

Synthesis and Characterization of $La_{0.75}Sr_{0.25}Cr_{0.5}Mn_{0.5}O_{3-\delta}\ Nanoparticles \\ Using a Combustion Method for Solid Oxide \\ Fuel Cells$

V. S. Reddy Channu¹, Rudolf Holze¹, Edwin H. Walker Jr.², Rajamohan R. Kalluru³

¹Institut für Chemie, AG Elektrochemie, Technische Universität Chemnitz, Chemnitz, Germany; ²Department of Chemistry, Southern University and A&M College, Baton Rouge, USA; ³KITE College of Professional Engineering Sciences, Jawaharlal Nehru Technological University of Hyderabad, Shabad, India.

Email: subbu5reddy@yahoo.co.in

Received April 11th, 2011; revised May 9th, 2011; accepted May 16th, 2011.

ABSTRACT

La_{0.75}Sr_{0.25}Cr_{0.5}Mn_{0.5}O_{3-δ} (LSCM) perovskite nanoparticles for use as anode material in intermediate temperature solid oxide fuel cells (IT-SOFCs) were synthesized using 3,3',3"-nitrilotripropionic acid (NTP), citric acid and oxalic acid as carriers via a combustion method. The influence of the carrier on phase and morphology of the obtained pristine products was characterized using X-ray diffraction (XRD), thermal gravimetric analysis (TGA), and scanning electron microscopy (SEM). XRD results showed, that the LSCM had rhombohedral symmetry with R-3c space group; a single phase LSCM perovskite formed after calcination of fired gel at 1200°C for 7 h. Scanning electron microscopy analysis of the pristine powders showed spherical shape and particle sizes in the range of 50 - 500 nm.

Keywords: Nanoparticles, Combustion method, Morphology, Carriers

1. Introduction

A fuel cell is an electrochemical device that converts chemical energy of fuels (hydrogen, methane, butane or even gasoline and diesel) into electrical energy by exploiting the natural tendency of oxygen and hydrogen to react. Fuel cells are simple devices containing no moving parts and only four functional components namely cathode, electrolyte, anode and interconnect. Solid oxide fuel cells (SOFCs) are considered to be among the most versatile power production facilities. Their unique characteristics include extreme efficiency, significant energy conversion rate with a wide range of fuels and pollution-free operation. On the other hand high operating temperature (about 1000°C) of the SOFC results in problems including difficult sealing between cells with flat plate configurations and thermal expansion mismatches between components. In addition, the high operating temperature places rigorous constraints on materials selection and results in difficult fabrication processes [1].

Recently, perovskite based conducting oxides, such as

substituted lanthanum chromites or lanthanum manganates and strontium titanates, received great attention as alternative anode materials for solid oxide fuel cells [2]. Particularly, $(La_{0.75}Sr_{0.25})_{1-x}Cr_{0.5}Mn_{0.5}O_{3-\delta}$ perovskite phase (LSCM) has been considered as a capable anode material for SOFCs due to its electrocatalytic/catalytic activity for oxidation of methane fuel in the absence of steam, reduced carbon deposition, and high durability against sulfur poisoning and good electrical properties [3,4]. Predominantly, this composition of LSCM has shown good stability in fuels and in air, and has good resistance towards carbon deposition and low polarization resistance when used with hydrocarbon fuels [5]. LSCM can also be used as a cathode, thus facilitating fuel cells with a symmetrical structure (LSCM/electrolyte/LSCM) [6,7].

