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Abstract

This paper presents the dual specification of the least-squares method. In other words, while the
traditional (primal) formulation of the method minimizes the sum of squared residuals (noise),
the dual specification maximizes a quadratic function that can be interpreted as the value of sam-
ple information. The two specifications are equivalent. Before developing the methodology that
describes the dual of the least-squares method, the paper gives a historical perspective of its ori-
gin that sheds light on the thinking of Gauss, its inventor. The least-squares method is firmly es-
tablished as a scientific approach by Gauss, Legendre and Laplace within the space of a decade, at
the beginning of the nineteenth century. Legendre was the first author to name the approach, in
1805, as “méthode des moindres carrés”, a “least-squares method”. Gauss, however, used the me-
thod as early as 1795, when he was 18 years old. Again, he adopted it in 1801 to calculate the orbit
of the newly discovered planet Ceres. Gauss published his way of looking at the least-squares ap-
proach in 1809 and gave several hints that the least-squares algorithm was a minimum variance
linear estimator and that it was derivable from maximum likelihood considerations. Laplace
wrote a very substantial chapter about the method in his fundamental treatise on probability
theory published in 1812.
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1. Introduction

The least-squares method has primal and dual specifications. The primal specification is well known: Given a
regression function (either linear or nonlinear) and a sample of observations, the goal is to minimize the sum of
the squared deviations between the data and the regression relation, as discussed in Section 3. The dual specifi-
cation is not known because it is not sought out over the past two hundred years. This paper presents such a dual
specification in Section 4. First, however, the reader is offered a historical and illuminating perspective of the
least-squares method in the words of its inventor.
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2. Historical Perspective

Karl Friedrich Gauss, at the age of 18, conceived the least-squares (LS) method. However, he did not publish it
until 1809, [1]. There, he states that “Our principle, which we have used since the year 1795, has lately been
published by Legendre in the work Nouvellesméthodes pour la détermination des orbites des comeétes, Paris
1805, see [2], where several other properties of this principle have been explained, which, for the sake of brevity,
we here omit” (translation [3]). Furthermore, in the Preface to his book [1], Gauss gives an insightful and illu-
minating account of how the idea of the least-squares method came to him. Up to that time, “... in every case in
which it was necessary to deduce the orbits of heavenly bodies from observations, there existed advantages not
to be despised, suggesting, or at any rate permitting, the application of special methods; of which advantages
the chief one was, that by means of hypothetical assumptions an approximate knowledge of some elements could
be obtained before the computation of the elliptic elements was commenced. Notwithstanding this, it seems
somewhat strange that the general problem—To determine the orbit of a heavenly body, without any hypotheti-
cal assumption, from observations not embracing a great period of time, and not allowing the selection with a
view to the application of special methods—was almost wholly neglected up to the beginning of the present
century; or at least, not treated by any one in a manner worthy its importance; since it assuredly commended it-
self to mathematicians by its difficulty and elegance, even if its great utility in practice were not apparent. An
opinion had universally prevailed that a complete determination from observations embracing a short interval
of time was impossible—an ill-founded opinion—for it is now clearly shown that the orbit of a heavenly body
may be determined quite nearly from good observations embracing only a few days; and this without any hypo-
thetical assumption.

Some idea occurred to me in the month of September of the year 1801, engaged at the time on a very different
subject, which seemed to point to the solution of the great problem of which | have spoken. Under such cir-
cumstances we not infrequently, for fear of being too much led away by an attractive investigation, suffer the
associations of ideas, which more attentively considered, might have proved most fruitful in results, to be lost
from neglect. And the same fate might have befallen these conceptions, had they not happily occurred at the
most propitious moment for their preservation and encouragement that could have been selected. For just about
this time the report of the new planet, discovered on the first day of January of that year with the telescope at
Palermo, was the subject of universal conversation; and soon afterwards the observations made by the distin-
guished astronomer Piazzi from the above date to the eleventh of February were published. Nowhere in the an-
nals of astronomy do we meet with so great an opportunity, and a greater one could hardly be imagined, for
showing most strikingly, the value of this problem, than in this crisis and urgent necessity, when all hope of dis-
covering in the heavens this planetary atom, among innumerable small stars after the lapse of nearly a year,
rested solely upon a sufficiently approximate knowledge of its orbit to be based upon these very few observa-
tions. Could I ever have found a more seasonable opportunity to test the practical value of my conceptions, than
now in employing them for the determination of the orbit of the planet Ceres, which during the forty-one days
had described a geocentric arc of only three degrees, and after the lapse of a year must be looked for in a region
of the heavens very remote from that in which it was last seen? This first application of the method was made in
the month of October, 1801, and the first clear night, when the planet was sought for* (by de Zach, December 7,
1801) as directed by the numbers deduced from it, restored the fugitive to observation. Three other new planets,
subsequently discovered, furnished new opportunities for examining and verifying the efficiency and generality
of the method.

