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Abstract 
This paper proposes a system representation for unifying control design and numerical calcula-
tion in nonlinear optimal control problems with inequality constraints in terms of the symplectic 
structure. The symplectic structure is derived from Hamiltonian systems that are equivalent to 
Hamilton-Jacobi equations. In the representation, the constraints can be described as an input- 
state transformation of the system. Therefore, it can be seamlessly applied to the stable manifold 
method that is a precise numerical solver of the Hamilton-Jacobi equations. In conventional me-
thods, e.g., the penalty method or the barrier method, it is difficult to systematically assign the 
weights of penalty functions that are used for realizing the constraints. In the proposed method, 
we can separate the adjustment of weights with respect to objective functions from that of penalty 
functions. Furthermore, the proposed method can extend the region of computable solutions in a 
state space. The validity of the method is shown by a numerical example of the optimal control of a 
vehicle model with steering limitations. 
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1. Introduction 
An optimal control is one of the most important strategies in control design. Optimal control problems for non-
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linear systems can be formulated by Hamilton-Jacobi equations [1]. Although a lot of approximate methods 
were presented (see [3]), a precise solving method of the equations had been left undeveloped for a long time. 
As it is now a definitive numerical solver called the stable manifold method was recently presented by [2], and it 
has been applied to many practical problems [3]. The stable manifold method is a symplectic numerical scheme 
of equivalent Hamiltonian systems derived from the Hamilton Jacobi equations. 

On the other hand, almost all actual control systems possess not only nonlinearity, but also constraints with 
respect to, e.g., inputs or state variables. Constrained optimal problems have attracted a lot of attentions, and 
many methods, e.g., the penalty method or the barrier method have been proposed for such systems [4] [5]. The 
common strategy of such approaches is to create constraints by rapidly increasing nonlinear weights in cost 
functions for preventing states from violating constraints. This idea has been widely applied in various situations, 
and yielded many useful results, e.g., [6]-[12]. However, in nonlinear optimal control problems with constraint, 
approaches based on numerical solutions obtained from the stable manifold method have not been sufficiently 
discussed yet to our knowledge. 

This paper proposes the formulation for integrating inequality constraints in the nonlinear optimal regulator 
design using the stable manifold method. The formulation is derived from the input-output linearization tech-
nique [11] [13]. We can apply the stable manifold method to input affine first order nonlinear system. For such a 
system, solutions can be numerically calculated even if analytical solutions are not available or their behaviors 
are very complex. Thus, the usual control design procedure of the stable manifold method can be seamlessly ap-
plied to constrained systems described by the proposed formulation. The optimality of the controllers can be 
proven in the same way of the barrier method. Indeed, we show that the change caused by the transformation 
can be interpreted as the addition of another penalty in objective functions. 

Furthermore, our formulation has the following three advantages. First, a heuristic parameter tuning of 
weights is practically required for convergence of calculations in many cases. However, in conventional me-
thods, the weights of error functions such as quadratic terms with respect to states or inputs and penalty func-
tions are described as a single objective function. Thus, it is difficult to independently adjust each weight, be-
cause solutions in nonlinear optimizations are quite sensitive with respect to such a change. In our method, the 
constraint is described as a part of control systems by using the transformation between inputs and state va-
riables; therefore, the weights can be separately adjusted. Second, in the barrier method (or the interior penalty 
method), it is not so easy to set initial states of numerical calculations in a constrained region in some cases. In 
the stable manifold method, optimal orbits are calculated from a stable point at the origin to the surrounding area 
of the origin in the inverse direction of time evolutions. Therefore, we can systematically search solutions inter-
secting a given initial condition. Third, cost functions with Lagrange multiplier are used for incorporating equal-
ity constraints in addition to penalty functions in the multiplier method. The method is based on a local optimal-
ity, i.e., the Karush-Kuhn-Tucker condition, and solutions are approximately calculated by an iterative calcula-
tion, e.g., the sequential quadratic programming method [14]. In our method, optimal orbits obtained from the 
stable manifold method can be regarded as (semi-)global optimal solutions if they sufficiently cover a state 
space. Furthermore, there is no need to employ any approximation of solutions and any system reduction in the 
design. 

This paper is constructed as follows: Section 2 states basic definitions of nonlinear optimal control problems 
and provides the brief introduction of our method. In Section 3, we first present a formulation of nonlinear op-
timal control problems with constraints in terms of differentiable saturation functions. Next, an augmented sys-
tem including the constraints is introduced from the formulation. Then, we discuss three topics: the implementa-
tion of the system with the stable manifold method, the optimality of the formulation, and the extension to mul-
ti-input and multi-constraint cases. Finally, in Section 4, a numerical control example for a vehicle model with 
steering limitations modeled by a saturation function is illustrated to show the validity of our method. 

2. Problem Setting and Brief Summary of Proposed Method  
In this section, we make a brief summary of nonlinear optimal control problems and formalize a class of control 
systems with constraints described by inequalities. 