Up till now, various chemical methods were reported in the literature for the synthesis of LSCM powders, for example, glycine nitrate method [3], EDTA (ethylenedia minetetraacetic acid) chelating method [8,9], combustion synthesis [7,10], solid-state reaction [4,6,11-15], gel-casting [16,17] and co-precipitation method [18]. The solid-state

Copyright © 2011 SciRes. NJGC

method has some disadvantages such as high temperature (above 1300°C) and long duration of synthesis of LSCM and non-homogeneity in particle size and low purity [19]. However, to synthesize homogeneous fine particles of pure phase LSCM powders requires low temperature and short duration of synthesis. The solution combustion method is suitable to synthesize nanosize LSCM particles with good homogeneity [20]. The present work reports on the synthesis of nanostructured La_{0.75}Sr_{0.25}Cr_{0.5}Mn_{0.5}O_{3- δ} (LSCM) perovskite by a combustion method using 3,3',3"-nitrilotripropionic acid, oxalic acid and citric acid as carriers.

2. Experimental

Nanostructured $La_{0.75}Sr_{0.25}Cr_{0.5}Mn_{0.5}O_{3-\delta}$ (LSCM) perovskite anode material was synthesized by a combustion technique. Three batches of LSCM solutions are prepared with stoichiometric amounts of lanthanum nitrate (La(NO₃)₃·6H₂O), strontium nitrate (Sr(NO₃)₂), chromium nitrate (Cr(NO₃)₃·9H₂O) and manganese nitrate (Mn(NO₃)₂) in distilled water under constant stirring. First, a stoichiometric amount of citric acid (C₆H₈O₇ H₂O) and 15 ml ethylene glycol, second, oxalic acid and 15 ml ethylene glycol, and 3,3',3"-nitrilotripropionic acid and 15 ml ethylene glycol which are chelating agents and fuel, were also dissolved in LSCM solution. The stoichiometric ratio of carriers to nitrates was 2 [21]. A gel was formed with continuous stirring and mild heating at 120°C. The gel was dried at room temperature for overnight and then heated at 350°C for 30 min. The resulting powders were ground in an agate mortar and heated in air at 1000°C for 7 h. Finally, the ground product was heated at 1200°C for 7 h in air.

Crystallographic information of the samples was obtained using an X-ray powder diffractometer (D8 Advanced Brucker) with graphite monochromatized Cu K α radiation ($\lambda=1.54187\,$ Å). Diffraction data were collected over the 2θ range of 15° to 80° . The morphologies of the resulting products were characterized using a scanning electron microscope (SEM, JEOL JSM 6390). For the TGA measurements a TA 600, operating in dynamic mode (heating rate = 10° C/min), was employed.

3. Results and Discussion

Phase purity and crystallographic information of the synthesized $La_{0.75}Sr_{0.25}Cr_{0.5}Mn_{0.5}O_{3-\delta}$ perovskite nanoparticles were characterized using powder X-ray diffraction. The XRD patterns of LSCM perovskite nanoparticles are shown in **Figure 1**. All diffraction patterns of $La_{0.75}Sr_{0.25}Cr_{0.5}Mn_{0.5}O_{3-\delta}$ perovskite nanoparticles show characteristic peaks of the perovskite phase. The XRD patterns are in good agreement with the standard data for

rhombohedral symmetry with a = 5.4736 Å, b = 5.4736 Å, c = 13.2898 Å and R-3c space group (JCPDS # 01-070-8673). No impurity phases were observed presumably because in the solid-state reaction the pure phase of La_{0.75}Sr_{0.25}Cr_{0.5}Mn_{0.5}O_{3- δ} (LSCM) perovskite was formed at 1200°C [21]. The crystallite size of the LSCM nanoparticles was calculated using Debye-Scherrer formula at (110) plane. The size of the LSCM-particles prepared NTP-assisted is 57.65 nm, with citric acid and oxalic acid the value is 68.63 nm.