Several astronomers wished me to publish the methods employed in these calculations immediately after the
second discovery of Ceres; but many things—other occupations, the desire of treating the subject more fully at
some subsequent period, and, especially, the hope that a further prosecution of this investigation would raise
various parts of the solution to a greater degree of generality, simplicity, and elegance—prevented my comply-
ing at the time with these friendly solicitations. | was not disappointed in this expectation, and | have no cause
to regret the delay. For the methods first employed have undergone so many and such great changes that
scarcely any trace of resemblance remain between the method in which the orbit of Ceres was first computed,
and the form given in this work. Although it would be foreign to my purpose, to narrate in detail all the steps by
which these investigations have been gradually perfected, still, in several instances, particularly when the prob-
lem was one of more importance than usual, | have thought that the earlier methods ought not to be wholly sup-
pressed. But in this work, besides the solution of the principal problems, I have given many things which, during
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the long time I have been engaged upon the motions of the heavenly bodies in conic sections, struck me as wor-
thy of attention, either on account of their analytical elegance, or more especially on account of their practical
utility, see [3].

This lengthy quotation points to several aspects of discovery of which scientists were aware more than two
hundred years ago: elegance as a crucial scientific criterion, serendipity, and the importance of long periods of
reflection in order to better understand the properties of new methods. This last aspect perfectly fits the spirit of
the present note that is devoted to the presentation of the dual specification of the least-squares method, a prop-
erty that was neglected for over two hundred years.

Another striking feature of Gauss’ thinking process about measuring the orbit of heavenly bodies consists in
his clearly stated desire to achieve the highest possible accuracy, see [3]: “If the astronomical observations and
other quantities, on which the computation of orbits is based, were absolutely correct, the elements also, wheth-
er deduced from three or four observations, would be strictly accurate (so far indeed as the motion is supposed
to take place exactly according to the laws of Kepler), and, therefore, if other observations were used, they
might be confirmed, but not corrected. But since all our measurements and observations are nothing more than
approximations to the truth, the same must be true of all calculations resting upon them, and the highest aim of
all computations made concerning concrete phenomena must be to approximate, as nearly as practicable, to the
truth. But this can be accomplished in no other way than by a suitable combination of more observations than
the number absolutely requisite for the determination of the unknown quantities. This problem can only be
properly undertaken when an approximate knowledge of the orbit has been already attained, which is after-
wards to be corrected so as to satisfy all the observations in the most accurate manner possible.

It can only be worth while to aim at the highest accuracy, when the final correction is to be given to the orbit
to be determined. But as long as it appears probable that new observations will give rise to new corrections, it
will be convenient to relax more or less, as the case may be, from extreme precision, if in this way the length of
the computations can be considerably diminished. We will endeavor to meet both cases”.

Here, Gauss seems to be totally aware of the problem connected to out-of-sample prediction and the necessity
or, at least, convenience of a recursive algorithm to account for the information carried by new observations.