2.1. Control Systems with Inequality Constraints  
Let us consider the following nonlinear system:  
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( ) ( )x f x g x u= +                                        (1) 

with an initial condition ( ) 00x x= , where : n nf →   and : n n mg ×→   are the vector fields consisting 
of smooth functions, and the state and the input are denoted by, respectively, ( ) nx t ∈  and ( ) mu t ∈ . The 
vector representation of system (1) is as follows:  

( )

( )

( ) ( )

( ) ( )

1 1 11 1 1

1

d .
d

m

n n n nm m

x f x g x g x u

t
x f x g x g x u

      
      = +      
            



     



                          (2) 

Then, we consider the following constraint with respect to a state variable ix  for some 1 i n≤ ≤ :  

min max ,ia x a< <                                           (3) 

where min 0a <  and max 0a >  are constants. 
Our method has been constructed with a mind to be applied to the stable manifold method [2]. Hence, we as-

sume the following conditions that are required for the application. 
Assumption 1. System (1) satisfies  
1. ( )0 0f = ,  
2. The approximate linear system of (1) is stabilizable.  

2.2. Nonlinear Optimal Regulator  
We first recall the standard setting of nonlinear optimal control problems. 

Problem 1. Find a control input u in (1) minimizing the objective function  
 ( )d ,J x Qx u Ru tΤ Τ= +

                                     (4) 
where the weights Q and R are diagonal matrices such that 0Q ≥  and 0R > .  

The Hamiltonian H in the variational calculus of the above problem can be introduced by using Lagrange 
multiplier np∈  as follows:  

( ) ( ) ( ){ }, , .H x p u x Qx u Ru p f x g x uΤ Τ Τ= + + +                           (5) 

That is, Problem 1 can be rewritten as the problem of minimizing H. Then, from the stationary condition with 
respect to u, we obtain the optimal feedback as follows:  

( ) ( )112 0 .
2

H u R p g x u R g x p
u

Τ Τ − Τ∂
= + = ⇒ = −

∂
                          (6) 

By substituting (6) into (5) and using dynamic programming, we get the following Hamilton-Jacobi equation:  

( ) ( ) ( ) ( )11, 0.
4

H x p x Qx p g x R g x p p f xΤ Τ − Τ Τ= − + =                          (7) 

If we can solve (7) with respect to x and p, then the solution ( ),x p  of (7) can determine the optimal gain 
( )p t  in the feedback (6) for each state ( )x t  at a time 0 t≤ < ∞ . 
The stable manifold method, which is the main tool in this paper, is an integral recursion formula for calcu-

lating solutions of the Hamiltonian systems that are transformed from the Hamilton-Jacobi Equation (7) that are 
directly difficult to solve (see Appendix). 

2.3. Conventional Methods for Constrained Optimal Problems  
The penalty method and the barrier method are extended optimization methods for treating constraints. In these 
methods, the penalty function ( )P x  and the barrier function ( )B x  such as  

( ) ( )
( ) ( )

0
,

0
x S

P x
h x x S
 ∈=  > ∈/

                                   (8) 

( ) ( )0, int s.t. lim
x S

B x x S B x
→∂

≥ ∈ = ∞                                (9) 
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are respectively added to the cost function (4), where S is the domain within the constraint, int S  denotes the 
internal of S, and x S→∂  means that the infimum of a certain norm between x and any y S∈∂  tends to be 
zero. ( )P x  becomes larger when x get more further away from the unconstrained region S; therefore, it is ex-
pected that solutions avoid violating constraints. However, the constraint is not exactly guaranteed, and the be-
haviors are depend on the setting of weights multiplied to ( )P x . ( )B x  is defined only in the internal of S. In-
itial conditions in numerical calculations should be selected to satisfy this constraint, and this setting is not al-
ways easy. 

2.4. Concept of Proposed Method  
This section briefly summarizes the proposed method for applying the stable manifold method to nonlinear op-
timal problems with inequality constraints. The main idea of the method is to transform the problem as a stan-
dard problem for unconstrained systems. That is, we derive an input transformation that acts as the constraints 
with respect to a state ix  from the input-state linearization [11] [13].  

Let us consider the original control system Σ , and the input transformer zΣ  that is added to Σ  (see Fig-
ure 1). Σ  has the input u and the full-state output y, and zΣ  has the external input du  and the output zy  
that is defined as the function u of x and zx  that realizes the constraint (e.g., ( )zη  in Figure 2, details will be 
explained later) as follows:  

( ) ( ) ( )
( )

,,
: :

, ,,
z z z d

z
z z

z f x B ux f x g x u
y u x xy x

 = += + Σ Σ  ==  




                     (10) 

where zx  is defined by using the virtual variable ( )z t ∈  as  
( )1, , , ,r

zx z z z
Τ− =  

                                 (11) 

and : r r
zf →   and n

zB ∈  are given by, respectively,  

( ) ( ) [ ]1, , , ,0 , 0,0, ,0,1 .r
z zf z z z z B

Τ Τ− = =  
                       (12) 

The input of Σ , i.e., the output of zΣ  is designed for realizing the constraint (3). Hence, we only have to solve 
the standard nonlinear optimal control problem of the transformed system zΣ ⋅Σ  instead of that of the system 
Σ  with the constraints. 

