecasts.  

2) The Root Mean Square Error (RMSE) is given as 
( )2

RMSE

n
f

i
i

j

y y

n

−
=

∑
 where yi is the time series 

data and yf is the forecast value of y [8]. 
For the two measures above, the smaller the value, the better the fit of the model [48]. 

In this simulation study, 
RMSE MAE

RMSE  and MAE

N N

j j
j j

N N
= =
∑ ∑

 where N = 10,000. Therefore, the model 

with the minimum RMSE and MAE result as the preferred model. 

3.5. Statistical Packages (R) 
In this study three procedures in the R package will be used. They are: Dynamic System Estimation (DSE) [49]; 
the vars [50]: and the MSBVAR [51].  

4. Results and Discussion 
The results from the analysis are presented in Tables 3-5. The values of the RMSE and MAE are presented in 
Table 3. Generally the values of the RMSE and MAE decrease as a result of increase in the time series length 
from 8 to 16. Also the values of the RMSE and MAE increase as the collinearity values increases. 

 
Table 3. Forecasting performances of the models for different time series length and forecasting horizons at different levels 
of collinearity. 

Collinearity 
Levels (ρ) Models 

T = 8 T = 16 

RMSE MAE RMSE MAE 

−0.99 

VAR(2) N/A N/A 2.822276 1.865384 

BVAR1 3.480238 2.459911 2.924542 2.070996 

BVAR2 3.475351 2.461614 2.915648 2.064497 

BVAR3 3.487892 2.47295 2.8539 1.969234 

BVAR4 3.520224 2.502497 2.846255 1.958829 

−0.95 

VAR(2) N/A N/A 2.92741 1.923175 

BVAR1 3.513841 2.461495 2.955763 2.077187 

BVAR2 3.524945 2.48011 2.93884 2.058831 

BVAR3 3.463551 2.424384 2.808864 1.903786 

BVAR4 3.477056 2.428536 2.779634 1.878388 

−0.9 

VAR(2) N/A N/A 2.839813 1.892972 

BVAR1 3.527144 2.461289 2.957319 2.080047 

BVAR2 3.510038 2.455105 2.946401 2.06848 

BVAR3 3.453288 2.416771 2.80427 1.932373 

BVAR4 3.423209 2.39757 2.785012 1.918003 

−0.85 

VAR(2) N/A N/A 2.803335 1.871187 

BVAR1 3.503068 2.448057 2.959128 2.098831 

BVAR2 3.512622 2.462979 2.967651 2.114981 

BVAR3 3.422623 2.410443 2.846845 2.006635 

BVAR4 3.406495 2.409279 2.831411 2.009857 
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Continued 

−0.8 

VAR(2) N/A N/A 2.794558 1.871746 

BVAR1 3.499985 2.469094 3.003398 2.172383 

BVAR2 3.485945 2.4724 3.023571 2.216076 

BVAR3 3.421835 2.443648 2.917568 2.109152 

BVAR4 3.407584 2.454034 2.893364 2.10613 

0.8 

VAR(2) N/A N/A 2.319124 1.560363 

BVAR1 3.048499 2.207239 2.551886 1.87176 

BVAR2 3.045309 2.218768 2.575611 1.904332 

BVAR3 3.291741 2.559531 2.927194 2.326211 

BVAR4 3.345142 2.619884 2.879254 2.269554 

0.85 

VAR(2) N/A N/A 2.383968 1.599955 

BVAR1 3.088592 2.237249 2.593269 1.898944 

BVAR2 3.115247 2.269976 2.607954 1.921699 

BVAR3 3.331697 2.580985 2.953197 2.340492 

BVAR4 3.391991 2.652839 2.908163 2.285598 

0.9 

VAR(2) N/A N/A 2.446215 1.638628 

BVAR1 3.159379 2.282306 2.653275 1.934046 

BVAR2 3.159299 2.287451 2.657339 1.953146 

BVAR3 3.372884 2.588348 2.970293 2.33445 

BVAR4 3.435369 2.66265 2.955572 2.308289 

0.95 

VAR(2) N/A N/A 2.526335 1.683815 

BVAR1 3.239628 2.325308 2.715885 1.968942 

BVAR2 3.255642 2.353053 2.726984 1.993325 

BVAR3 3.423552 2.582054 2.986378 2.305256 

BVAR4 3.480364 2.651436 2.97899 2.290409 

0.99 

VAR(2) N/A N/A 2.613225 1.739059 

BVAR1 3.346564 2.381411 2.796383 2.012807 

BVAR2 3.35575 2.405958 2.820216 2.040734 
BVAR3 3.457429 2.546992 2.954774 2.197399 
BVAR4 3.531113 2.624224 2.965086 2.200766 

 
In Table 4 below, we present the ranks of the performances of the model. Rank of 1 is assigned to the model 

with the smallest values of RMSE and MAE while rank of 5 is assigned to the model with the largest values of 
the RMSE and MAE. 