Gauss’ reading becomes even more exciting, see [3]: “But when we have a longer series of observations, em-
bracing several years, more normal positions can be derived from them; on which account, we should not insure
the greatest accuracy, if we were to select three or four positions only for the determination of the orbit, and
neglect all the rest. But in such a case, if it is proposed to aim at the greatest precision, we shall take care to
collect and employ the greatest possible number of accurate places. Then, of course, more data will exist that
are required for the determination of the unknown quantities: but all these data will be liable to errors, however
small, so that it will generally be impossible to satisfy all perfectly. Now as no reason exists, why, from among
those data, we should consider any six as absolutely exact, but since we must assume, rather, upon the prin-
ciples of probability, that greater or less errors are equally possible in all, promiscuously; since, moreover,
generally speaking, small errors oftener occur than large ones; it is evident, that an orbit which, while it satis-
fies precisely the six data, deviates more or less from the others, must be regarded as less consistent with the
principles of the calculus of probabilities, than one which, at the same time that it differs a little from those six
data, presents so much the better an agreement with the rest. The investigation of an orbit having, strictly
speaking, the maximum probability, will depend upon a knowledge of the law according to which the probability
of errors decreases as the errors increase in magnitude: but that depends upon so many vague and doubtful
considerations—physiological included—which cannot be subjected to calculation, that it is scarcely, and in-
deed less than scarcely, possible to assign properly a law of this kind in any case of practical astronomy. Nev-
ertheless, an investigation of the connection between this law and the most probable orbit, which we will under-
take in its utmost generality, is not to be regarded as by any means a barren speculation”. This quotation sug-
gests the seed of a maximum likelihood approach. Which takes on a clear statement in the following quote, see
[3]: “Now in the same manner as, when any determinate values whatever of the unknown quantities being taken,
a determinate probability corresponds, previous to observation, to any system of values of the functions (of the
unknown parameters); so, inversely, after determinate values of the functions have resulted from observation, a
determinate probability will belong to every system of values of the unknown quantities, from which the value of
the functions could possibly have resulted: for, evidently, those systems will be regarded as the more probable in
which the greater expectation had existed of the event which actually occurred. The estimation of this probabil-
ity rests upon the following theorem—If, any hypothesis H being made, the probability of any determinate event
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E is h, and if, another hypothesis H’ being made excluding the former and equally probable in itself, the proba-
bility of the same event is h’: then | say, when the event E has actually occurred, that the probability that H was
the true hypothesis, is to the probability that H’ was the true hypothesis, as h to h’”.

Gauss proceeds to state, analytically, the function that represents the probability of an event composed of
many observations and to derive from such a statement the least-squares principle, see [3]: “Therefore, that will
be the most probable system of values of the unknown quantities (parameters) in which the sum of the squares of
the differences between the observed and computed values of the functions (of the unknown parameters) is a
minimum, if the same degree of accuracy is to be presumed in all the observations... The principle explained in
the preceding (paragraph) derives value also from this, that the numerical determination of the unknown quan-
tities is reduced to a very expeditious algorithm, when the functions (of the unknown parameters) are linear”.
This quotation contains a clear statement of the LS approach as the minimum variance linear estimator.

Gauss did not name his approach as the least-squares method. This name was suggested first by Adrien Marie
Legendre in 1805. In his preface, Legendre states, see [2]: “After all the problem’s conditions have been appro-
priately specified, it is necessary to calculate the coefficients in such a manner as to make the errors as small as
possible. To this goal, the method which seems to me the simplest and most general one consists in minimizing
the sum of the squared errors. In this way, one obtains as many equations as unknown coefficients; a way to
calculate all the orbit’s elements. The method that I will present, and that | call the least-squares method, may
be very useful in all problems of physics and astronomy where one needs to obtain the most precise results
possible from observations”. Surprisingly, Legendre does not mention Gauss’ success in predicting Ceres’ orbit
that was obtained in 1801 and was—apparently, according to Gauss—very acclaimed among the world’s astro-
nomers. Also Legendre derives his LS method directly by stating the problem as a linear function of the un-
known parameters, without the more elaborate construct of maximizing the likelihood function formulated by
Gauss.

There remains to mention Laplace. In 1812, he published a fundamental textbook about probability theory,
see [4], and devoted chapter 4 of book 2 to a probability treatment of the LS methodology. The book was dedi-
cated to Napoleon the Great who, in that year, undertook the ill-fated invasion of Russia. The chapter in question
is titled: The probability of the errors of the average results based upon a large number of observations, and the
most advantageous average results. In this chapter one finds a theoretical foundation of the least-squares me-
thod (for linear systems) which results as a consequence of the analysis that the mean observational error will
fall within certain given limits. The analysis—says Laplace [4]—Ieads directly to the results associated with the
least-squares method.