In the synthesis of $La_{0.75}Sr_{0.25}Cr_{0.5}Mn_{0.5}O_{3-\delta}$ (LSCM) perovskite nanoparticles the carriers (NTP, oxalic acid and citric acid) help in obtaining a homogeneous mixture of the cations in a solution through forming metal complexes, they also help in the reduction of nitrates in a combustion process, releasing a large amount of heat. This is shown by an exothermic peak at 377°C on a DSC curve (Figure 2). During the solid-state reduction process, metal cations and oxygen anions stay in the react and mixture during the formation of perovskite phase in this combustion process. The large heat released during combustion might be of the help to overcome the lattice energy, which is required for the formation of the perovskite phase, and also the completion of the nucleation by the rearrangement of atoms by short distance diffusion. The fast combustion process might not be of help for the diffusion of atoms far from each other and hence the particle size of LSCM powder remained in the nanometer range [22].

Thermogravimetric analysis and differential scanning calorimetry (TGA-DSC) curves with NTP-assisted LSCM dried as a gel at 120°C are shown in **Figure 2**. The weight losses happen in three steps. The total weight loss

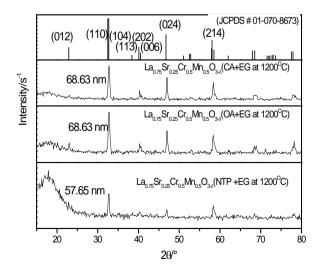


Figure 1. XRD patterns of $La_{0.75}Sr_{0.25}Cr_{0.5}Mn_{0.5}O_{3-\delta}$ (LSCM) perovskite phase nanoparticles.

Copyright © 2011 SciRes.

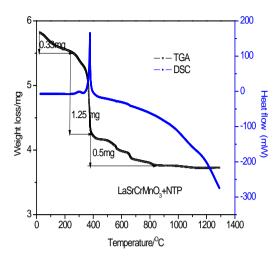


Figure 2. TGA-DSC curves of $La_{0.75}Sr_{0.25}Cr_{0.5}Mn_{0.5}O_{3-\delta}$ (LSCM) perovskite gel precursor dried at $120^{\circ}C$.

was 2.1 mg from room temperature to 1300°C. The first weight loss is 0.33 mg in the temperature range 22°C - 236°C; this can be attributed to evaporation of water from the layers of LSCM. The second weight loss is 1.25 mg in the temperature range 236°C - 383°C and the third weight loss is 0.5 mg in the temperature range 383°C - 837°C. The second and third weight losses are attributed to decomposition of the carrier (NTP) and evaporation of structurally bounded water. The peaks located at about 295°C and 377°C are exothermic on the DSC curve due to decomposition of nitrates and organic matter and correspond to the second weight loss of 1.25 mg from about 236°C to 400°C as observed in the TGA curve.

To observe thermal effects above 350°C, different carrier-assisted LSCM samples were fired at 350°C for 1 h. Figure 3 shows TGA-DTA curves of the different carrier's assisted LSCM samples. The total weight loss was 0.97 mg in NTP assisted LSCM, 0.39 mg in oxalic acid assisted LSCM, and 0.77 mg in citric acid assisted LSCM from room temperature to 1300°C. The first weight loss is 0.32 mg in NTP assisted LSCM in the temperature range 30°C - 490°C, whereas the first weight loss is 0.2 mg in the oxalic acid used LSCM in range 30°C - 338°C and the first weight loss is 0.25 mg in citric acid used LSCM in range 30°C - 334°C. The second weight loss is 0.9 mg in NTP used LSCM in the temperature range 490°C - 822°C, whereas the second weight loss is 0.42 mg in citric acid used LSCM in range 334°C -688°C. The second weight loss was attributed to the reaction between the residual nitrate and carriers after the decomposition of the precursor and subsequent combustion of organic components.

The morphologies of $La_{0.75}Sr_{0.25}Cr_{0.5}Mn_{0.5}O_{3-\delta}$ perovskite nan-oparticles synthesized using different car-

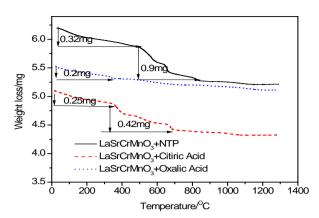


Figure 3. TGA curves of $La_{0.75}Sr_{0.25}Cr_{0.5}Mn_{0.5}O_{3-\delta}$ (LSCM) perovskite gel precursor dried at 120°C and then fired at 350°C for 1h.