Example 1. Let us consider the nonlinear system  
 

 
Figure 1. Input transformation of control systems.                   

 

 
Figure 2. Differentiable saturation function ( )zη .                     
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3
1 1 2

2

0d:
1d 0

x x x
u

xt
   −  

Σ = +    
    

                            (13) 

under the constraint 21 1x− < < . By using a smooth function ( )zη  in Figure 2, which will be formally de-

fined as a differentiable saturation function in the next section, with the range ( ) ( )max min, 1,1a a = − , a suffi-

ciently small number   and a new state z∈ , the inequality constraint can be written by ( )2x zη= . We 
have the following equivalent equation of the description (see Proposition 1):  

( ) ( )( )2 2, 0 0 .x z x z
z
η

η
∂

= =
∂

                             (14) 

On the other hand, by substituting the relation 2x u=  of the system (13) into (14), the following relation is 
given:  

: , ,z du z u z
z
η∂

Σ = =
∂
                               (15) 

where z  in the right side of (15) has been regarded as a new input du . Hence, we can augment the system (13) 
as follows:  

3
1 1 2

2

0
d: 0 .
d

0 1

z d

x x x
x u

t z
z

η
  −   ∂    Σ ⋅Σ = +    ∂         

 

Furthermore, we can reduce this expression by eliminating 2x  as follows:  

( )3
1 1

0d: .
1d 0z d

x x z u
zt

η    −Σ ⋅Σ = +    
     

                            (16) 

This system actually includes the inequality constraint. Moreover, the system (16) is an input affine first order 
nonlinear system, and it satisfies Assumption 1. Hence, we can apply the stable manifold method to the nonli-
near optimal control problem of (16) instead of (13) with the constraint. In this case, the objective function is 
given as  

 ( )dd dJ x Qx u Ru tΤ Τ= +
                                 (17) 

where Q and R are some weight matrices, and we have defined the state variables [ ]1,x x z Τ= .  

3. Formulation of Nonlinear Optimal Control Problem with Constraints for  
Stable Manifold Method  

In this section, we formally state the formulation of the previously discussed basic concept for constrained sys-
tems, and then we prove the optimality of the formulation. Finally, we show that the formulation is generalized 
for multi-input-output systems with higher relative degrees. 

3.1. Differentiable Saturation Function  
For simplification, we first introduce the standard formulation for single-input-output systems (1) with the con-
straint (3) from [11]. We shall introduce the following well-known definition [13] as a preparation for the gene-
ralization. 

Definition 1. Let y be the output of the system (1). We call ρ  the relative degree of y if ρ  is the minimum 
integer satisfying 1 0g fL L yρ− ≠ , where fL y  is the Lie derivative of ( )y x  with respect to ( )f x  defined by  

( ) ( )
1

,
n

f i
i i

yL y x f x
x=

∂
=

∂∑                                    (18) 
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and we denote ( ) ( )( )1:k k
f f fL y x L L y x−=  for 2k ≥ .  

In this paper, we consider the following function describing inequality constraints. 
Definition 2. Let iy x=  be the output of the system (1) with the relative degree ρ  for some 1 i n≤ ≤ . 

Consider a function ( )min max: , ; ia a z xη →   satisfying the following properties:  
1. C ρ -class,  
2. bijective,  
3. ( ) maxlimz z aη→+∞ =  and ( ) minlimz z aη→−∞ = , and  
4. there exists a constant 0>  such that ( )z zη =  for any [ ]min max,z a a∈ + −  .  

We call such an η  a ρ -th differentiable saturation function.  
Proposition 1. The state ix  constrained by (3) of the system (1) for some 1 i n≤ ≤  can be described as  

( )ix zη=                                           (19) 

for any z∈ .  
Proof. If (3) holds, there exists a unique z satisfying (19), because η  is a bijection. Conversely, if there ex-

ists z satisfying (19), ( )min max,ix a a∈ . Therefore, ix  satisfies (3).                                    
Proposition 2. Consider a k-th differentiable saturation function η  describing the constraint (3). Then, for 

any integer 1k l> ≥ , (19) is equivalent to the following two equations:  
( ) ( ) ( )
( ) ( ) ( ) ( )( ) ( )

,

0 0 , 1, , 1 .

k k
i

l l
i

x z

x z l k

η

η

 =


= = − 

                             (20) 

where ( ) ( ) ( )k k
i ix x t=  for some 1 i n≤ ≤  and ( )z z t=  are functions of the time t, the k-th order time deriva-

tive of ix  and η  are denoted by ( )k
ix  and ( )kη , respectively.  