When all the properties and features of the LS method were thought to be well known, and when all the poss-
ible ways of obtaining the least-squares estimates of a linear system’s parameters were thought to have been
discovered, there surfaced an intriguing question: What is the dual specification of the least-squares method? It
is difficult or, better, impossible to conjecture whether such a question could have occurred to either Gauss, or
Legendre, or Laplace. The Lagrangean method [5], that is crucial for answering this question, was published by
Lagrange in 1804, with revisions in 1806 and 1808. Perhaps, the greatest obstacle to the idea of the dual LS spe-
cification has been the particular way in which the LS problem is formulated and presented to students. To date,
the traditionally and universally used approach to the LS estimator has hidden away the analytical path to the
dual problem. By now one can say that, at least from the viewpoint of fully understanding its structure, the neg-
lect of the dual of the LS method has left a surprising gap. The objective of this paper is to fill this gap.

3. The Primal of the Least-Squares Method

We abstract from any statistical distribution of the error terms and hypothesis-testing consideration. The tradi-
tional (primal) LS approach consists of minimizing the squared deviations from an average relation of, say, a li-
near model that consists of three parts:

y=Xfg+u @

where y is an (n ><1) vector of sample observations, X is an (n>< k) matrix of predetermined values, f isa
(kx1) vector of unknown parameters to be estimated, and u is an (nx1) vector of deviations from the quan-

tity Xp.
In the terminology of information theory, relation (1) may be regarded as representing the decomposition of a

message into signal and noise, that is
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message = signal + noise 2

with the obvious correspondence: y = message, X = signal, and u = noise. The quantity y is more generally
known as the sample information.

The least-squares methodology, then, minimizes the squared deviations (noise) subject to the model’s speci-
fication given in Equation (1). Symbolically,

Primal: min SSD =u'u/2 )]
subject to y=Xpg+u 4)

where SSD stands for sum of squared deviations. An intuitive interpretation of the objective function (3) is the
minimization of a cost function of noise. We call model (3) and (4) the Primal LS model. The solution of model
(3) and (4) by any appropriate mathematical programming routine gives the LS estimates of parameters g and
deviations (noise) u.

Traditionally, however, the LS method is presented as the minimization of the sum of squared deviations de-
finedas SSD =(y— X,B)' (y—X ) with the necessity of deriving, first, an estimate of the 5 parameters and
then using their least-squares estimates 4 to obtain the LS residuals: G =y— X 8. This way of presenting the
LS method obscures the derivation of the dual specification and is the source of some readers’ surprise that LS

parameters and residuals may be estimated simultaneously by means of a nonlinear programming solver.

4. The Dual of the Least-Squares Method

The Lagrange approach is eminently suitable for deriving the dual of the least-squares method. Hence, choosing
the (n x 1) vector variable e to indicate n Lagrange multipliers (or dual variables) of constraints (4), the relevant
Lagrangean function is stated as:

L(u,B.e)=uu/2+e'(y-XB-u) (5)
with first order necessary conditions (FONC)

oL
—=u-e=0 6
o (6)
i:—X’e:O (7)
op
%:y—Xﬂ—u:O. (8)
oe

A first remarkable insight is that, from FONC (6), the Lagrange multipliers (dual variables), e, of the LS me-
thod are identically equal to the deviations (primal variables, noise), u. Each observation in model (4), then, is
associated with its specific Lagrange multiplier that turns out to be identically equal to the corresponding devia-
tion. A Lagrange multiplier measures the amount of change in the objective function due to a change in one unit
of the associated observation. If a Lagrange multiplier is too large, the corresponding observation may be an
outlier. Secondly, FONC (6) and (7), combined into XU =0, represent the orthogonality condition between the
vector of deviations and the space of predetermined values of the linear model (1) that characterizes the LS ap-
proach. The equations XU =0 constitute the constraints of the dual model. In general, the dual objective func-
tion is given by the maximization of the Lagrangean function with respect to dual variables, keeping in mind
that e=u. And since we are dealing with a quadratic specification, the Lagrangean function can be simplified
substantially by means of relation (6), restated as:

u=e and u'u=u'e. 9)
Therefore, the Lagrangean function can be streamlined as:
L(u,B.e)=u'u/2+e'(y-Xp-u)=uy—u'u/2 (10)

using relations (7) and (9).
The Dual of the LS model can now be assembled as:
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Dual: max NVSI =u'y —u'u/2 (11)
subject to Xu=0 (12)

