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Abstract 
In many applications, such as in multivariate meta-analysis or in the construction of multivariate 
models from summary statistics, the covariance of regression coefficients needs to be calculated 
without having access to individual patients’ data. In this work, we derive an alternative analytic 
expression for the covariance matrix of the regression coefficients in a multiple linear regression 
model. In contrast to the well-known expressions which make use of the cross-product matrix and 
hence require access to individual data, we express the covariance matrix of the regression coeffi-
cients directly in terms of covariance matrix of the explanatory variables. In particular, we show 
that the covariance matrix of the regression coefficients can be calculated using the matrix of the 
partial correlation coefficients of the explanatory variables, which in turn can be calculated easily 
from the correlation matrix of the explanatory variables. This is very important since the cova-
riance matrix of the explanatory variables can be easily obtained or imputed using data from the 
literature, without requiring access to individual data. Two important applications of the method 
are discussed, namely the multivariate meta-analysis of regression coefficients and the so-called 
synthesis analysis, and the aim of which is to combine in a single predictive model, information 
from different variables. The estimator proposed in this work can increase the usefulness of these 
methods providing better results, as seen by application in a publicly available dataset. Source 
code is provided in the Appendix and in http://www.compgen.org/tools/regression. 
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1. Introduction 
The linear regression model is one of the oldest and most commonly used models in the statistical literature and 
it is widely used in a variety of disciplines ranging from medicine and genetics to econometrics, marketing, so-
cial sciences and psychology. Moreover, the relations of the linear regression model to other commonly used 
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methods such as the t-test, the Analysis of Variance (ANOVA) and the Analysis of Covariance (ANCOVA) [1] 
[2], as well as the role played by the multivariate normal distribution in multivariate statistics, place the linear 
model in the centre of interest in many fields of statistics. 

In several applications, expressions for estimates of various parameters of the multiple regression models in 
terms of the summary statistics are needed. This is more evident in the general area of research synthesis meth-
ods, in which a researcher seeks to combine multiple sources of evidence across studies. For instance, in meta- 
analysis of regression coefficients [3], which is a special case of multivariate meta-analysis [4] [5], one is inter-
ested in the covariance matrix of the coefficients obtained in various studies, in order to perform a multivariate 
meta-analysis that takes properly into account the correlations among the estimates. The synthesis of regression 
coefficients has received increased attention in recent years [3]. This growing interest is probably related to the 
increasing complexity of the models investigated in primary research, and this seems to be the case for both 
biological [6] [7] as well as social sciences [8]-[11]. However, as Becker and Wu point out in their work: “the 
covariance matrix among the slopes in primary studies is rarely reported (though matrices of correlations 
among predictors are sometimes reported)” [3]. A well-known result from linear regression theory suggests that 
the covariance matrix of the coefficients depends on the cross-product matrix TX X , where X  is the design 
matrix of the independent variables. Thus, in such a case, one needs to have access to individual data, something 
which is difficult and time-consuming. 

Another example is the case of the so-called “synthesis analysis”, the aim of which is to combine in a single 
predictive model information from different variables. Synthesis analysis differs from traditional meta-analysis, 
since we are not synthesizing similar outcomes across different studies, but instead, we are trying to construct a 
multivariate model from pairwise associations, or to update a previously created model using external information 
(i.e. for an additional variable). For example, let’s consider the case of a multiple linear regression model that  
relates the de-pendent variable, y, with p independent variables 1 2, , , px x x

. The aim of the method is to build  
the multivariate model that relates all predictors, however, not the individual data, but rather the information 
arising from the pairwise relationships among the variables. Samsa and coworkers were the first to provide de-
tails of such method. They used the univariate linear regressions of each xi against y and the correlation matrix 
that describes the linear relationships among the xi’s [12]. However, they did not provide an estimate for the co-
variance matrix. Later, Zhou and coworkers presented a different version of the method in which they used the 
univariate linear regressions of each xi against y along with the simple regressions that related each pair of xi’s 
[13]. Their method was based on solving a linear system of equations and they also described a method for cal-
culating the variance-covariance matrix of the estimated coefficients using the multivariate delta method, utiliz-
ing the estimated variance-covariance matrix of the individual regression models. Such methods could be very 
important for instance for adjusting a previously obtained estimate for a potential confounder, for adjusting the 
results of a new analysis using estimates from the literature [14], or for constructing and updating multivariate 
risk models [15]-[17].  

In this work, we derive an analytic expression for the covariance matrix of the regression coefficients in a 
multiple linear regression model. In contrast to the well-known expressions which make use of the cross-product 
matrix TX X , we express the covariance matrix of the regression coefficients directly in terms of covariance 
matrix of the explanatory variables. This is very important since the covariance matrix of the explanatory vari-
ables can be easily obtained, or even imputed using data from the literature, without requiring access to individ-
ual data. In the following, in the Methods section we first present the details of synthesis analysis (2.1) and 
meta-analysis (2.2), in order to establish notation. Then, in Section (2.3) we present the classical framework of 
the multivariate normal model on which the problem is based and we give some results concerning some previ-
ously published estimators. Afterwards, in Section (2.4) we present the main result consisting of the analytical 
expression for the covariance of the regression coefficients. Finally, in Section (3) the method is applied to a real 
dataset, both in a meta-analysis and a synthesis analysis framework. Source code that implements the method, as 
well as the derivations of the main results are given in Appendix. 

2. Methods 
2.1. Synthesis Analysis 
The aim of synthesis analysis is to combine in a single predictive model, information from different variables. 
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For instance, consider the case of a multiple linear regression model that relates the dependent variable, y, with p  
independent variables, 1 2, , , px x x

. The traditional linear regression, models the expectation of y given 

1 2, , , px x x
. as a linear combination of the covariates: 

( )1 2 0 1 1 2 2| , , , p p pE y x x x x x xβ β β β= + + + +                         (1) 

The aim of the method is to build the model in Equation (1), in other words, to find the estimates of the pa- 
rameters 0 1, , , pβ β β

, using however not the individual data, but rather the information arising from the pair- 
wise relationships among the variables. In the following, the regression coefficients are the elements of the (p +  

1) × 1 matrix 0* β 
=  
 

β
β

, where 
1

p

β

β

 
 =  
  

β . These relationships could be, from the one hand the univariate 

linear regressions of each xi against y: 

( ) 0 1| , 1, 2, ,i i i iE y x a a x i p= + =                              (2) 

On the other hand, we could either have the simple regressions that relate each pair of xi’s: 

( ) 0 1| , , 1 ,j i ij ij iE x x x i j i j pγ γ= + ≠ ≤ ≤                          (3) 

or, the correlation matrix that describes the linear relationships among the xi’s: 

12 1

12 2

1 2
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1

1
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p
x

p p

r r
r r

r r

 
 
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 
 
  

R





  



                                (4) 

In Equation (4), the Pearson’s correlation coefficient between xi and xj are denoted by rij for 1 ≤ i, j ≤ p. The 
first approach for synthesis analysis was presented by Samsa and coworkers [12] who used Equation (2) and 
Equation (3) in order to calculate the estimates of Equation (1). In particular, the authors used a previously 
known result that relates β  to the matrices A, S, where β  is the p × 1 matrix of the regression coefficients  

1 2, , , pβ β β
 from the multivariate model of Equation (1), A is the p × 1 matrix of the regression coefficients of  

Equation (2), S is the p × 1 matrix of the standard deviations of the xi covariates and Rx is given by Equation (4). 
If we denote A and S by: 

1

2

11

12

1

,

p

x

x

p x

sa
sa

a s

  
  
  = =   
  
     

A S




                                 (5) 

then the regression coefficients can be calculated by: 

( )1
x
−

=
R A S

S


β                                    (6) 

In Equation (6),  stands for the element-wise multiplication (also known as the Hadamard product or dot 
matrix product) and similarly the division (/) is also element-wise. This method, provides estimates for the re- 
gression coefficient 1 2, , , pβ β β

, and in order for the intercept, β0, to be calculated, one would need to use the 
estimated 1 2, , , pβ β β

 along with the mean values of the variables. Finally, we should mention that the method  
as described did not provide an estimate for the variance of the coefficients. Thus, construction of confidence 
intervals and assessment of the statistical significance of the covariates could not be carried out. In a latter work, 
Zhou and coworkers [13] developed a different method. First, they took expectations on both sides of Equation 
(1) conditioning on xi: 
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( ) ( ) ( )0 1 1| | |i i i p p iE y x x E x x x x E x x xβ β β β= = + = + + + + =                (7) 

Then, by combining Equation (2), Equation (3) and Equation (7), they obtained the following result: 

( ) ( )0 1 0 1 0 0 1 1 1i i ij k ip ij i p ipa a x xβ β γ β γ β γ β β γ+ = + + + + + + + +                 (8) 

Using now Equation (8), they obtained a system of p equations for the p unknown parameters, which are the p 
elements of β , 1 2, , , pβ β β

, that can be easily solved and p equations for the intercept β0, which however  
they proved that lead to a unique solution. The authors described also a method for calculating the vari-
ance-covariance matrix of the estimated coefficients using the multivariate delta method, utilizing the estimated 
variance-covariance matrix of the individual regression models (Equation (2) and Equation (3)). 