Proof. By integrating the both side of ( ) ( ) ( )k k
ix zη=  with respect to t, we get  

( ) ( ) ( )1 1 ,k k
i kx z Cη− −= +                                     (21) 

where kC  is some constant of integration. Here, if we set ( ) ( ) ( ) ( )( )1 10 0k k
ix zη− −=  as an initial condition, then 

0kC =  and (21) is equal to  

( ) ( ) ( )1 1 .k k
ix zη− −=                                       (22) 

In the same way of the integration for each l, we can see that (20) is equal to (19).                        
Thus, we use the relation (20) instead of the inequality constraint (3) in the nonlinear optimal control design. 
Remark 1. In Definition 2, the function η  is defined as a bijection. The surjectivity can be relaxed by re-

stricting a state space to some open subdomain including the origin. The injectivity is used for guaranteeing the 
uniqueness of solutions around the origin. If we don’t assume injective, there exist a lot of z satisfying this rela-
tion at an initial time, e.g., considering a sinusoidal wave function as a constraint or in the case of systems with 
cyclic coordinates. Here, we assumed the injectivity to avoid such complexities.  

3.2. Augmented System Representation Including Constraints  
In this section, we clarify the representation of the connected system zΣ ⋅Σ  described in Section 2. 

Proposition 3. Let iy x=  be the output of the system (1) with the relative degree ρ  for some 1 i n≤ ≤ . 
Let η  be a ρ-th differentiable saturation function describing the constraint (3) with respect to ix . Then, for 
any natural number l ρ≤ , we can describe as follows:  

( ) ( ) ( )( ) ( )1, , ,l l l
lz z z z

z
ηη φ − ∂

= +
∂

                               (23) 

where lφ  is some function.  
Proof. By applying a time differentiation to (19), we get  
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.ix z
z
η∂

=
∂

                                          (24) 

For 1l = , (23) holds if 1 0φ = . We assume that (23) holds for 1l j= − . Then, the following relation holds:  

( ) ( ) ( ) ( )1
1

d d .
d d

j j j
jz z z

t t z z
η η

η φ −
−

∂ ∂ = + + ∂ ∂ 
                        (25) 

By regarding the first and second terms in (25) as jφ , we can see that (23) holds for l j= . Because η  is C ρ - 
class, (23) holds for any l.                                                                     

Proposition 4. Consider the system (1) with the state ix  constrained by (3) for some 1 i n≤ ≤ . Let iy x=  
be the output of the system with the relative degree ρ . By regarding ( )pz  as a new input du  in the relation 
(20), we can augment the system (1) as follows:  

( )

( )

( )2 1

1

0
d ,
d

0
10

d

x f g g
z z

u
t

z z
z

ρ ρ

ρ

α β

− −

−

  +   
     
     
     = +
     
     
        








                             (26) 

where we assume that the initial condition is ( ) ( ) ( ) ( )( )0 0k k
ix zη=  for 1, ,k ρ=  , and we have defined  

,du uα β= +                                     (27) 

( ) ( )( )( ) ( )1 111 1: , , , : .g f i f i g f iL L x L x z z L L x
z

ρρ ρ ρ
ρ

η
α φ β

− −−− − ∂
= − + =

∂
                (28) 

Proof. From the direct calculation of (23) for l ρ= , we can obtain  

( ) ( )( ) ( )11 , , .i f i g f ix L x L L x u z z z
z

ρ ρ ρρ ρ
ρ

η
φ −− ∂

= + = +
∂

                    (29) 

Hence, we can determine u by using the second equality.                                            
In Proposition 4, the subsystem with respect to z corresponds with zΣ  explained in Section 2. The system 

(26) can be reduced as follows. 
Corollary 1. The system (26) is equivalent to the following system under the assumption that the constraint in 

(19) holds:  

( ) ,dx f x gu= +                                   (30) 

where we have defined  

( )1
1 1 1, , , , , , , , ,i i nx x x x x z z ρ Τ−

− +
 =                             (31) 

( ) [ ]1
1 1 1, , , , , , , , ,0 , 0, ,0,1 .i i nf f f f f z z gρ Τ Τ−

− +
 = = 
                   (32) 

3.3. Unifying Augmented Systems with Stable Manifold Method  
Let us consider designing an optimal feedback (6) for the system (30) by using the stable manifold method. To 
apply the stable manifold method, we must check whether Assumption 1 holds. The first assumption obviously 
holds. 

Lemma 1. Consider the constrained system (30). Then, ( )0 0f =  holds.  
Proof. In the original system (1), we assumed that ( )0 0f = , i.e., ( )0 0if =  for 1 i n≤ ≤  in (2). Hence, 

0f iL xρ = . From the definition of differentiable saturation functions, we obtain ( )0 0η = . Hence, 
( )1 0z z z ρ−= = = =

 , and 0kφ =  for k ρ≤  in (23). Therefore, if 0x = , 0i if g ρφ+ =  for 1 i n≤ ≤ , i.e., 
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( )0 0f = .                                                                              
Consequently, the following condition is obtained from the above fact. 
Theorem 5. Consider the nonlinear optimal regulator design of the system (2) that satisfies Assumption 1 

with the constraint (3) in terms of the augmented system (30). The stable manifold method can be applied to the 
system if the linearized system of the augmented system (30) is stabilizable.  