Constraints (12) constitute the orthogonality conditions of the LS approach, already mentioned above. An in-
tuitive interpretation of the dual objective function can be formulated within the context of information theory.
Hence, the dual problem seeks to maximize the net value of the sample information (NVSI). Typically, dual va-
riables (Lagrange multipliers) are regarded as marginal sacrifices or implicit (shadow) prices of the correspond-
ing constraints. We have already seen that dual variables e are identically equal to primal variables u. Thus, in
the LS specification, the variables u have a double role: as deviations in the primal model (noise) and as “impli-
cit prices” in the dual model. The quantity u'y, therefore, is interpreted as the gross value of sample informa-
tion. This quantity is netted out of the “cost of noise”, u'u/2, to provide the highest possible level of the NVSI
objective function.

In the dual model, the vector of parameters S is obtained as a vector of Lagrange multipliers of constraints
(12). In fact, from the Lagrangean function of the dual problem stated as:

L' (u,u)=yu—-u'u/2—u'[XU]

where 4 is a (k ><1) vector of Lagrange multipliers associated with constraints (12), the corresponding
FONCs are

ﬁ:y_u_xﬂ:o (13)
ou
ﬁ:—XU:O. (14)
ou

Hence, from Equation (13) and Equation (14), we can write
XYy—=XU=XXu=0=Xy-XXu
that results (assuming the nonsingularity of the (X X ) matrix) in the formula of the well known LS estimator
a=(XX)"'Xy=24.

All the information of the traditional LS primal problem is contained in the LS dual model, and vice versa.
Hence, the pair of dual problems—the primal [(3)-(4)] and the dual [(11)-(12)]—provides identical LS solutions
for separating signal from noise.

At optimal solutions, G, of both the primal and the dual LS models, the two objective functions are equal
and can be written as

Primal = Dual
a'd/2=0'y-0"d/2.

It follows that

which demonstrates a previous assertion, namely that the change in the primal objective function corresponding
to a marginal change in each sample observation is equal to its associated Lagrange multiplier that is identically
equal to the corresponding deviation. The two primal and dual objective functions can also be rewritten as:

a'a ay

n n

Hence, the quantity U'y/n represents an equivalent way to estimate the variance of the sample deviations.

5. The Dual of the LS Method and Pythagoras Theorem

An interpretation of the dual pair of LS problems, without reference to any empirical context, can be formulated



Q. Paris

using the Pythagorean theorem. With the knowledge that a solution to the LS problem requires the fulfillment of
the orthogonality conditions XU =0, given in (12), Pythagoras theorem allows for the statement

yy = y’(Xﬂ+u)=(Xp’+u)'(X/}+u):/3'XX,B+2ﬁ’XU+u’u =pB'XXB+u'u (15)
and also
yy=y (XB+u)=yXB+yu :(X,B+u)' XB+yu=pXXp+yu.
Therefore,
uu=y'u
that can be restated as:
u'u/2=y'u-u'u/2 (16)

which corresponds to the two objective functions of the primal (3) and the dual (11): the left-hand-side of equa-
tion (16) is the primal objective function to be minimized and the right-hand-side of the same equation is the
dual objective function to be maximized. By the Pythagoras theorem (expressed by Equation (15)), for any giv-
en vector of observations y, the minimization of the noise function u'u must be matched by the maximization
of B'XX S which corresponds to the maximization of the signal. Equivalently, minimizing the length of the
deviation vector u corresponds to maximizing the length of the vector X £, which is the projection of the ob-
servation vector y onto the space of predetermined variables X.

6. Conclusion

This paper has retraced the history of the least-squares method and has developed the dual specification of it
which is a novel way of looking at the LS approach. It has shown that the traditional minimization of the sum of
squared deviations that give the name to the algorithm is equivalent to the maximization of the net value of
sample information.
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