The method is very interesting in that it does not assume normality of the covariates in order to estimate the 
parameters and thus it is expected to be more robust in case of non-normally distributed variables (but assumes 
the normality of the estimated parameters in order to use the delta method). On the other hand, the method is 
quite difficult to be implemented for an arbitrary number of covariates. The system of equations arising from 
Equation (8) should be solved explicitly and the solution will be more difficult as the number of covariates in-
creases (the authors provided explicit solutions for p = 2 and p = 3). The major difficulty however, lies in the 
calculation of the covariance matrix with the delta method. The difficulty is particularly evident if we consider that 
the βi’s are highly non-linear functions of the αi’s and γi’s and thus the partial derivatives require explicit calcula-
tions, which are different for different p and can be done only using software that perform symbolic calculations. 

2.2. Meta-Analysis of Regression Coefficients 
In the meta-analysis of regression coefficients, the problem is different. Here, we have a set 1 2, , ,s s psβ β β

 of  
p regression coefficients arising from k studies ( 1,2, ,s k= 

) and we want to combine them in order to obtain 
the overall mean β . Thus, it is a special case of multivariate random-effects meta-analysis [4] [5]; we denote  

( )1 2, , ,s s s psβ β β= β  and usually assume that sβ  is distributed following a multivariate normal distribution 
around the true means β , according to the marginal model: 

( )~ ,s sMVN +Cβ β Ω                                 (9) 

In the above model, we denote by sC  the within-studies covariance matrix: 
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                      (10) 

and by Ω the between-studies covariance matrix, given by: 
2
0 10 0 1 0 0

2
10 0 1 1 1 1

2
0 0 1 1

B Bp p

B Bp p

Bp p Bp p p

τ ρ τ τ ρ τ τ
ρ τ τ τ ρ τ τ

ρ τ τ ρ τ τ τ

 
 
 =  
 
  





   



Ω                         (11) 

This is the classic model of multivariate meta-analysis used in several applications [4] [5] [18]. For fitting this 
model, there are several alternatives, such as Maximum Likelihood (ML), Restricted Maximum Likelihood 
(REML) or the multivariate method of moments (MM), all of which however require that the diagonal elements 
of Cs. These are the study-specific estimates of the variance that are assumed known, whereas the off-diagonal 
elements correspond to the pairwise within-studies covariances, thus for , 0,1, ,i j p= 

 we have: 

( )cov ,wij is js is jss sρ β β=                                (12) 

On the other hand, the between studies covariance matrix is estimated from the data. Of course, in model of 
Equation (9) we could also use *β  and include the intercept as well. However, this will rarely be needed in 



P. G. Bagos, M. Adam 
 

 
684 

practical applications where the interest lies in the estimation of covariate effects. 
The major problem in this method, is, as Becker and Wu point out that “in practice, the covariance matrix 

among the slopes in primary studies is rarely reported (though matrices of correlations among predictors are 
sometimes reported)” [3]. Usually, ignoring or approximating the within studies covariance matrix produce re-
liable estimates for the fixed effects parameters but biased estimates for the variance [19] [20]. Thus, ideally one 
would want to include reliable estimates for the within studies covariances in order to gain the maximum from 
the multivariate meta-analysis. Currently, since the majority of studies do not report the covariance matrices, a 
literature-based (i.e. without having access to individual data) meta-analysis would be forced to assume zero 
correlations between the regression coefficients, limiting this way the efficiency of the method. An alternative, 
would be to use the model of Riley and coworkers, which, being no-hierarchical, maintains the individual 
weighting of each study in the analysis but includes only one overall correlation parameter, removing this way 
the need to know the within-study correlations [21]. For other effect sizes, such as the odds ratio, the relative 
risk and so on, recent studies have shown that under certain conditions, the correlation can be estimated using 
only the pairwise correlations of the variables involved [22] [23]. Thus, a similar approach can be followed here 
concerning the regression coefficients. 

2.3. The General Method 
We will begin with the multivariate normal model. This is one of the two main approaches for formulating a re-
gression problem (the other one is the approach that assumes that the independent variables are fixed by design). 
Even though the two approaches are conceptually very different, it is well known that concerning the estimation 
of the regression parameters (coefficients and their variance), they yield exactly the same results. Consider we  
have p + 1 variables, y and 1 2, , , px x x

 that are distributed according to a multivariate normal distribution. The 
traditional linear regression, models the expectation of y given 1 2, , , px x x

 as a linear combination of the covari-

ates 1 2, , , px x x
 according to Equation (1). If we denote by ( )1 2, , , , py x x x=Y  , ( )1 2, , , , py x x x= µ  and 

by Σ the ( ) ( )1 1p p+ × +  variance-covariance matrix: 

1 2

1 1 2 1 1
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s s s s
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 
 
 

=  
 
 
 
 







    



Σ                            (13) 

then we will have ( )~ ,MVNY µ Σ  and a well-known result from multivariate statistics allows the arbitrary 
partitioning of Σ in order to obtain: 

1 11 12

2 21 22

~ ,MVN
    
    
    

Y
µ
µ

Σ Σ
Σ Σ

                             (14) 

In this case, the partial vectors are once again multivariate normal with ( )1 1 11~ ,MVNY µ Σ ,  
( )2 2 22~ ,MVNY µ Σ  with Σ11, Σ12, Σ21, and Σ22 being the partial covariance matrices. Then, the conditional dis-

tribution of Y1 given Y2 (i.e. the regression of Y2 on Y1) is given by: 

( )( )1 1
1 2 2 1 12 22 2 2 11 12 22 21| ~ ,MVN − −= + − −Y Y y yµ µΣ Σ Σ Σ Σ Σ                  (15) 

If we partition Σ in order to obtain Equation (1), then the partial covariance matrices would be: 

1 2 1 1 1

21 2 2 2
1 2

1 2

2

2

12 22 21

2

, ,

p

p
p

pp p p

x x x x x yx
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   
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
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
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

Σ Σ Σ            (16) 

whereas, Y1 would be a univariate normal ( )2~ , yy N y s . Then, the regression coefficients of Equation (1), with 
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the exception of the intercept, will be given by: 
1

22 21
−=β Σ Σ                                      (17) 

The intercept is given simply as a function of the p regression coefficients and the mean vectors of y and xi’s: 

0
1

p

i i
i

y xβ β
=

= −∑  

The covariance matrix of the coefficients in Equation (1) including the intercept is given by: 

( ) ( ) 1* 2 Tcov σ
−

= X Xβ                                 (18) 

where X  denotes the n p×  design matrix of the independent variables, TX  the transpose matrix of X  
and 2 1 2

11 12 22 21 12ysσ −= − = − βΣ Σ Σ Σ Σ . Notice that T 1
12 22

−=β Σ Σ , since 22Σ  is a symmetric matrix and  
T

12 21=Σ Σ . An alternative estimate for ( )cov β  in terms of the centralised design matrix cX , is discussed in 
Appendix C. 

In Appendix A, we show that the estimated regression coefficients by this method are identical to the ones 
obtained by Samsa and coworkers [12]. In other words, we show that: 

( )1
1

22 21
x
−

−=
R A S

S


Σ Σ                                  (19) 

It is obvious that the estimate proposed by Samsa and coworkers [12] is just a re-parameterization of a 
well-known result and produces identical estimates.  