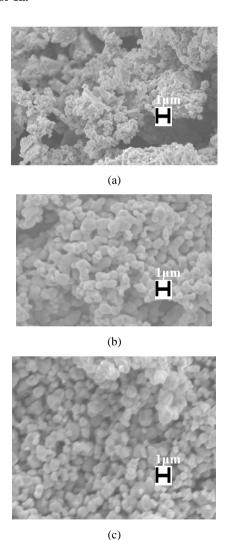


Figure 4. SEM images of $La_{0.75}Sr_{0.25}Cr_{0.5}Mn_{0.5}O_{3-\delta}$ perovskite phase nanoparticles (a) NTP-assisted, (b) oxalic acid assisted and (c) citric acid assisted.

Copyright © 2011 SciRes.

riers by combustion method as examined with scanning electron microscopy are shown in **Figure 4**. NTP-assisted LSCM shows many nanosized particles of sphericalshape in the range 100 - 500 nm (**Figure 4(a)**). The LSCM powders synthesized using oxalic acid and citric acid as carriers consist of uniform nanoparticles shwoing less agglomeration. The average particle size of the $La_{0.75}Sr_{0.25}Cr_{0.5}Mn_{0.5}O_{3-\delta}$ perovskite powders calcinated at $1200^{\circ}C$ is about 50 - 500 nm (**Figures 4(a) and (b)**). The small size $La_{0.75}Sr_{0.25}Cr_{0.5}Mn_{0.5}O_{3-\delta}$ perovskite nanoparticles are very active, small size is also beneficial for decreasing the fabrication temperature of the anode film and enhancing the catalytic properties.

4. Conclusions

La $_{0.75}$ Sr $_{0.25}$ Cr $_{0.5}$ Mn $_{0.5}$ O $_{3-\delta}$ (LSCM) perovskite phase nanoparticles were successfully synthesized by solution combustion method using different carriers (NTP, oxalic acid, and citric acid) after calcination of fired gel at 1200° C for 7 h. Scanning electron microscopy of the as-synthesized powders showed spherical particle shapes and sizes in the range of 50 - 500 nm. An exothermic reaction between carriers and nitrates initiates the combustion process. TGA and DSC analysis confirmed the decomposition process of nitrates and the organic matter. The combustion reactions took place in the temperature range 200° C to 400° C.

5. Acknowledgements

One of the authors (V S Reddy Channu) thanks the Alexander von Humboldt Foundation for a fellowship.

REFERENCES

- [1] Ch. Sun and U. Stimming, "Recent Anode Advances in Solid Oxide Fuel Cells," *Journal of Power Sources*, Vol. 171, No. 2, 2007, pp. 247-260. doi:10.1016/j.jpowsour.2007.06.086
- [2] E. Lay, G. Gauthier, S. Rosini, C. Savaniu and J. T. S. Irvine, "Ce-Substituted LSCM as New Anode Material for SOFC Operatingin Dry Methane," *Solid State Ionics*, Vol. 179, No. 2, 2008, pp.1562-1566. doi:10.1016/j.ssi.2007.12.072
- [3] S. Zha, P. Tsang, Z. Cheng and M. Liu, "Electrical Properties and Sulfur Tolerance of La_{0.75}Sr_{0.25}Cr_{1-x}MnxO₃ under Anodic Conditions," *Journal of Solid State Chemistry*, Vol. 178, No. 6, 2005, pp. 1844-1850. doi:10.1016/j.jssc.2005.03.027
- [4] S. Tao and J. T. S. Irvine, "Synthesis and Characterization of (La_{0.75}Sr_{0.25})Cr_{0.5}Mn_{0.5}O₃—A Redox-Stable, Efficient Perovskite Anode for SOFCs," *Journal of the Electrochemical Society*, Vol. 151, No. 2, 2004, pp. A252-A259. doi:10.1149/1.1639161
- [5] S. TaO and J. T. S. Irvine, "A Redox-Stable, Efficient Anode for Solid-Oxide Fuel Cells," *Nature Materials*,