Proof. By Corollary 1 and Lemma 1, we can prove the applicability of the stable manifold method for the 
system. A stable manifold is defined by the adjoint variable ( )p V x Τ= ∂ ∂  for a certain solution ( )V x  of the 
Hamilton-Jacobi equation. If the linearized system (30) is stabilizable, there exists the stabilizing solution of the 
Riccati equation corresponding to the Hamilton-Jacobi equation, and there also exists a stabilizing solution  
( )V x  of the Hamilton-Jacobi equation such that ( ) ( ) ( ) ( ) ( )1f x g x R x g x p x− Τ−  is asymptotic stable [15]. 

In this case, p derived from the stabilizing solution ( )V x  can be calculated by the stable manifold method.   
Furthermore, we can derive the following Hamiltonian system from the above representation in (30) for the 

constrained system. 
Lemma 2. Equation (7) for the system (30) can be transformed into the equivalent Hamiltonian system  

( ) ( ) ( )

( ) ( )

1

1

1 ,
2
1 .
4

Hx f x g x R g x p
p

H fp p g x R g x p
x x x

− Τ

ΤΤ −

∂ = = − ∂


∂ ∂ ∂ = − = − + ∂ ∂ ∂





                        (33) 

One of the most important advantages of this implementation of the stable manifold method is the following 
symplectic property of the numerical scheme. 

Proposition 6. The numerical precision on the optimality of controllers obtained from the stable manifold 
method for the constrained optimal problem can be checked by the condition whether the Hamiltonian ( ),H x p , 
i.e., the left-side of the Hamilton-Jacobi Equation (7) is sufficiently close to zero.  

Proof. The Hamilton-Jacobi equation is defined by ( ), 0H x p = . Therefore, by using the representation in 
Lemma 2, if the Hamiltonian of the equivalent Hamiltonian system (33) is approximately zero, state variables of 
the Hamiltonian system can be regarded as a solution of the Hamilton-Jacobi equation.                    

3.4. Optimality of Problem Setting for Augmented Systems  
This section shows that the formulation using the augmented system (30) is reasonable in the sense of optimal 
problems. 

Our purpose is to find u that is subject to minimize the cost function J in Problem 1. However, the costs with 
respect to ( )1, ,z z ρ−

  and du  are not included in J at present. Thus, we define a new objective function as 
follows. 

Problem 2. Find a control input u in (1) minimizing the objective function  
 ( )dd d dJ x Qx u Ru u R u tΤ Τ Τ= + +

                              (34) 
for the augmented system (30), where the weights Q , R and dR  are diagonal matrices such that 0Q ≥ , 

0R >  and 0dR > .  
The purpose of the term d d du R uΤ  is to converge the input du  to regions that are close to the bounds of the 

constraints. Thus, if dR  is sufficiently small, the effect of this term becomes negligible in the sense of the 
original optimal problem. 

Theorem 7. If the weight dR  in (34) and the parameter   of η  in Definition 2 are sufficiently small, and  
if the i-th components iq  of Q  for all 1i n≥ +  are sufficiently small, then a solution of Problem 2 gives  
an approximation of that of Problem 1 with arbitrary accuracy.  

To prove the above theorem, we prepare the following facts. 
Lemma 3. Consider ix  and z satisfying (19). Then, 2z → +∞  when minix a→  or maxix a→ .  
Proof. According to Definition 2, η  is bijection. Thus, for any ( )min max,ix a a∈ , there exists ( )1

iz xη−= . At 

the same time, ( ) maxlimz z aη→+∞ =  and ( ) minlimz z aη→−∞ = . These are equivalent to ( )
max

1lim
ix a ixη−
→ = +∞   
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and ( )
min

1lim
ix a ixη−
→ = −∞ . Therefore, we can see that 2z →+∞  when minix a→  or maxix a→ .         

Lemma 4. If the i-th components iq  of Q  for all 1i n≥ +  are sufficiently small, the cost function (34) 
can be considered as the cost function (4) with the nonlinear weight  

( )
( )

( ) ( )
( ) ( )

min max

min min

max max

0 ,
,
,

i

i i i

i i

a x a
W x C x a x a

C x a x a
−

+

 + ≤ ≤ −
= ≤ ≤ +
 − ≤ ≤

 



                          (35) 

where the sketch of the function W is illustrated in Figure 3, ( )iC x−  is the monotonic decreasing positive 
function such that  

( ) ( )
min min

lim , lim 0,
i i

i ix a x a
C x C x− −→ → +

= +∞ =


                          (36) 

and ( )iC x+  is the monotonic increasing positive function such that  

( ) ( )
max max

lim 0, lim .
i i

i ix a x a
C x C x+ +→ − →

= = +∞


                         (37) 