Another commonly used formula, can be derive the estimation of the standardised regression coefficients ib , 
for each 1,2, ,i p= 

, using the correlation matrices xR  of Equation (4) and  
T

1 2xy yx y y p yr r r = =  R R  , where i yr  are the Pearson’s correlation coefficient between ix  and y. Then, 
the matrix b  of standardised regression coefficients can be obtained by:  

1
x yx
−=b R R                                       (20) 

The standardised regression coefficients ib  can be transformed to unstandardised regression coefficients iβ  
using 

ii i y xb s sβ = , or in matrix form 
1

y xs −= V bβ                                      (21) 

where xV  denotes the p p×  diagonal matrix such that ( )1 2
diag , , ,

px x x xs s s=V  . In Appendix B, we show  

that the coefficients obtained with Equation (20) and Equation (21), are identical to the ones obtained with the 
use of Equation (6) and Equation (17). That is, we show that: 

1 1 1
22 21y x x yxs − − −=V R R Σ Σ                                  (22) 

Thus, it is clear that the three methods described above are equivalent and yield identical estimates 

( )1
1 1 1

22 21
x

y x x yxs
−

− − −= = =
R A S

V R R
S


β Σ Σ                          (23) 

2.4. Variance-Covariance Matrix 
If we want to obtain the variance of the estimated coefficients, we need to turn to Equation (18), which requires 
explicit knowledge of the n p×  design matrix X  and the cross-product matrix:  

1
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1 1 1T
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p p p

n x x
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 
 
 =  
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∑ ∑
∑ ∑ ∑

∑ ∑ ∑

X X





   



                          (24) 

In synthesis analysis as well as in meta-analysis, one usually does not have access to n × p individual data X , 
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and thus, we have to find a method to estimate the variance with information obtained from the published re-
ports. As we already discussed, Samsa and coworkers [12] did not provide an estimate for the covariance matrix, 
whereas Zhou and coworkers [13] provided a difficult to obtain estimate, using the delta method. However, the 
variance of a regression coefficient (let’s say βi) can be obtained relatively easily from summary statistics and it 
can be shown to be equal to: 

( )
( )

2

2 2

1var
1 1

i

i
x in s R

σβ =
− −

                               (25) 

The formula in Equation (25) can be found in many textbooks with the proof traced back in earlier versions of 
Green’s Econometrics Analysis [24]; another elegant proof can be found in [25]. Here, 2

iR  is the squared mul-
tiple correlation that relates xi with the rest of the independent variables, whereas σ2 is the total variance of the  
regression. The term ( )21 1 iR−  is usually named “variance inflation factor”. In many applications, we may  

conveniently assume that the total variance remains the same if we add xi in the model, so we may write the 
variance of the regression coefficient in the full model as a function of the variance of the coefficient in the uni-
variate model of Equation (2): 

( ) ( )1 2

1var var
1i i

i

a
R

β ≈
−

                                (26) 

Clearly, in most of the situations this is an upper bound [25] [26] that leads to conservative estimates but it 
may be useful in many practical applications. In order to evaluate Equation (25), we need to calculate 2

iR  and 
σ2. As we already said, σ2 can be obtained from: 

2 1 2
11 12 22 21 12ysσ −= − = − βΣ Σ Σ Σ Σ                              (27) 

We need to remind however, that since this quantity is usually estimated, in real applications we need to ad-
just it (see [27] pp 405) in order to obtain the unbiased estimator: 

( )2 2
12

1 ˆˆˆ ˆ
1 y

n s
n p

σ −
= −

− −
βΣ                                (28) 

On the other hand, an easy way (among others) to obtain 2
iR  is using: 

2 1 1i iiR υ= −                                     (29) 

where υii is the i-th diagonal element of 1
x
−R . 

The main result of this work is to provide a closed-form expression for the covariance, that does not include 
X . In Appendix C we show that the covariance is given by: 

( ) ( ) ( ) ( )

2
;12

2 2
cov ,

1 1 1i j

ij pij
i j

x x i j

rr
n s R R

σ
β β = − ⋅

− − −

                        (30) 

where ;12ij pr


 is the ij-partial correlation of xi with xj-controlling for the remaining variables. For i j≠ , the 
ij-partial correlation coefficient is defined [28] as: 

( )
( )

( ) ( )
1

;12

det
1
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xi j ij
ij p

x xii jj

r + += −
R

R R
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                          (31) 

with ( )x ij
R  being the submatrix that is obtained by deleting the i-th row and j-th column of the correlation ma- 

trix xR  in Equation (4). Moreover, for i j=  the already known from Equation (25) variance of iβ  is recov-
ered as follows: 

( )
( ) ( )

( )
( )

22

22 2

det
var

1 det1 1 ii

x ii
i

x xx i n sn s R

σσβ = =
−− −

R
R

                       (32) 
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Interestingly, the correlation between the coefficients will simply be given by: 

( ) ( )
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( ) ( ) ( ) ( )

2
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;1232 2

2 2 2 2

1 1 1cov ,
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      (33) 

Thus, another useful relation can be obtained if we consider the p p×  diagonal matrix Vβ  such that 

( ) ( ) ( )( )1 2diag var , var , , var pβ β β=V β , then, it is obvious that  

( )cov pβ β= −V P Vβ                                   (34) 

where Pp is the p × p matrix of ij-partial correlations ;123ij pr


. The variance of the intercept (β0) can be obtained 
by using the properties of the covariance function, some well known results from linear regression and Equation 
(25), Equation (30): 
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Similarly, we may obtain the covariance of 0β  with iβ :  
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       (36) 

At this point we should note that Equation (33) was also mentioned by Becker and Wu, and was attributed to 
[29]. However, the formula was given there only as an unsolved problem for the regression with two independ-
ent variables. Most probably, Becker and Wu (since they were aware of the formula), overlooked the fact that 
the partial correlation coefficient can be calculated from the pairwise correlations, using simple matrix manipu-
lations. To the best of the authors’ knowledge, Equation (30) and its derivation is novel, since it cannot be found 
or mentioned in any of the traditional books of linear regression or multivariate analysis [24] [27] [29]-[33].  
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3. Results and Discussion 
As an illustrative example for both meta-analysis and synthesis analysis, we used a publicly available dataset 
concerning Diabetes in Pima Indians. The dataset has been created from a larger dataset and it was obtained 
from the UCI Machine Learning Repository [34] (http://archive.ics.uci.edu/ml/datasets/Pima+Indians+Diabetes). 
The dataset has been used in the past in several applications for constructing prediction models for diabetes [35]. 
Here, we chose to use plasma glucose concentration at 2 hours in an oral glucose tolerance test as the dependent 
variable. For predictors, we used the diastolic blood pressure (mm Hg), the triceps skin fold thickness (mm), the 
2-hour serum insulin (mu U/ml), the body mass index (weight in kg/(height in m)^2) and the age (years). The 
code provided in Appendix D, makes clear that the method, using only the summary statistics, produces identi-
cal estimates with the standard linear regression analysis on the original data. 

Afterwards, we used the same dataset in order to create an “artificial” meta-analysis dataset. We randomly 
split the dataset in 10 subsets (which we treat as “studies”) of approximate the same number of participants 
(from 55 to 86). For each dataset, we performed the same calculation and estimated the same model for predict-
ing plasma glucose concentration. The estimates for the regression coefficients and their standard errors in each 
subset are listed in Table 1. Then, we applied the various alternative methods in a meta-analysis of these 10 
“studies”, in order to investigate the effect of the different within-studies covariance matrix. 

Firstly, we used the actual within studies covariance matrix obtained from each dataset, which is the ideal but 
not easily tenable situation. Secondly, we assumed a zero within studies correlation (that is, we used only the 
variances of the regression coefficients). Thirdly, we applied the alternative method of Riley and coworkers [21] 
that does not differentiate between and within studies variation (and thus, it requires as input only the variances). 
And last, we applied the proposed method by assuming a realistic scenario, in which the variances of the regres-
sion coefficients are known, but the covariances are not, and thus they are imputed. For all analyses we used the 
mvmeta command in Stata with the REML option [36]. 

By observing the pooled correlation matrix between the independent variables (measured in the combined 
dataset of 768 individuals), which was found to be equal to: 

 
Table 1. The estimates of the regression coefficients and their standard errors, after randomly splitting the dataset in 10 sub-
sets (which we treat as “studies”). For each dataset, we performed the same calculation and estimated the same model for 
predicting plasma glucose concentration. The regression coefficients for each subset (s) correspond to diastolic blood pres-
sure (β1), triceps skin fold thickness (β2), 2-hour serum insulin (β3), body mass index (β4) and age (β5). 

Subset (s) β1 (se) β2 (se) β3 (se) β4 (se) β5 (se) 

1 -0.237540 
(0.155266) 

0.294668 
(0.203763) 

0.075400 
(0.027186) 

1.413119 
(0.425623) 

1.355647 
(0.272464) 

2 0.134445 
(0.178934) 

-0.433280 
(0.263380) 

0.092133 
(0.033765) 

0.599211 
(0.583968) 

0.135907 
(0.315666) 

3 0.396087 
(0.244395) 

-0.322338 
(0.239103) 

0.104948 
(0.035626) 

0.749045 
(0.474633) 

0.607717 
(0.280881) 

4 -0.141942 
(0.171337) 

-0.374355 
(0.255028) 

0.088818 
(0.027895) 

0.512126 
(0.470001) 

0.365304 
(0.313291) 

5 0.231959 
(0.172719) 

-0.809532 
(0.294184) 

0.140998 
(0.030239) 

0.839502 
(0.372703) 

0.752730 
(0.294915) 

6 0.380172 
(0.259082) 

-0.490878 
(0.305990) 

0.140110 
(0.042981) 

1.059191 
(0.757432) 

0.888866 
(0.327070) 

7 0.025551 
(0.171274) 

-0.135562 
(0.219706) 

0.092265 
(0.027909) 

1.023281 
(0.437914) 

0.631428 
(0.280542) 

8 0.196530 
(0.184080) 

