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ABSTRACT 

A basic concept in chain-particle cluster-motion, from frozen glassy state to melt state, is the 2D soft nano-scale mosaic 
structure formed by 8 orders of 2D interface excitation (IE) loop-flows, from small to large in inverse cascade and re-
arrangement structure in cascade along local one direction. IE has additional repulsive energy and extra vacancy vol-
ume. IE results from that the instantaneous synchronal polarized electron charge coupling pair is able to parallel 
transport on the interface between two neighboring chain-particles with antiparallel delocalization. This structure ac-
cords with de Gennes’ mosaic structure picture, from which we can directly deduce glass transition temperature, melt 
temperature, free volume fraction, critical entangled chain length, and activation energy to break solid lattice. This is 
also the inherency maximum order-potential structure in random systems. 
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1. Introduction  

This letter is an introduction of the motion principle in 
polymer physics theory. The confluence of both the 
thermodynamic and the kinetic dimensions of the solid 
↔ liquid glass transition (GT) presents one of the most 
formidable problems in condensed matter physics [1]. 
Many theories [2], containing current Mode-Coupling 
Theories, have been proposed to explain glasses and GT; 
however, GT theory is still an open problem [2]. An ac-
ceptable GT theory should be in accordance with de 
Gennes’ simple mosaic structure picture [3]. a) The size 
of the clusters at GT corresponds to the boson peak wa-
velength, clusters slightly more compact than the matrix: 
they cannot grow in size because of frustration effects. 
Mode-Coupling Theories cannot describe this, because 
they do not incorporate frustration. b) Clusters move 
rather than molecules, the required cavity space (“va-
cancy”) for cluster motion is not empty, but filled with 
the low density matrix. c) The soft matrix is surrounding 
the clusters. d) An unsolved problem is what mechanism 
to balance kinetic and potential at the GT. In polymer 
engineering, GT may be thought of as an inverse cas-
cade—cascade mode along external stress direction. This 
idea comes from the insight for cooperative orientation 
activation energy, co , on polyester melt high-speed 
spinning-line [4]. When the work of the stress on more 

5000 M/min spinning-line reaches co , the structure of 
the yarn is stable and reaches full orientation, called as 
FOY (Full Orientation Yarn) in current polyester fiber 
industry. This phenomenon is called stress-in- duced GT. 
The rate of change of the stress-induced liquid-to-solid 
GT is 107 times of that in general quencher from melt 
state to frozen glass state. A logical explanation is that 
the macromolecules can complete liquid-to-solid GT 
with full orientation within the millisecond of time in 
z-space. Their motion mode, within the entire range from 
melt transition temperature m  to GT temperature 

E

E

T gT , 
allows the direction of inverse cascade-cascade in every 
“excited domain” is in arbitrary in melt state and all apt 
to z-axial on melt spinning-line; and finally the mode is 
frozen in glasses as the soft matrix.  

On the other hand, in physical theory, many compli-
cated phenomena originate from the global properties of 
parallel transport of simple quantum systems (Berry’s 
Phase) [5]. In addition, crucial to the endeavor of GT 
theory is a deeper understanding of the systematics of 
bonding in condensed matter within a framework going 
considerable beyond the current GT picture [6]. Thus, 
the GT theoretical approach may come down to the par-
allel transport of “bonding” on intermolecular interfaces. 
This “bonding” here is called as the interface excitation 
(IE) the new and crucial concept introduced in this letter. 
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Nine physical ingredients, random, self-similar, two- 
body interaction, fluctuation, frustration, and percolation, 
delocalization, Berry’s phase and Brownian regression 
potential, have been incorporated at the GT and in mac-
romolecular motion. The incorporation of physical in-
gredients results in the 2D soft nano-scale mosaic struc-
ture in “excited domain”.  

2. Theoretical Model 

2.1. Intermolecular Interface Excitation 

Van der Waals interaction includes the contribution of 
instantaneous induced dipole—induced dipole. Generally, 
instantaneous polarized dipole electron charges randomly 
distribute on an interface 1-2 forming electron cloud 
(blue zone) on x-y projection plane in Figure 1(a).  

At GT, an interesting and unexplored corner of Van 
der Waals interaction theories is that the instantaneous 
synchronal polarized electron charge coupling pair (two 
small blue dots) may parallel transport on an interface, 
e.g., the interface 1-2 between particles  and 0b  in 
Figure 1(b) during the local time of ( , ), and the  

0a

0,t0, 0t  1

 

 

 

Figure 1. The physical origin of interface excitation. (a) A 
legitimate state; (b), (c) An absent of attraction state in cer-
tain 2D lattices; (d) Instantaneous delocalizing state of ion. 

interface 2-3 between  and 0  in Figure 1(c) during 
the local time of ( 0, 1t , 0, 2 ). The state of parallel trans-
port of coupling pair is defined as interface excitation on 
2D projection plane. Black-broken line arrow on an ion 
denotes its delocalizing direction in Figure 1. 