In Table 5 below, we present the preferred model for the different time series length and forecasting horizons 
at the different collinearity levels. It was observed that from ρ = −0.95 to ρ = −0.8 for T = 8, the BVAR model 
with loose prior are preferred while for ρ = −0.99, the BVAR model with tight prior is preferred. For the positive 
collinearity from ρ = 0.8 to ρ = 0.99 for T = 8, the BVAR model with tight prior are preferred. In general for T = 
8, the BVAR model with loose prior are suitable for negative collinearity level while the BVAR model with 
tight prior are suitable for positive collinearity levels. 

Also for time series length and forecasting horizon of T = 16, the classical VAR model is preferred for all the 
collinearity levels except for ρ = −0.95 and ρ = −0.9 where the BVAR model with loose prior are preferred. 

5. Conclusion and Recommendation 
The results from this study revealed that the BVAR models were excellent for time series length of T = 8 for all 
levels of collinearity while the classical VAR was effective for time series length of T = 16 for all collinearity  
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Table 4. Ranks of the performances of the models for different time series length and forecasting horizons at different levels 
of collinearity. 

COLLINEARITY 
LEVELS (ρ) Models 

T = 8 T = 16 

RMSE MAE RMSE MAE 

−0.99 

VAR(2) N/A N/A 1 1 

BVAR1 2 1 5 5 

BVAR2 1 2 4 4 

BVAR3 3 3 3 3 

BVAR4 4 4 2 2 

−0.95 

VAR(2) N/A N/A 3 3 

BVAR1 3 3 5 5 

BVAR2 4 4 4 4 

BVAR3 1 1 2 2 

BVAR4 2 2 1 1 

−0.9 

VAR(2) N/A N/A 3 1 

BVAR1 4 4 5 5 

BVAR2 3 3 4 4 

BVAR3 2 2 2 3 

BVAR4 1 1 1 2 

−0.85 

VAR(2) N/A N/A 1 1 

BVAR1 3 3 4 4 

BVAR2 4 4 5 5 

BVAR3 2 2 3 2 

BVAR4 1 1 2 3 

−0.8 

VAR(2) N/A N/A 1 1 

BVAR1 4 3 4 4 

BVAR2 3 4 5 5 

BVAR3 2 1 3 3 

BVAR4 1 2 2 2 

0.8 

VAR(2) N/A N/A 1 1 

BVAR1 1 1 2 2 

BVAR2 2 2 3 3 

BVAR3 3 3 5 5 

BVAR4 4 4 4 4 

0.85 

VAR(2) N/A N/A 1 1 

BVAR1 1 1 2 2 

BVAR2 2 2 3 3 

BVAR3 3 3 5 5 

BVAR4 4 4 4 4 

0.9 

VAR(2) N/A N/A 1 1 

BVAR1 2 1 2 2 

BVAR2 1 2 3 3 

BVAR3 3 3 5 5 

BVAR4 4 4 4 4 
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Continued 

0.95 

VAR(2) N/A N/A 1 1 

BVAR1 1 1 2 2 

BVAR2 2 2 3 3 

BVAR3 3 3 5 5 

BVAR4 4 4 4 4 

0.99 

VAR(2) N/A N/A 1 1 

BVAR1 1 1 2 2 

BVAR2 2 2 3 3 

BVAR3 3 3 4 4 

BVAR4 4 4 5 5 

 
Table 5. Preferred models for different time series length and forecasting horizons at different levels of collinearity. 

COLLINEARITY 
LEVELS (ρ) 

T = 8 T = 16 

RMSE MAE RMSE MAE 

−0.99 BVAR2 BVAR1 VAR(2) VAR(2) 

−0.95 BVAR3 BVAR3 BVAR4 BVAR4 

−0.9 BVAR4 BVAR4 BVAR4 VAR(2) 

−0.85 BVAR4 BVAR4 VAR(2) VAR(2) 

−0.8 BVAR4 BVAR3 VAR(2) VAR(2) 

0.8 BVAR1 BVAR1 VAR(2) VAR(2) 
0.85 BVAR1 BVAR1 VAR(2) VAR(2) 
0.9 BVAR2 BVAR1 VAR(2) VAR(2) 
0.95 BVAR1 BVAR1 VAR(2) VAR(2) 
0.99 BVAR1 BVAR1 VAR(2) VAR(2) 

 
levels except when ρ = −0.9 and ρ = −0.95. Therefore, we recommended that for effective short term forecasting, 
the time series length, forecasting horizon and the collinearity level should be considered. 
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