- Vol. 2, No. 5, 2003, pp. 320-323. doi:10.1038/nmat871
- [6] J. C. Ruiz-Morales, J. Canales-Vazquez, J. Pena-Martinez, D. M. Lopez and P. Nunez, "On the Simultaneous Use of La_{0.75}Sr_{0.25}Cr_{0.5}Mn_{0.5}O_{3-δ} as Both Anode and Cathode Material with Improved Microstructure in Solid Oxide Fuel Cells," *Electrochim. Acta*, Vol. 52, No. 1, 2006, pp. 278-284. doi:10.1016/j.electacta.2006.05.006
- [7] D. M. Bastidas, S. Tao and J. T. S. Irvine, "A Symmetrical Solid Oxide Fuel Cell Demonstrating Redox Stable Perovskite Electrodes," *Journal of Materials Chemistry*, Vol. 16, No. 17, 2006, pp. 1603-1605. doi:10.1039/b600532b
- [8] J. Wan, J. H. Zhu and J. B. Goodenough, "La_{0.75}Sr0.25 Cr0.5Mn_{0.5}O_{3- δ} + Cu composite anode running on H₂ and CH₄ fuels," *Solid State Ionics*, Vol. 177, No. 13-14, 2006, pp. 1211-1217. doi:10.1039/b600532b
- [9] X. C. Lu and J. H. Zhu, "Cu(Pd)-Impregnated La_{0.75}Sr_{0.25} Cr_{0.5}Mn_{0.5}O_{3-δ} Anodes for Direct Utilization of Methane in SOFC," *Solid State Ionics*, Vol. 178, No. 25-26, 2007, pp. 1467-1475. doi:10.1016/j.ssi.2007.09.001
- [10] B. Huang, S. R. Wang, R. Z. Liu, X. F. Ye, H. W. Nie, X. F. Sun and T. L. Wen, "Performance of La_{0.75}Sr_{0.25}Cr_{0.5} Mn_{0.5}O_{3-δ} Perovskite-Structure Anode material at Lanthanum Gallate Electrolyte for IT-SOFC Running on Ethanol Fuel," *Journal of Power Sources*, Vol. 167, No. 1, 2007, pp. 39-46. doi:10.1016/j.jpowsour.2007.02.022
- [11] S. P. Jiang, X. J. Chen, S. H. Chan and J. T. Kwok, "GDC-Impregnated (La_{0.75}Sr_{0.25})(Cr_{0.5}Mn_{0.5})O₃ Anodes for Direct Utilization of Methane in Solid Oxide Fuel Cells," *Journal of Electrochemical Society*, Vol. 153, No. 5, 2006, pp. A850-A856. doi:10.1149/1.2179347
- [12] J. Pena-Martinez, D. Marrero-Lopez, J. C. Ruiz-Morales, B. E. Buergler, P. Nunez and L. J. Gauckler, "Fuel Cell Studies of Perovskite-Type Materials for IT-SOFC," *Journal of Power Sources*, Vol. 159, No. 2, 2006, pp. 914-921. doi:10.1016/j.jpowsour.2005.11.036
- [13] S. P. Jiang, X. J. Chen, S. H. Chan, J. T. Kwok, K. A. Khor, "(La_{0.75}Sr_{0.25})(Cr_{0.5}Mn_{0.5})O₃/YSZ Composite Anodes for Methane Oxidation Reaction in Solid Oxide Fuel Cells," *Solid State Ionics*, Vol. 177, No. 1-2, 2006, pp. 149-157. doi:10.1016/j.ssi.2005.09.010
- [14] J. Pena-Martinez, D. Marrero-Lopez, J. C. Ruiz-Morales, C. Savaniu, P. Nunez and J. T. S.Irvine, "Anodic Performance and Intermediate Temperature Fuel Cell Testing of La_{0.75}Sr_{0.25}Cr_{0.5}Mn_{0.5}O_{3-δ} at Lanthanum Gallate Electrolytes," *Chemistry of Materials*, Vol. 18, 2006, pp. 1001-1006.
- [15] J. C. Ruiz-Morales, J. Canales-Vazquez, B. Ballesteros-Perez, J. Pena-Martinez, D. Marrero-Lopez, J. T. S. Irvine and P. Nunez, "LSCM-(YSZ-CGO) Composites as Improved Symmetrical Electrodes for Solid Oxide Fuel Cells," *Journal of the European Ceramic Society*, Vol. 27, No. 13-15, 2007, pp. 4223-4227. doi:10.1016/j.jeurceramsoc.2007.02.117
- [16] S. P. Jiang, L. Zhang and Y. Zhang, "Lanthanum Stron-