-0.601285 
(0.239300) 

0.135118 
(0.044037) 

0.140686 
(0.523497) 

0.393298 
(0.287358) 

9 0.032224 
(0.171682) 

-0.012856 
(0.231807) 

0.084996 
(0.023875) 

0.813722 
(0.384107) 

0.795865 
(0.232311) 

10 0.184698 
(0.178312) 

-1.070692 
(0.287361) 

0.179045 
(0.034929) 

0.886349 
(0.398575) 

0.577111 
(0.302879) 

http://archive.ics.uci.edu/ml/datasets/Pima+Indians+Diabetes
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0.207371 0.088933 0.281805 0.239528
0.207371 0.436783 0.392573 0.113970
0.088933 0.436783 0.197859 0.042160
0.281805 0.392573 0.197859 0.036242
0.239528 0.113970 0.042160 0.036242

1
1

1
1

1

x

 
 
 
 =
 
 
  

−
−

− −

R

 
constructed a “working” or “imputed” correlation matrix, equal to: 

1 0.5 0 0.5 0.25
0.5 1 0.5 0.5 0

ˆ 0 0.5 1 0.25 0
0.5 0.5 0.25 1 0
0.25 0 0 0 1

x

 
 
 
 =
 
 
  

R  

This matrix is very simplified, in the sense that large correlations were rounded to 0.25 or 0.5, whereas the 
smaller ones (which are also the statistically non-significant), were set to zero. In real life applications, such a 
matrix could have been observed, for instance, in one or more of the included studies, or alternatively, it could 
have been compiled by collecting pairwise correlations concerning the variables at hand from the literature. Of 
course, in many applications the obtained matrix would be closer to the actual one, but we deliberately used 
such a crude approximation in order to simulate a condition in which only vague prior knowledge is available 
(that is, that two variables are positively correlated or not). 

The results of this sensitivity analysis are listed in Table 2. In the table, we also list the results of the regres-
sion on the pooled dataset. For reasons of completeness, we also present the results obtained by the so-called 
meta-analysis of Individual Patients Data (IPD), in which we perform a stratified (by “study”) regression analy-
sis with a linear mixed model with random coefficients for the independent variables [37]. 

Even though the interpretation of the results did not change in nearly all analyses, some useful conclusions 
can be drawn. First of all, four out of the five variables have large and significant effects on glucose (triceps skin 
fold thickness, insulin, BMI and age) whereas DBP show a negligible (non-significant) association. Most of the 
methods corroborate to thus, with the exception of the method of Riley which produces a marginally not-significant 
association for triceps skin fold thickness as well. As expected, the summary meta-analysis using the actual cor-
relation matrix and the meta-analysis using IPD, yield similar even though not identical estimates. Concerning 

 
Table 2. The estimates for the meta-analysis on k = 10 artificially generated “studies”, obtained using the different methods. 
The regression coefficients for each subset (s) correspond to diastolic blood pressure (β1), triceps skin fold thickness (β2), 
2-hour serum insulin (β3), body mass index (β4) and age (β5). For the explanation of the methods, see the main text. 

method β1 (se) β2 (se) β3 (se) β4 (se) β5 (se) 

Ordinary linear regression on the 
pooled dataset (n = 768 subjects) 

0.067157 
(0.057144) 

−0.319836 
(0.077137) 

0.102682 
(0.009834) 

0.771217 
(0.144281) 

0.664185 
(0.090638) 

Meta-analysis (k = 10 studies), using 
the actual variance-covariance matrix 

0.077151 
(0.066722) 

−0.377597 
(0.1288864) 

0.108197 
(0.012404) 

0.818003 
(0.156274) 

0.657785 
(0.118143) 

Meta-analysis (k = 10 studies), using 
the actual variance estimates and 

assuming zero correlation 

0.089251 
(0.071367) 

−0.374107 
(0.131523) 

0.110964 
(0.012804) 

0.819255 
(0.156134) 

0.657269 
(0.114043) 

Meta-analysis (k = 10 studies), using 
the actual variance estimates and the 

alternative model of Riley 

0.024612 
(0.055657) 

−0.206025 
(0.107372) 

0.095521 
(0.007975) 

0.880839 
(0.155768) 

0.718012 
(0.141181) 

Meta-analysis (k = 10 studies), using 
the actual variance estimates and 
assuming a plausible correlation 

0.071282 
(0.065038) 

−0.346298 
(0.124092) 

0.107940 
(0.011789) 

0.826325 
(0.160682) 

0.667961 
(0.121064) 

Meta-analysis (k = 10 studies), using a 
random coefficient model and 
Individual Patients Data (IPD) 

0.078416 
(0.064406) 

−0.365146 
(0.103916) 

0.105337 
(0.010688) 

0.801249 
(0.142996) 

0.631803 
(0.098856) 
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the other three approaches for summary data meta-analysis, the method that we proposed here, using the “work-
ing” correlation matrix, produces the results that resemble closely the ones obtained by using the actual correla-
tion matrix of each “study”. This is true for both the regression estimates and their standard errors. The naive 
method of assuming zero correlation and the method of Riley, produced slightly biased estimates and standard 
errors, which especially in the case of Riley’s method yield a non-significant effect for one of the variables (tri-
ceps skin fold thickness). This can be explained, since the regression estimates for triceps skin fold thickness β2 
had the largest variability between studies and given that the method of Riley cannot differentiate the sources of 
variability, inflates this way the overall estimate of the variance of the particular coefficient. The dataset and the 
source code are given at http://www.compgen.org/tools/regression. 

The source code that we provide, presents an easily applied and fast method for calculating the covariance 
matrix of the regression coefficients given the correlation matrix of the explanatory variables. We applied this 
method in two important problems, namely in the meta-analysis of regression coefficients and in synthesis 
analysis, with very encouraging results. Since the expression is mathematically equivalent to the already known 
expressions, when the correlations are the actual correlations of the sample the results are identical. However, 
even in the case where the actual correlations are not known from the sample, these can be imputed using data 
from the literature. In this case, as one would expect, the method is very robust to modest deviations from the 
actual values. Our results, build upon the earlier works of Riley and coworkers and Wu and Becker, and demon-
strate the usefulness of the method. Thus, we knew that by ignoring the within studies correlation may result in 
biased estimates for the variance of the effect size, and that the alternative model may be useful in several cir-
cumstances. Now, we have an ever better approximation that can be used in order to obtain better results. The 
idea of calculating the correlation of estimates using the pairwise correlation of the variablesinvolved, has al-
ready being presented in a general meta-analysis setting [22] [23], and thus, we expect that this method can be 
useful both to meta-analysis of regression coefficients and to synthesis analysis. 

When we reconstruct the correlation matrix using data from the literature, two things need to be addressed. 
First, we may encounter the problem of a non-positive definite covariance matrix [38]. The chance of this hap-
pening increases with the number of variables included and with increasing correlations among them. When two 
variables are highly correlated (correlation > 0.99), a simple solution would be to exclude one of them from the 
model. In all other cases, in order to overcome the problem, the most reasonable solution would be to transform 
the non-positive definite covariance matrix into positive definite. For this, we can use a simple heuristic consist-
ing of adding the negative of the smallest eigenvalue (which will be negative) plus a small constant (10−7) to the 
diagonal elements of the covariance matrix, or some other among the correction techniques proposed in the lite-
rature [38]-[40]. The second thing to remind, is that when we have multiple sources of evidence concerning a 
particular correlation, or for the whole correlation matrix, then, the obvious solution would be to pool them us-
ing appropriate meta-analysis methods. Methods for pooling correlation coefficients are known for years, but it 
will be advantageous, when possible, to pool the whole correlation matrix using a multivariate technique that 
properly takes their own covariances into account [41]-[44]. 

4. Conclusions 
In this work, we derive an analytical expression for the covariance matrix of the regression coefficients in a 
multiple linear regression model. In contrast to the well-known expressions which make use of the cross-product 
matrix XTX, we express the covariance matrix of the regression coefficients directly in terms of covariance ma-
trix of the explanatory variables. This is very important since the covariance matrix of the explanatory variables 
can be easily obtained or imputed using data from the literature, without requiring access to individual data. In 
particular, we show that the covariance matrix of the regression coefficients can be calculated using the matrix 
of the partial correlation coefficients of the explanatory variables, which in turn can be calculated easily from 
the correlation matrix of the explanatory variables. 

The estimate proposed in this work can be useful in several applications. As we already noted, meta-analysis 
of regression coefficients is increasingly being used in several applications both in the biological [6] [7] [45] as 
well as in the social sciences [8]-[11]. Thus, the estimate proposed here, coupled with the advances in multiva-
riate meta-analysis software, can facilitate further the use of the method. Some other, more advanced techniques 
have also been proposed for synthesizing regression coefficients, especially when the studies are included in the 
meta-analysis evaluate different set of explanatory variables [46] [47]. However, these techniques require spe-

http://www.compgen.org/tools/regression
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cialised software or user-written code, whereas the traditional approach mentioned here can be fitted using stan-
dard software for multivariate meta-analysis. Finally, the influence of the omitted variables (i.e. the variables 
that are not measured in some of the included studies), can be evaluated and adjusted for using multivariate 
meta-regression, simply by adding an indicator variable for each of the omitted covariates. We believe that such 
an approach will be efficient and easily used. 