Proof. Let iq  be the i-th component of Q. Now, we can define  

( ) 2 2: ,i n i iW x x Qx x Qx q z q xΤ Τ= − ≈ −                            (38) 

where we used the relation in Lemma 3. Therefore, Equation (34) can be rewritten as  

 ( )( ) ( )d d ,d d d i iJ x Qx u Ru u R u W x t J W x tΤ Τ Τ= + + + ≈ +
                (39) 

because dR  is sufficiently close to zero.                                                        
Proof of Theorem 1. From Lemma 4, we can obtain the correspondence between (4) and (34) under the as-

sumptions. On the other hand, in the barrier method, if there exist an optimal solution opt
ix  for the weight ir  

of penalty functions, and if the sequence { }opt

0i i
x

∞

=
 converges to some optx∞  for a monotonic increasing se-

quence { } 0i i
r ∞

=
, then optx∞  is the solution of optimal problems with constraints. Hence, the solutions of Problem 

2 are those of optimal problems with constraints.                                                  

3.5. Extension to Multi-Input and Multi-Constraint Cases  
In this section, we describe the basic idea of extending the previous discussion on single input systems (i.e., 

1m = ) to multi-input systems (i.e., 1m > ) in the framework of the stable manifold method. 
As the simplest case, if inputs are isolated with each other in their input-output relations, i.e., they do not have 

a common output, multi-input system representation can be defined by independently applying the same way of 
the single input case to each input with constraint. On the other hand, there might exist many inputs 1 2, ,u u   
derived from a certain y by differentiations. In this case, we can actually employ the same procedure [11]. Hence, 
we only explain the basic idea of the extension here. 

 

 
Figure 3. Equivalent weight function W.          
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We first consider the following case of two inputs with different relative degrees for simplification. 
Proposition 8. Consider the system (1). Let y be the output of the system with the relative degree 1ρ  with 

respect to 1u  and the relative degree 2ρ  with respect to 2u , where 1 2ρ ρ≠  and 1u  and 2u  are not re-
lated with each other through their derivatives. Then, the effect of 2u  is included in the first term of the right 
hand of the following equation: ( )1 1 1 1

1f g fy L L L uρ ρ ρ −= + .  
Proof. If 1 2ρ ρ< , 2u  appears after ( )2 1ρ ρ−  differentiations of 1

fLρ . If 1 2ρ ρ> , 2u  must appeared be-
fore 1ρ  differentiations of y as 2 1

2g fL L uρ − ; however, this term does not generate 1u  after further differentia-
tions.                                                                                     

The above discussion can be easily extended to the case of multi inputs with different relative degrees. 
Next, we consider the case when many inputs with the same relative degree are derived from a certain y by 

differentiations. In this case, u is not uniquely determined from (29), because 1
g f iL L xρ−  is a ( )1 m× -matrix. 

However, we can choose a representative input by using the following procedure. 
Definition 3. Let iα  be the i-th component of 1

g f iL L xρ− . Then,  

[ ]1
1g f i mL L xρ α α− =                                (40) 

and ( )
ix ρ  can be written as  

( )( ) ( )1

1
, ,

m

j j f i
j

u L x z z z
z

ρ ρρ
ρ

η
α φ −

=

∂
= − + +

∂∑                          (41) 

as in (29). There exists some j satisfying 0jα ≠  in the left side of (41), because 1 0g f iL L xρ− ≠ . Hence, we 
choose one of such j as 0j , and define  

( )( ) ( )
0

00

11 , , .j j j f i
j jj

u u L x z z z
z

ρ ρρ η
α φ

α
−

≠

 ∂
= − − + + 

∂ 
∑                     (42) 

By eliminating 
0j

u  from the system, we can regard ( )z ρ  as a new input du .  
Proposition 9. Let iy x=  be the output of the system (1) with the relative degree ρ . Let η  be a ρ -th 

saturation function describing the constraint (3) with respect to ix . Then, the system with the input (42) satis-

fies the constraint for any input 
0 01 1 1, , , , , ,j j m du u u u u u

Τ

− + =  
   under the initial condition ( ) ( ) ( ) ( )( )0 0l l

ix zη=  

for 1, , 1l ρ= − .  
Proof. The input 

0j
u  can be constructed in the same way in Proposition 4. Note that other inputs iu  except 

for 0i j=  are canceled by the first term in (42).                                                  
As a result, in the multi constraint case, we only have to apply the above two extensions to each input, and the 

integration to the stable manifold method is basically the same construction of the single constraint case. 

4. Numerical Example  
This section shows the numerical result of the nonlinear optimal control for a vehicle model to demonstrate of 
the validity of the proposed method. 