0a
t

c

Thus, the site-phase difference between two z-com- 
ponent molecules, or chain-particles, is : the state of all 
polarized electron charges in each instantaneous dipole 
in the two z-component chain-particles, in Figure 1(b-1) 
or (c-1), must be in the same state and in the z-axial 
minimum energy state of single chain-particle instanta-
neous dipole. In Figures 1, (b-2) and (c-2) is respec-
tively the projection of (b-1) and (c-1) on x-y plane. This 
means IE has an additional repulsive energy   and an 
extra vacancy volume v . Two instantaneous syn-
chrony z-axial polarized electron charges parallel trans-
port from one end to other end on an interface, as in 
Figure 1(b-2), that is simply denoted by an arrowhead, 
as (12) in Figure 1(d). The two IE states of (b-1) and 
(c-1) occur at different local times. The directions of next 
two parallel transports of instantaneous polarized elec-
tron charges of the reference 0  particle denote as two 
red-broken line arrowheads in Figure 1(c-1). Thus, an IE 
loop-flow 1  2  3  4  1, occurs during the local 
time of ( 0, 0 , 0, 4 ) denoted as loop- 0 0V a , in Figure 
1(d). It is able to offer a non-integrable Berry’s Phase 
potential 

a

t t  

  to induce ion 0  (the center of mass of 
 particle) z-direction a conceivable displacement 

a

0a z .  

2.2. 5-Particle Cooperative Excited Field 

The IE loop-flow in Figure 1(d) also defined a 2D action 
particle  to GT, also denoted as . The need-
ful time ( 0, 0t , 0, 4 ) to form loop-  defined as the 
zero order of relaxation time 0

0a  0 0V a
 0 0V at

 . Thus each IE in Figure 
1 has also the relaxation time of 0  scale. At the GT, 
because only 2D closed cycle-flow (that will generate a 
non-integrable phase  and an additional z-axial induced 
energy) corresponds to the abnormal heat capacity and 
boson peak [3,7-9], we need only discuss all the IE loop- 
flows on reference 0  (particle local) filed. The discus-
sion further simplify to only consider the loop-flows 
formed by several consecutive arrows on a 2D projection 
plane, see Figures 2-5, and each arrow denotes an IE 
that has the same IE energy 

a

  for flexible chain sys-
tem. The advantage of the model is that it is also able to 
describe complex system. Some arrows with different 
markers denote the different IE energies correspond to 
the non-flexible chain system.  

The formation of a central excited particle  0 0V a  
can be also regarded as the cooperative contribution from 
its 4 neighboring particle fields, ,  0 0V b   V0 0 , 0  V c
 0d , and  0 0V e  based on Brownian motion theory 
Figure 2. 
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Figure 2. First order of transient 2D IE loop-flow  1 0V a . 

At the instant (local) time 1  in 0  field, once 4th 
loop-flow  is finished, a new loop-flow of a0 
surrounded by the 12 IEs, 1  5  6  4  7  8  3 
 9  10  2  11  12  1, with 1

t a
 0 0V e

  timescale will 
occur as in Figure 2. The new symmetric loop-flow de-
fined as the first order of transient 2D IE loop-flow and 
first order of 2D cluster in a0 field, which are all denoted 
as 1 0 . Whose cycle direction is negative, contrary 
to that of  . The energy of IE with 1

V a 
 0 0V a   on the 

loop denoted  1 as   . The 4 excited particles are 4 
concomitant mosaic cells wi  1 0a . Lo


th V op  0a  

has 12 IEs and is of the loop potential energy  
 0 1

1V
 of 12

  . This means that the evolution energ om 
 to V s 8 

y fr
 0 0V a  1 0a  i  1  . The number of coop-

erative excitation p es in Varticl  1 0a  is 5. 
Similarly, the 2nd order of transient 2D IE loop-flow 

and 2D cluster with 2 , denoted as , is formed 
at the instant local time  when its 4 neighboring par-
ticle fields: , 0 , 1 0 , and 

 2 0V a


2t

 1V d 1 0V c V e  1 0V b

0c

 fin-
ished in 0  field. Whose cycle direction is positive, 
contrary to that of 1 0 , in Figure 3(e). The yellow 
area in Figure 3(e) represents 1 0  loop in  field, 
which is a first order of mosaic structure in 

a
V a 

V c 
 2 0V a



. The 
streamline diagram of parallel transport between two 
clusters  and 0V a  is Figure 3(a). 4 such 
mosaic structures, 1 0V c , , 1 0 , and  

 cooperatively generate  in  field.  

 1 0V c 1




 1 0V d
2 0V a
V a

 V e
 a


1V
 0b 0

The energy of IE on loop 2 0  is denoted as   
 2 . The number of IEs of loop  is 20. The 
number of IEs inside loop 

 2 0V a
 2 0V a  is 12, and equals to 

the number of the IEs of  1 0V a
 

. This means that the 
evolution energy from 1 0V a  to  is 8 2 0V a    
 2 . The number of cooperative excitation particles in 

0  is 13 surrounded by 20 IEs. Thus, 20 IEs can 
excite 13 particles to hop randomly along local +z-axial 
direction. 