The method proposed here, can also greatly increase the usability of the standard synthesis analysis method. 
For instance, such methods can be used for constructing multivariate prognostic models using the univariate as-
sociations. Of particular importance is the ability to incorporate published univariable associations in diagnostic 
and prognostic models [14], or the ability to adjust the results of an individual data analysis, for another recently 
discovered factor, using estimates from the literature [14] [48]. 

Other potential applications can be found in the social sciences, where statistical methods for comparing re-
gression coefficients between models [49] are needed, especially in the study of mediation models, such as in 
the case of psychology [50]. Moreover, as we showed in the manuscript, the method is already available for use 
also with the standardized regression coefficients (b). Even though the use of standardized regression coeffi-
cients in epidemiology has been the subject of debate [9] [51] [52], they are routinely used in the social sciences 
[53] and they become popular in genetics with genome-wide association studies [54]-[56]. Thus, we believe that 
the method can be useful also in this respect. 

The assumptions, on which the method is based, need also to be discussed. For the derivation we assume that 
the dependent and the independent variables are jointly multivariate normally distributed. This is one of the two 
main approaches for formulating a regression problem (the other is the approach that assumes that the inde-
pendent variables are fixed by design). Even though the two approaches are conceptually very different, it is 
well known that concerning the estimation of the regression parameters (the coefficients and their variance), 
they yield exactly the same results. The assumption of multivariate normality is more stringent, but it yields an 
optimal predictor among all choices, rather than merely among linear predictors. Practically, since the estimators 
are identical, this means that we can use the expressions derived here, even in the case of binary independent 
variables and in any case the results are identical with the ones produced by any standard linear regression soft-
ware. We need to mention at this point that the method is developed in [13], which as the authors claimed does 
not make the assumption of normality, yields estimates for the regression coefficients that differ from the ones 
produced by standard regression packages. 

When it comes to binary dependent variables however, the situation is more complicated. The method can al-
so be used, after appropriate transformations, for estimating the parameters of such models (i.e. logistic regres-
sion). Several similar methods have been proposed in the literature [57] [58], but they are all based on the me-
thod of Cornfield [59], which is approximate and produces biased estimates [60]-[62]. This fact, along with 
some other fundamental differences between the linear model and the logistic regression model [63] [64], rings 
the bell for the use of such methods, and makes imperative the need for new accurate methods for binary data. 

Acknowledgements 
This work is part of the project “IntDaMuS: Integration of Data from Multiple Sources” which is implemented 
under the “ARISTEIA ΙΙ”. Action of the “OPERATIONAL PROGRAMME EDUCATION AND LIFELONG 
LEARNING” and is co-funded by the European Social Fund (ESF) and National Resources. 

References 
[1] Platt, R.W. (1998) ANOVA, t Tests, and Linear Regression. Injury Prevention, 4, 52-53. 

http://dx.doi.org/10.1136/ip.4.1.52 
[2] Vickers, A.J. (2005) Analysis of Variance Is Easily Misapplied in the Analysis of Randomized Trials: A Critique and 

Discussion of Alternative Statistical Approaches. Psychosomatic Medicine, 67, 652-655. 
http://dx.doi.org/10.1097/01.psy.0000172624.52957.a8 

[3] Becker, B.J. and Wu, M.J. (2007) The Synthesis of Regression Slopes in Meta-Analysis. Statistical Science, 22, 414- 
429. http://dx.doi.org/10.1214/07-STS243 

[4] Mavridis, D. and Salanti, G. (2013) A Practical Introduction to Multivariate Meta-Analysis. Statistical Methods in 
Medical Research, 22, 133-158. http://dx.doi.org/10.1177/0962280211432219 

[5] van Houwelingen, H.C., Arends, L.R. and Stijnen, T. (2002) Advanced Methods in Meta-Analysis: Multivariate Ap-

http://dx.doi.org/10.1136/ip.4.1.52
http://dx.doi.org/10.1097/01.psy.0000172624.52957.a8
http://dx.doi.org/10.1214/07-STS243
http://dx.doi.org/10.1177/0962280211432219


P. G. Bagos, M. Adam 
 

 
692 

proach and Meta-Regression. Statistics in Medicine, 21, 589-624. http://dx.doi.org/10.1002/sim.1040 
[6] Manning, A.K., LaValley, M., Liu, C.T., Rice, K., An, P., Liu, Y., Miljkovic, I., Rasmussen-Torvik, L., Harris, T.B., 

Province, M.A., Borecki, I.B., Florez, J.C., Meigs, J.B., Cupples, L.A. and Dupuis, J. (2011) Meta-Analysis of Gene- 
Environment Interaction: Joint Estimation of SNP and SNP x Environment Regression Coefficients. Genetic Epidemi-
ology, 35, 11-18. http://dx.doi.org/10.1002/gepi.20546 

[7] Paul, P.A., Lipps, P.E. and Madden, L.V. (2006) Meta-Analysis of Regression Coefficients for the Relationship be-
tween Fusarium Head Blight and Deoxynivalenol Content of Wheat. Phytopathology, 96, 951-961. 
http://dx.doi.org/10.1094/PHYTO-96-0951 

[8] Rose, A.K. and Stanley, T.D. (2005) A Meta-Analysis of the Effect of Common Currencies on International Trade. 
Journal of Economic Surveys, 19, 347-365. http://dx.doi.org/10.1111/j.0950-0804.2005.00251.x 

[9] Peterson, R.A. and Brown, S.P. (2005) On the Use of Beta Coefficients in Meta-Analysis. Journal of Applied Psy-
chology, 90, 175-181. http://dx.doi.org/10.1037/0021-9010.90.1.175 

[10] Crouch, G.I. (1995) A Meta-Analysis of Tourism Demand. Annals of Tourism Research, 22, 103-118. 
http://dx.doi.org/10.1016/0160-7383(94)00054-V 

[11] Aloe, A.M. and Becker, B.J. (2011) Advances in Combining Regression Results in Meta-Analysis. In: Williams, M. 
and Vogt, W.P., Eds., The SAGE Handbook of Innovation in Social Research Methods, SAGE, London, 331-352. 
http://dx.doi.org/10.4135/9781446268261.n20 

[12] Samsa, G., Hu, G. and Root, M. (2005) Combining Information from Multiple Data Sources to Create Multivariable 
Risk Models: Illustration and Preliminary Assessment of a New Method. Journal of Biomedicine and Biotechnology, 
2005, 113-123. http://dx.doi.org/10.1155/JBB.2005.113 

[13] Zhou, X.H., Hu, N., Hu, G. and Root, M. (2009) Synthesis Analysis of Regression Models with a Continuous Outcome. 
Statistics in Medicine, 28, 1620-1635. http://dx.doi.org/10.1002/sim.3563 

[14] Debray, T.P., Koffijberg, H., Lu, D., Vergouwe, Y., Steyerberg, E.W. and Moons, K.G. (2012) Incorporating Published 
Univariable Associations in Diagnostic and Prognostic Modeling. BMC Medical Research Methodology, 12, 121. 
http://dx.doi.org/10.1186/1471-2288-12-121 

[15] Noble, D., Mathur, R., Dent, T., Meads, C. and Greenhalgh, T. (2011) Risk Models and Scores for Type 2 Diabetes: 
Systematic Review. BMJ, 343, d7163. http://dx.doi.org/10.1136/bmj.d7163 

[16] Moons, K.G., Kengne, A.P., Grobbee, D.E., Royston, P., Vergouwe, Y., Altman, D.G. and Woodward, M. (2012) Risk 
Prediction Models: II. External Validation, Model Updating, and Impact Assessment. Heart, 98, 691-698. 
http://dx.doi.org/10.1136/heartjnl-2011-301247 

[17] van Dieren, S., Beulens, J.W., Kengne, A.P., Peelen, L.M., Rutten, G.E., Woodward, M., van der Schouw, Y.T. and 
Moons, K.G. (2012) Prediction Models for the Risk of Cardiovascular Disease in Patients with Type 2 Diabetes: A 
Systematic Review. Heart, 98, 360-369. http://dx.doi.org/10.1136/heartjnl-2011-300734 

[18] Jackson, D., Riley, R. and White, I.R. (2011) Multivariate Meta-Analysis: Potential and Promise. Statistics in Medicine, 
30, 2481-2498. http://dx.doi.org/10.1002/sim.4172 