4.1. Control Model  
Let us consider a 2-wheel vehicle model that is equivalent to a 4-wheel vehicle under the following assumptions: 
the characteristics of wheels are same, resistive forces except for the friction between tires and grounds are neg-
ligible, and the equilibrium point of the system is a state of a steady driving with a constant speed. The state eq-
uation of the model is given by  

sin cos
0

2 02d cos ,
0d
1

0

x y

f r
f r

F F r
mV mV
lr lC C u
I It

r

β β
β

δ
θ
δ

 − + −    
    
    −= +    
    
    
  

                      (43) 

where the state variables β , r, θ , and δ  denote the slip angle at the center of gravity (COG), the yaw rate, 
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the body angle, and the steering angle, respectively, and the following physical constant parameters are used: the 
mass 990m = , the speed V, the moment of inertia 683I = , the distance 1.0fl =  from front axle to COG, 
and the distance 1.3rl =  from rear axle to COG. Moreover, xF  and yF  denote the translational forces with 
respect to, respectively, x and y in the x y−  coordinate, and they are calculated by iY  for { },i f r∈  that is 
the cornering force of each wheel, iC  for { },i f r∈  that is the lateral force of wheels obtained from a nonli-
near tire model called the magic formula [16], iN  for { },i f r∈  that is vertical load of wheels, and iβ  that is 
the slip angle of wheels as follows:  

( ) ( )2 sin 2 sin , 2 cos 2 cos ,x f f r r y f f r rF Y Y F Y Yβ δ β β δ β= + + = + +           (44) 

( )( ){ }cos , sin arctan arctan ,i i i i i i i iY C C N F B E B Bβ µ β β β = = − −            (45) 

, ,fr
f v r v

f r f r

llN mg N mg
l l l l

= =
+ +

                            (46) 

where the subscript i means the front wheel if i f=  and the rear wheel if i r= , and we have defined the fric-
tion constant 0.4µ =  between road surfaces and tires (wet condition), the experimental parameters 3.25B = , 

1.23E =  and 6.00F = − , and the gravitational acceleration 9.8vg = . 

4.2. Control Design  
Let us design an optimal regulator for the vehicle model with the inequality constraint as an angle limitation of 
the front wheels. The purpose is to stabilize the state variables ( ), , ,x rβ θ δ=  at the origin 0 under a constant 
speed V. The system (43) satisfies Assumption 1. By using a differentiable saturation function η  and a new va-
riable z, we describe the limitation  

min maxa aδ< <                                     (47) 

as ( )zδ η= . From the differentiation of the both side of the relation, we obtain ( )z zδ η= ∂ ∂

 . If we select 
u δ=   as an input, the relative degree of δ  with respect to u is 1. Then, by setting du z=  , u  is eliminated 
from the system (43). Furthermore, by substituting δ  into ( )zη , δ  is also eliminated. Hence, we have  

sin cos
0

2 02d cos ,
0d
1

0

x y

f r
f r d

F F r
mV mV
lr lC C u
I It

rz

β β
β

δ
θ

 − + −    
    
    −= +    
    
    
  

                       (48) 

where [ ], , ,x r zβ θ Τ= , and we have used  

( ) 0
0 0

0

tanh sinh sinh sinh
z mz d m

d
η

    − = +          
                     (49) 

with ( )0 max min 2m a a= +  and ( )0 max min 2d a a= −  as a differentiable saturation function. Indeed, the model 
(48) is stabilizable. 

4.3. Numerical Results  
We solved the nonlinear optimal control problem for the system (48) with the constraint (47) by the stable ma-
nifold method. The result was compared that of the penalty method with the penalty function ( )P δ =

( ){ }0cosh 1pndδ − , where 0 π 9d = , and 1000pn =  by numerical experimentations. In this comparison, we  
reduced the difference between the both methods as far as possible by using the following small weights with 
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respect to inputs: 81.0 10R −= ×  in (4), and 0R =  and 8
0 1.0 10R −= ×  in (34). Then, the both problems can be 

regarded as the same problem with the cost function 
0

dJ x Qx t
∞ Τ= ∫ . 

Figure 4 shows two finite sets of optimal orbits designed by the proposed method and the penalty method 
under the convergence condition that the Hamiltonian ( ),H x p  in (7) is sufficiently small: 45.0 10H −< × , 
where z has been replaced by δ  in the axis of the figures for understandability. Figure 5 shows the compari-
son result of single optimal orbits derived from the both method. A stable manifold is as a set of all solutions 
consisting of the pair of a controlled optimal orbit x and an optimal gain p along the time evolution. Thus, Fig-
ure 4 and Figure 5 shows the stable manifolds projected to the state space spanned by x, although stable mani-
folds lie on the space with x and p coordinates. We can see that the stable manifold of the proposed method cov-
ers a wider area that is equivalent to the stabilizable region in the state space. 

Figure 6 shows the time responses using the conventional and proposed method, respectively, for the initial 
condition in the common area of the projected stable manifolds in Figure 4: ( ) ( ), , , 0.48,0.90, 0.75,0.17rβ θ δ = − . 
The values of the cost functions were 0.5266J =  and 0.5242J = , respectively. The optimality was improved 
by the proposed method, but the difference between them seems to be small. However, this comes as a result of 
the setting that the weights were chosen as a small value. 