- tium Manganese Chromite Perovskite Oxides Synthesized by Gelcasting for Solid Oxide Fuel Cells," *Journal of Material Chemistry*, Vol. 17, No. 25, 2007, pp. 2627-2635. doi:10.1039/b701339f
- [17] L. Zhang, S. P. Jiang, C. S. Cheng and Y. Zhang, "Synthesis and Performance of (La_{0.75}Sr_{0.25})_{1-x}(Cr_{0.5}Mn_{0.5})O₃ Cathode Powders of Solid Oxide Fuel Cells by Gel-Casting Technique," *Journal of Electrochemical Society*, Vol. 154, No. 6, 2007, pp. B577-B582. doi:10.1149/1.2724759
- [18] S. B. Ha, P-S. Cho, Y. H. Cho, D. Lee and J.-H. Lee, "Preparation of $La_{0.75}Sr_{0.25}Cr_{0.5}Mn_{0.5}O_{3-\delta}$ Fine Powders by Carbonate Coprecipitation for Solid Oxide Fuel Cells," *Journal of Power Sources*, Vol. 195, No. 1, 2010, pp. 124-129. doi:10.1016/j.jpowsour.2009.06.078
- [19] Z. Hu, Y. Yang, X. Shang and H. Pang, "Preparation and Characterization of Nanometer Perovskite-Type Complex Oxides LaMnO_{3.15} and Their Application in Catalytic

- Oxidation," *Materials Letters*, Vol. 59, No. 11, 2005, pp. 1373-1377. doi:10.1016/j.matlet.2004.12.047
- [20] K. C. Patila, S. T. Arunab and T. Mimania, "Combustion Synthesis: An Update," *Current Opinion in Solid State* and Materials Science, Vol. 6, No. 6, 2002, pp. 507-512. doi:10.1016/S1359-0286(02)00123-7
- [21] M. A. Raza, I. Z. Rahman and S. Beloshapkin, "Synthesis of Nanoparticles of La_{0.75}Sr_{0.25}Cr_{0.5}Mn_{0.5}O_{3-δ} (LSCM) Perovskite by Solution Combustion Method for Solid Oxide Fuel Cell Application," *Journal of Alloys and Compounds*, Vol. 485, No. 1-2, 2009, pp.593-597. doi:10.1016/j.jallcom.2009.06.059
- [22] B. Liu and Y. Zhang, "Ba_{0.5}Sr_{0.5}Co_{0.8}Fe_{0.2}O₃ Nanopowders Prepared by Glycine-Nitrate Process for Solid Oxide Fuel Cell Cathode," *Journal of Alloys and Compounds*, Vol. 453, No. 1-2, 2008, pp. 418-422. doi:10.1016/j.jallcom.2006.11.142

Copyright © 2011 SciRes.