[19] Riley, R.D., Abrams, K.R., Lambert, P.C., Sutton, A.J. and Thompson, J.R. (2007) An Evaluation of Bivariate Ran-
dom-Effects Meta-Analysis for the Joint Synthesis of Two Correlated Outcomes. Statistics in Medicine, 26, 78-97. 
http://dx.doi.org/10.1002/sim.2524 

[20] Riley, R.D., Abrams, K.R., Sutton, A.J., Lambert, P.C. and Thompson, J.R. (2007) Bivariate Random-Effects Meta- 
Analysis and the Estimation of Between-Study Correlation. BMC Medical Research Methodology, 7, 3. 
http://dx.doi.org/10.1186/1471-2288-7-3 

[21] Riley, R.D., Thompson, J.R. and Abrams, K.R. (2008) An Alternative Model for Bivariate Random-Effects Meta- 
Analysis When the Within-Study Correlations Are Unknown. Biostatistics, 9, 172-186. 
http://dx.doi.org/10.1093/biostatistics/kxm023 

[22] Bagos, P.G. (2012) On the Covariance of Two Correlated Log-Odds Ratios. Statistics in Medicine, 31, 1418-1431. 
http://dx.doi.org/10.1002/sim.4474 

[23] Wei, Y. and Higgins, J.P. (2013) Estimating Within-Study Covariances in Multivariate Meta-Analysis with Multiple 
Outcomes. Statistics in Medicine, 32, 1191-1205. 

[24] Green, W. (2008) Econometric Analysis. 6th Edition, Prentice Hall, Englewood Cliffs. 
[25] Hsieh, F.Y., Bloch, D.A. and Larsen, M.D. (1998) A Simple Method of Sample Size Calculation for Linear and Logis-

tic Regression. Statistics in Medicine, 17, 1623-1634. 
http://dx.doi.org/10.1002/(SICI)1097-0258(19980730)17:14<1623::AID-SIM871>3.0.CO;2-S 

[26] O’Brien, R. (2007) A Caution regarding Rules of Thumb for Variance Inflation Factors. Quality & Quantity, 41, 673- 
690. http://dx.doi.org/10.1007/s11135-006-9018-6 

http://dx.doi.org/10.1002/sim.1040
http://dx.doi.org/10.1002/gepi.20546
http://dx.doi.org/10.1094/PHYTO-96-0951
http://dx.doi.org/10.1111/j.0950-0804.2005.00251.x
http://dx.doi.org/10.1037/0021-9010.90.1.175
http://dx.doi.org/10.1016/0160-7383(94)00054-V
http://dx.doi.org/10.4135/9781446268261.n20
http://dx.doi.org/10.1155/JBB.2005.113
http://dx.doi.org/10.1002/sim.3563
http://dx.doi.org/10.1186/1471-2288-12-121
http://dx.doi.org/10.1136/bmj.d7163
http://dx.doi.org/10.1136/heartjnl-2011-301247
http://dx.doi.org/10.1136/heartjnl-2011-300734
http://dx.doi.org/10.1002/sim.4172
http://dx.doi.org/10.1002/sim.2524
http://dx.doi.org/10.1186/1471-2288-7-3
http://dx.doi.org/10.1093/biostatistics/kxm023
http://dx.doi.org/10.1002/sim.4474
http://dx.doi.org/10.1002/(SICI)1097-0258(19980730)17:14%3c1623::AID-SIM871%3e3.0.CO;2-S
http://dx.doi.org/10.1007/s11135-006-9018-6


P. G. Bagos, M. Adam 
 

 
693 

[27] Johnson, R.A. and Wichern, D.W. (2007) Applied Multivariate Statistical Analysis. 6th Edition, Pearson Prentice Hall, 
Upper Saddle River. 

[28] Dwyer, P.S. (1940) The Evaluation of Multiple and Partial Correlation Coefficients from the Factorial Matrix. Psy-
chometrika, 5, 211-232. http://dx.doi.org/10.1007/BF02288567 

[29] Stapleton, J.H. (1995) Linear Statistical Models. John Wiley & Sons, Inc., Hoboken. 
http://dx.doi.org/10.1002/9780470316924 

[30] Rencher, A.C. (1995) Methods of Multivariate Analysis. John Wiley & Sons, Inc., New York. 
[31] Weisberg, S. (2005) Applied Linear Regression. 3rd Edition, Wiley/Interscience, Hoboken. 

http://dx.doi.org/10.1002/0471704091 
[32] Timm, N.H. (2002) Applied Multivariate Analysis. Springer-Verlag Inc., New York. 
[33] Seber, G.A.F. and Lee, A.J. (2003) Linear Regression Analysis. John Wiley & Sons, Inc., Hoboken. 

http://dx.doi.org/10.1002/9780471722199 
[34] Bache, K. and Lichman, M. (2015) UCI Machine Learning Repository. http://archive.ics.uci.edu/ml 
[35] Smith, J.W., Everhart, J.E., Dickson, W.C., Knowler, W.C. and Johannes, R.S. (1988) Using the ADAP Learning Al-

gorithm to Forecast the Onset of Diabetes Mellitus. Proceedings of the Annual Symposium on Computer Application in 
Medical Care, Orlando, 7-11 November, 261-265. 

[36] White, I.R. (2009) Multivariate Random-Effects Meta-Analysis. Stata Journal, 9, 40-56. 
[37] Higgins, J.P., Whitehead, A., Turner, R.M., Omar, R.Z. and Thompson, S.G. (2001) Meta-Analysis of Continuous 

Outcome Data from Individual Patients. Statistics in Medicine, 20, 2219-2241. 
http://dx.doi.org/10.1002/sim.918 

[38] Schwertman, N.C. and Allen, D.M. (1979) Smoothing an Indefinite Variance-Covariance Matrix. Journal of Statistical 
Computation and Simulation, 9, 183-194. http://dx.doi.org/10.1080/00949657908810316 

[39] Rebonato, R. and Jäckel, P. (1999) The Most General Methodology to Create a Valid Correlation Matrix for Risk 
Management and Option Pricing Purposes. Journal of Risk, 2, 17-28. 

[40] Higham, N.J. (2002) Computing the Nearest Correlation Matrix—A Problem from Finance. IMA Journal of Numerical 
Analysis, 22, 329-343. http://dx.doi.org/10.1093/imanum/22.3.329 

[41] Field, A.P. (2001) Meta-Analysis of Correlation Coefficients: A Monte Carlo Comparison of Fixed- and Random-Effects 
Methods. Psychological Methods, 6, 161-180. http://dx.doi.org/10.1037/1082-989X.6.2.161 

[42] Hafdahl, A.R. (2007) Combining Correlation Matrices: Simulation Analysis of Improved Fixed-Effects Methods. 
Journal of Educational and Behavioral Statistics, 32, 180-205. http://dx.doi.org/10.3102/1076998606298041 

[43] Hafdahl, A.R. and Williams, M.A. (2009) Meta-Analysis of Correlations Revisited: Attempted Replication and Exten-
sion of Field’s (2001) Simulation Studies. Psychological Methods, 14, 24-42. http://dx.doi.org/10.1037/a0014697 

[44] Prevost, A.T., Mason, D., Griffin, S., Kinmonth, A.L., Sutton, S. and Spiegelhalter, D. (2007) Allowing for Correla-
tions between Correlations in Random-Effects Meta-Analysis of Correlation Matrices. Psychological Methods, 12, 
434-450. http://dx.doi.org/10.1037/1082-989X.12.4.434 

[45] Debray, T.P., Koffijberg, H., Nieboer, D., Vergouwe, Y., Steyerberg, E.W. and Moons, K.G. (2014) Meta-Analysis 
and Aggregation of Multiple Published Prediction Models. Statistics in Medicine, 33, 2341-2362. 
http://dx.doi.org/10.1002/sim.6080 

[46] Wu, M.J. and Becker, B.J. (2013) Synthesizing Regression Results: A Factored Likelihood Method. Research Synthe-
sis Methods, 4, 127-143. http://dx.doi.org/10.1002/jrsm.1063 

[47] Dominici, F., Parmigiani, G., Reckhow, K.H. and Wolper, R.L. (1997) Combining Information from Related Regres-
sions. Journal of Agricultural, Biological, and Environmental Statistics, 2, 313-332. 
http://dx.doi.org/10.2307/1400448 

[48] Steyerberg, E.W., Eijkemans, M.J., Van Houwelingen, J.C., Lee, K.L. and Habbema, J.D. (2000) Prognostic Models 
Based on Literature and Individual Patient Data in Logistic Regression Analysis. Statistics in Medicine, 19, 141-160. 
http://dx.doi.org/10.1002/(SICI)1097-0258(20000130)19:2<141::AID-SIM334>3.0.CO;2-O 

[49] Clogg, C.C., Petkova, E. and Haritou, A. (1995) Statistical Methods for Comparing Regression Coefficients between 
Models. American Journal of Sociology, 10, 1261-1293. http://dx.doi.org/10.1086/230638 

[50] Tofighi, D., Mackinnon, D.P. and Yoon, M. (2009) Covariances between Regression Coefficient Estimates in a Single 
Mediator Model. British Journal of Mathematical and Statistical Psychology, 62, 457-484. 