On the other hand, Figure 7 shows the time responses for the initial condition in the area where is quite near 
(i.e., the outside of) the projected stable manifold of the conventional method in the left graph of Figure 4, and 
also in the projected stable manifold of the proposed method in the right graph of Figure 4:  
( ) ( ), , , 0.65,0.92, 0.96,0.15rβ θ δ = − . The motion within 0.25 seconds in the case of the penalty method oscil-
lates; however, the tire is slipping and the stability did not lose. In this case, the values of the cost functions are 

0.7898J =  and 0.7814J = , respectively, and the optimality was more improved from the previous example. 
Finally, Figure 8 shows the time responses for the initial condition in the area where is far from the projected 

stable manifold of the conventional method in the left graph of Figure 4 in the projected stable manifold of the 
proposed method in the right graph of Figure 4: ( ) ( ), , , 0.51,0.91, 0.76,0.16rβ θ δ = − . Then, the conventional 
method caused the unstable motion as in Figure 8. Almost all trials using the penalty method in this area not 
only lost optimality, but also failed stabilization. 

 

 
Figure 4. Sets of optimal orbits (left: penalty method, right: proposed method).              

 

 
Figure 5. Comparison of optimal orbits of penalty method (blue) and proposed method (red).  
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Figure 6. Time response for initial condition in stable manifold (left: penalty method, right: proposed method).             

 

 
Figure 7. Time response for initial condition near stable manifold (left: penalty method, right: proposed method).             

 

 
Figure 8. Time response for initial condition outside of stable manifold (left: penalty method, right: proposed method).       

5. Conclusion and Future Work  
This paper presented a control system representation that seamlessly can be applied to a precise numerical solver 
of Hamilton-Jacobi equations called the stable manifold method in the optimal regulator design for nonlinear 
systems with inequality constraints. The representation was derived from the slack variable method and the in-
put-output linearization technique without any approximation of solutions and any system reduction. We clari-
fied the following four facts: how to integrate the representation to stable manifold method, the weight adjust-
ments of error and penalty functions which can be separated in this formulation, the optimality of the formula-
tion, and the extension of the representation to multi-input and multi-constraint cases. Finally, the validity of the 
method was shown by the numerical example of a vehicle model with steering limitations modeled by a satura-
tion function. 

The extensions of our method to time-variable or state-dependent constraints, practical numerical simulations 
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using more detailed vehicle models, and discussions on the robustness of the controller obtained from our me-
thod are possible future works. 
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Appendix  
Stable Manifold Method  
The stable manifold method calculates a solution of the Hamilton-Jacobi Equation (7) as the stable manifold of 
the Hamiltonian system (33). 

The following information is required in the calculation of the stable manifold method:  
i) Calculate a symmetric matrix P such that 1 TA BR B P−−  is a stable matrix from the Riccati equation  

T 1 T 0PA A P PBR B P Q−+ − + =                                (50) 

that is the linearized relation of the Hamilton-Jacobi equation at the origin, where the matrices , ,A B Q  are de-

fined by ( ) ( )2f x Ax O x= + , ( )0B g=  and ( ) ( ) ( )3T1 2q x x Qx O x= + , respectively. 

ii) Calculate a matrix S that is a solution of Lyapunov equation TFS SF F+ = , where ( )( )0F A R P= − , 

and ( ) ( ) ( )1 TR x g x R g x−= .  
iii) Transform the original system into  

( )
( )

, ,0
=

, ,0
s

T
u

n t x px F x
n t x pp F p

′ ′′ ′       
+        ′ ′′ ′−       





                          (51) 

 by the coordinate transformation  
1

.
x I S x
p P PS I p

−′     
=     ′ +     

                               (52) 

The stable manifold of (33) can be calculated by the following iteration:  
i) Calculate sequences of functions, ( ){ },kx t ξ′  and ( ){ },kp t ξ′  defined by  

 ( ) ( ) ( ) ( )( )
( ) ( ) ( ) ( )( )T

1

1

, e e , , , , d ,

, e , , , , d

F t sFt
k s k k

F t s
k u k k

x t n s x s p s s

p t n s x s p s s

ξ ξ ξ ξ

ξ ξ ξ

−
+

− −
+

 ′ ′ ′= +


′ ′ ′= −                     (53) 

for some parameter nξ ∈ , where ( )0 , eFtx t ξ ξ′ = , ( )0 , 0p t ξ′ = .  
ii) By the iterative calculation of (53), extend a solution along an initial vector ξ  in a plain surface spanned 

by P with keeping the Hamiltonian of the right side of (7) is sufficiently small.  
iii) If an obtained solution from the iteration passes through a desired initial state of control systems, then the 

iteration is finished. If not, back to ii).  
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