[51] Greenland, S., Schlesselman, J.J. and Criqui, M.H. (1986) The Fallacy of Employing Standardized Regression Coeffi-
cients and Correlations as Measures of Effect. American Journal of Epidemiology, 123, 203-208. 

[52] Greenland, S., Maclure, M., Schlesselman, J.J., Poole, C. and Morgenstern, H. (1991) Standardized Regression Coeffi-

http://dx.doi.org/10.1007/BF02288567
http://dx.doi.org/10.1002/9780470316924
http://dx.doi.org/10.1002/0471704091
http://dx.doi.org/10.1002/9780471722199
http://archive.ics.uci.edu/ml
http://dx.doi.org/10.1002/sim.918
http://dx.doi.org/10.1080/00949657908810316
http://dx.doi.org/10.1093/imanum/22.3.329
http://dx.doi.org/10.1037/1082-989X.6.2.161
http://dx.doi.org/10.3102/1076998606298041
http://dx.doi.org/10.1037/a0014697
http://dx.doi.org/10.1037/1082-989X.12.4.434
http://dx.doi.org/10.1002/sim.6080
http://dx.doi.org/10.1002/jrsm.1063
http://dx.doi.org/10.2307/1400448
http://dx.doi.org/10.1002/(SICI)1097-0258(20000130)19:2%3c141::AID-SIM334%3e3.0.CO;2-O
http://dx.doi.org/10.1086/230638


P. G. Bagos, M. Adam 
 

 
694 

cients: A Further Critique and Review of Some Alternatives. Epidemiology, 2, 387-392. 
http://dx.doi.org/10.1097/00001648-199109000-00015 

[53] Cheung, M.W. (2009) Comparison of Methods for Constructing Confidence Intervals of Standardized Indirect Effects. 
Behavior Research Methods, 41, 425-438. http://dx.doi.org/10.3758/BRM.41.2.425 

[54] Begum, F., Ghosh, D., Tseng, G.C. and Feingold, E. (2012) Comprehensive Literature Review and Statistical Consid-
erations for GWAS Meta-Analysis. Nucleic Acids Research, 40, 3777-3784. http://dx.doi.org/10.1093/nar/gkr1255 

[55] Evangelou, E. and Ioannidis, J.P. (2013) Meta-Analysis Methods for Genome-Wide Association Studies and Beyond. 
Nature Reviews Genetics, 14, 379-389. http://dx.doi.org/10.1038/nrg3472 

[56] Cantor, R.M., Lange, K. and Sinsheimer, J.S. (2010) Prioritizing GWAS Results: A Review of Statistical Methods and 
Recommendations for Their Application. American Journal of Human Genetics, 86, 6-22. 
http://dx.doi.org/10.1016/j.ajhg.2009.11.017 

[57] Sheng, E., Zhou, X.H., Chen, H., Hu, G. and Duncan, A. (2014) A New Synthesis Analysis Method for Building Lo-
gistic Regression Prediction Models. Statistics in Medicine, 33, 2567-2576. http://dx.doi.org/10.1002/sim.6125 

[58] Chang, B.-H., Liopsitz, S. and Waternaux, C. (2000) Logistic Regression in Meta-Analysis Using Aggregate Data. 
Journal of Applied Statistics, 27, 411-424. http://dx.doi.org/10.1080/02664760050003605 

[59] Cornfield, J. (1962) Joint Dependence of Risk of Coronary Heart Disease on Serum Cholesterol and Systolic Blood 
Pressure: A Discriminant Function Analysis. Federation Proceedings, 21, 58-61. 

[60] Halperin, M., Blackwelder, W.C. and Verter, J.I. (1971) Estimation of the Multivariate Logistic Risk Function: A 
Comparison of the Discriminant Function and Maximum Likelihood Approaches. Journal of Chronic Diseases, 24, 
125-158. http://dx.doi.org/10.1016/0021-9681(71)90106-8 

[61] Hosmer, T., Hosmer, D. and Fisher, L. (1983) A Comparison of the Maximum Likelihood and Discriminant Function 
Estimators of the Coefficients of the Logistic Regression Model for Mixed Continuous and Discrete Variables. Com-
munications in Statistics—Simulation and Computation, 12, 23-43. http://dx.doi.org/10.1080/03610918308812298 

[62] Press, S.J. and Wilson, S. (1978) Choosing between Logistic Regression and Discriminant Analysis. Journal of the 
American Statistical Association, 73, 699-705. http://dx.doi.org/10.1080/01621459.1978.10480080 

[63] Xing, G. and Xing, C. (2010) Adjusting for Covariates in Logistic Regression Models. Genetic Epidemiology, 34, 769- 
771; Author Reply 772. http://dx.doi.org/10.1002/gepi.20526 

[64] Robinson, L.D. and Jewell, N.P. (1991) Some Surprising Results about Covariate Adjustment in Logistic Regression 
Models. International Statistical Review, 59, 227-240. http://dx.doi.org/10.2307/1403444 

 
  

http://dx.doi.org/10.1097/00001648-199109000-00015
http://dx.doi.org/10.3758/BRM.41.2.425
http://dx.doi.org/10.1093/nar/gkr1255
http://dx.doi.org/10.1038/nrg3472
http://dx.doi.org/10.1016/j.ajhg.2009.11.017
http://dx.doi.org/10.1002/sim.6125
http://dx.doi.org/10.1080/02664760050003605
http://dx.doi.org/10.1016/0021-9681(71)90106-8
http://dx.doi.org/10.1080/03610918308812298
http://dx.doi.org/10.1080/01621459.1978.10480080
http://dx.doi.org/10.1002/gepi.20526
http://dx.doi.org/10.2307/1403444


P. G. Bagos, M. Adam 
 

 
695 

Appendix A 
Consider the p p×  diagonal matrix xV  such that ( )1 2

diag , , ,
px x x xs s s=V  . From Equation (4) and Equation 

(16), it is obvious that  

22 x x x=V R VΣ ,                                   (A.1) 

which implies: 
1 1

22x x x
− −=R V VΣ                                    (A.2) 

Reminding that for each 1,2, ,i p= 

 holds  

1 2
i

i

x y
i

x

s
a

s
=                                      (A.3) 

Using Equations (5), (A.3), (A.2), (16) and the Hadamard product , we can write: 
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Denoting 

1

21
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u
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Equation (A.4) yields: 
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Finally, denoting  
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and combining Equations (A.6) and (A.5) we derive: 
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Appendix B 
Consider the 1p×  matrix of the standardized regression coefficients b, the well known correlation matrices 

xR  and yxR  
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and, the p p×  diagonal matrix xV  such that. As in Appendix A, Equation (A.1) yields: 
1 1

22x x x
− −=R V VΣ                                    (B.1) 

Using Equation (B.1), Equation (16) and Equation (17), we derive: 
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Equation (B.2) follows:  
1 1

y x x yxs − −= V R Rβ  

Appendix C 
Let cX  be an n p×  matrix, n1  be the 1n×  matrix of 1 s, with   

1 1 2 2 1 2c n n p p n px x x x x x x x x   = − − − =   X   
 1 1 1  

It is well known that  
T
c c c x c=X X V R V ,                                  (C.1) 

where the p p×  diagonal matrix cV  is define 

( )2 2 2
1 2diag , , ,c px x x= ∑ ∑ ∑V   



 and xR  denotes the correlation matrix.  

It is obvious that  
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and using the definition of the Pearson’s correlation coefficient  

2 2

i j
ij

i j

x x
r

x x
= ∑

∑ ∑

 

 

                                 (C.2) 



P. G. Bagos, M. Adam 
 

 
697 

for , 1, 2, ,i j p= 

, the matrix T
c cX X  is written as: 

2 2 2 2 2
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Notice that from (C.1) arises  

( ) ( ) ( )2T 2
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= = ∑∏X X V R R                      (C.4) 

Furthermore, for the matrix 
T

1 2 pβ β β =  β  
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where ( )Tadj c cX X  denotes the p p×  adjoint matrix of T
c cX X , (see Applied Linear regression, Sanford 

Weisberg (2007), p. 57). Adjoint is defined the matrix, whose ( ),j i th element is formulated as: 

( ) ( )T1 deti j
c c ij

+− X X                                  (C.6) 

where ( )Tdet c c ij
X X  denotes the determinant of the ( ) ( )1 1p p− × −  submatrix of T

c cX X  obtained by delet-

ing the i-th row and j-th column of T
c cX X . Remind that ( )Tadj c cX X  is a symmetric matrix, since

( ) ( )T TT T T T
c c c c c c= =X X X X X X . Combining the above remark, Equation (C.6), the properties of determinant 

and T
c cX X  by Equation (C.3), the ( ),i j th element of ( )Tadj c cX X  can be written as: 

( ) ( )

( )
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−
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X X
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( )

( ) ( )

( ) ( )( ) ( )( ) ( )

( ) ( )( ) ( )( ) ( )

( ) ( )

( ) ( )
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1 1 1 1 1 1 12 2

1 1 1 1 1 1 1 1 1
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r r r r
x x

r r r r

r r r

− +

− − − − + −+

= = + + − + + +
≠ ≠

− +

+

 
 
 
   

    = −           
 
 
  

= − Σ

∑ ∑∏ ∏

R

 

   

 

 

   

 

 

Thus, we conclude  

( ) ( ) ( ) ( )T1 det 1 deti j i j
c c c x ijij

+ +− = − ΣX X R                         (C.7) 

where  
2 2 2 2 2 2 2 2
1 1 1 1 1c i i i j j j px x x x x x x x− + − +Σ = ∑ ∑ ∑ ∑ ∑ ∑ ∑ ∑       
                  (C.8) 

In Equation (C.5) the ( ),i j th element of ( )cov β  is denoted ( )cov ,i jβ β  and obtained by Equation (C.4), 
Equation (C.7) and Equation (C.8). In particular,  

( )
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+

=
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  

 

 

and using the definition of correlation ijr  by Equation (C.2) the above equation is written 

( )
( ) ( )

( ) ( )

2

2 2

2

1 det
cov ,

det

1 det
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i j
x ij

i j

i j x

i j
ij x ij
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r
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+

+

−
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=

∑ ∑

∑

R
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 

 

                           (C.9) 

( ) ( )
( )

21 det

1 det
i j

i j
ij x ij

x x x

r

n s

σ+−
=

−

R

R
                          (C.10) 

The i-multiple correlation coefficient is denoted by iR  or ( ) ( )|1 1 ( 1i i i pR − + 

 and given [28] 

( )
2 det

1
det

x
i

x ii

R− =
R
R

 

whereby arises  

( ) ( )2det 1 detx i x ii
R= −R R                              (C.11) 

Remind that in Equation (C.11) the correlation matrix xR  is a symmetric positive definite matrix, hence 

det 0x >R  and ( )det 0x ii
>R , for every 1,2, ,i p= 

, as a main submatrix of xR . Since Equation (C.11) 
yields  
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( ) ( )2det 1 detx i x ii
R= −R R  

by the above equality for i j≠  we can write: 

( ) ( ) ( ) ( )2 2det det det 1 1 det detx x x i j x xii jj
R R= = − −R R R R R             (C.12) 

For i j≠  the ij-partial correlation coefficient is denoted by ;12ij pr


, and defined [28] 

( )
( )

( ) ( )
1

;12

det
1

det det

xi j ij
ij p

x xii jj

r + += −
R

R R


 

whereby for every , 1, 2, ,i j p= 

, it is implied  

( ) ( ) ( ) ( )1
;12det 1 det deti j

x ij p x xij ii jj
r+ += −R R R



                    (C.13) 

Substituting Equation (C.12) and Equation (C.13) in Equation (C.10) arises:  
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( ) ( )
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1 2
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−
= ⋅

−
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− − −

= − ⋅
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R R
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

 

Moreover, for i j=  combining Equations (C.9) and (C.11) the variance of iβ  is derived as follows:  

( )
( ) ( )

( ) ( ) ( )
2 2 2

2 2 2 22

det det
var

1 det 1 1det i i

x xii ii
i

x x x ii x
n s n s Rx

σ σ σβ = = =
− − −∑

R R
RR

 

Appendix D 
** Dataset concerning Diabetes in Pima Indians 
** Several constraints were placed on the selection of these instances from a larger database.  
** In particular, all patients here are females at least 21 years old of Pima Indian heritage.  
** http://archive.ics.uci.edu/ml/datasets/Pima+Indians+Diabetes 
** Bache, K. & Lichman, M. (2013). UCI Machine Learning Repository  
** [http://archive.ics.uci.edu/ml]. Irvine, CA: University of California,  
** School of Information and Computer Science.  
** Smith, J.W., Everhart, J.E., Dickson, W.C., Knowler, W.C., & Johannes, R.S. (1988).  
** “Using the ADAP learning algorithm to forecast the onset of diabetes mellitus”.  
** In Proceedings of the Symposium on Computer Applications and Medical Care} (pp. 261--265).  
** IEEE Computer Society Press.  
 
** Plasma glucose concentration at 2 hours in an oral glucose tolerance test  
** (this is the dependent variable here) 
sum glucose 
scalar n=r(N) 
scalar y= r(mean) 
scalar S11=r(Var) 
 
** the independent variables 
** Diastolic blood pressure (mm Hg) 
** Triceps skin fold thickness (mm) 
** 2-Hour serum insulin (mu U/ml) 
** Body mass index (weight in kg/(height in m)^2) 
** Age (years)  
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** obrain the correlation matrix of the predictors 
corr  dbp thickness insulin bmi age 
mat R22=r(C) 
mat R22inv=invsym(R22) 
 
** obtain the covariance matrix 
corr  dbp thickness insulin bmi age,cov 
mat S22=r(C) 
 
** obtain the full covariance matrix 
corr   glucose dbp thickness insulin bmi age,cov 
mat S=r(C) 
scalar col=colsof(S) 
mat S12=S[1, 2..col] 
mat S21=S[2..col, 1] 
mat S22=S[2..col, 2..col] 
 
**obtain the full correlation matrix 
corr   glucose dbp thickness insulin bmi age 
mat R=r(C) 
mat Ryx=R[2..6, 1] 
mat Rk=R[2..6, 2..6] 
mat bs=invsym(Rk)*Ryx 
 
** implementation of the Samsa, Hu and Root method 
matrix A = J(1,5,0) 
scalar k=1 
foreach x in  dbp thickness insulin bmi age { 
qui reg  glucose `x’ 
 mat bb=e(b) 
 mat A[1, k]=bb[1,1] 
 scalar k=k+1 
} 
 
local col2=col-1 
matrix temp=vecdiag(S22) 
matrix SS = J(1,5,0) 
 
forvalues i=1(1) `col2’ { 
 mat SS[1,`i’]=sqrt(temp[1,`i’]  ) 
} 
 
mat AS=hadamard(A,SS) 
mat AAS= R22inv*AS’ 
matrix bs2 = J(5,1,0) 
 
forvalues i=1(1) `col2’ { 
 mat bs2[`i’,1]=AAS[`i’,1]/SS[1,`i’]   
} 
 
mat list bs2 
 
** the standard method from multivariate analysis (the results are identical) 
mat b=invsym(S22)*S21 
mat list b 
 
*calculation of sigma-squared 
mat sigma2=S11-S12*b 
** because this is estimated, we need to take it into account 
scalar sigma2=(sigma2[1,1]*(n-1))/(n-6) 
 
** calculation of R-squared for the independent variables 
mat Sx=vecdiag(S22) 
matrix R2 = J(1,5,0)  
 
forvalues i=1(1) `col2’ { 
 mat R2[1,`i’]=1-1/R22inv[`i’ , `i’ ] 
} 
 
scalar detR=det(R22) 
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** calculation of the Rkij matrix which contains the determinants of the R22 matrix removing each 
** time a row and a column 
matrix Rkij = J(5,5,0) 
preserve 
clear 
 
forvalues i=1(1) `col2’ { 
 forvalues j=1(1) `col2’ { 
  qui svmat R22 
  qui drop R22`i’ 
  qui drop in `j’ 
  qui mkmat R22*,mat(Rii`i’`j’) 
  
  mat Rkij[`i’, `j’]=det(Rii`i’`j’) 
  clear 
 } 
} 
restore 
 
** calculation of the Partial Correlation coefficients (stored in matrix Rp) 
matrix Rp = J(5,5,0) 
 
forvalues i=1(1) `col2’ { 
 forvalues j=1(1) `col2’ { 
  scalar ex=`i’+`j’+1 
  mat Rp[`i’, `j’]=(-1)^(ex)*(Rkij[`i’, `j’]/(sqrt(Rkij[`i’, `i’])*sqrt(Rkij[`j’, `j’]))) 
 } 
} 
 
** calculation of the covariance matrix of the regression coefficients 
** (stored finally in matrix Vb) 
matrix seb = J(1,5,0) 
forvalues i=1(1) `col2’ { 
 mat seb[1,`i’]=sqrt(sigma2/((n-1)*S22[`i’, `i’]*(1-R2[1, `i’]))) 
} 
 
mat vb=diag(seb) 
mat Vb=-vb*Rp*vb 
mat list Vb 
reg glucose dbp thickness insulin bmi age 
mat list e(V) 
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