2V a 

In the same way, the third order of 2D IE loop-flow 
and cluster at the instant time 3  in a0 field, t  3 0V a , 
can be obtained as in Figure 4, which formed by the 
contribution of its 4 neighboring second order loop-flows, 

, , , and , respectively and 
deasil interacted with  in  field. In Figure 4,  

 2 0V e  1 0V b  1 0V c

2V a
 0

0

1V d
a 0

   

    

 

Figure 3. 4 neighboring clusters,  1 0V c ,  1 0V d ,  1 0V e  
and  1 0V b  respectively and widdershins interact with 

 1 0 : (a), (b), (c), and (d) cooperatively generate V a  2 0V a , 
(e). The 20 thick arrows denote 2nd order of 2D loop-flow 
and cluster  2 0V a  in  field. 0a

the yellow area represents loop  in 0e  field 
(whose symmetric center is 0 ) which is a second order 
of mosaic structure in a0 field. The number of IEs of  
loop 

 2 0V e
e

 3 0V a  is 28. The number of IEs inside loop 
 3 0  is 20, which equals to the number of the IEs on 

loop 
V a

 2 0V a . This means the evolution energy from 
 2 0  to V a  3 0V a  is 8  3   . The number of coop-

erative excitation particles in third order cluster is 25. 
Thus, 28 IEs can excite 25 particles to hop randomly  
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Figure 4. Third order of transient 2D IE loop-flow and 
cluster  3 0V a  in  field. 0a

along local z-axial direction. 
From the results of ,  and  1 0V a  2 0V a  3 0V a , it 

is clear that the more the number of cooperatively delo-
calization particles is, the less the average needful IE 
energy for each particle is. The key point is what the 
minimum excited energy is and what the number of co-
operatively delocalization particles excited by the energy 
at the GT is. 

There are 4 neighboring concomitant excitation cen-
ters surrounding the referenced particle center. Thus, the 
excited field in Figure 2 is defined as 5-particle coopera-
tive excited field to break solid-lattice.  

The forming of i-th order cluster  always re-
sults from the cooperative contributions of its 4 neigh- 
boring (i-1)-th order of clusters around the central parti-
cle. This property origins from Brownian motion and is 
called as the priority of central particle, which is proba-
bly the primary reason to generate dynamic heterogene-
ity [2] and non-ergodic [9] at GT. That means the spatial 
directions and localities of all the succedent IEs will be 
completely confirmed, Figures 2-5, once the first IE 
with the direction 1  2 showed in Figure 1(d) appears 
at the local time 0, 1  in 0  field, otherwise, the total 
excitation energies will increase. That is the reason and 
advantage to bring the signature of arrowhead into the 
standout mode of IE to get the minimum energy required 
to excite GT. Here the IE represented by arrow is scaled 
by the IE energy 

 0iV a

t



a

i   and thus the arrow is of a unit 
length for different wave lengths of harmonic and an-
harmonic frequencies on the (energy) lattice model. IE 
energy   does not depend on temperature in flexible 
polymer system.  

2.3. Eighth Order of 2D Cluster and Percolation 

a) The number of IEs of i-th order of 2D cluster can be 

calculated as i  = 4 (2i + 1) = 12, 20, 28, 36, 44, 52, 60, 
and (68) for i = 1, 2… 8 and 0  = 4. Note that 8  will 
be corrected as 60 by geometric frustration-percolation 
transition.  

L
L L

b) The number of excitation particles in i-th order of 
cluster is respectively: i  = 1i  + 4i = 5, 13, 25, 41, 
61, 85, 113, and (145) for i = 1, 2… 8 and 0  = 1. 
Note that 8  also will be corrected as 136 by geometric 
frustration-percolation transition.  

N N 

N
N

c) For z-axial i-th order 2D cluster, the evolution en-
ergy from 1iV   to iV  is 8  i 

0

, we emphasize, this 
evolution is orienting. The energy to excite i-th order 
cluster orientable evolution thus is the energy of one ex-
ternal degree of freedom (DoF) to i-th order of cluster 
(loop-flow) orienting, denoted as  i  . So we directly 
deduce from a)  

  0 8i i                  (1) 

d) During the time of ( 1it  , i ) in the referenced  
field, each of its 4 neighboring ( 0b , 0 , 0 , and 0e ) 
local coordinates can take any direction (fragmentized 
and atactic lattices) because of fluctuation. However, 
from c), at the instant time i , the direction of i-th order 
cluster always starts sticking to the direction of the ref-
erenced first order cluster. This characteristic in random 
systems comes from the Brownian regression motion, or 
the characteristic of Graph of Brownian Motion. This 
means that each neighboring i-th order of cluster also has 
one external DoF of energy as 

t 0a
c d

t

 0 i  . So the i-th order 
of cluster in the (i + 1)-th order is of 5 inner DoF and  

 

Figure 5. The 2D soft nano-scale mosaic structure occurs in 
the geometric frustration-percolation transition and is the 
maximum order potential structure in random systems. 
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taking any directions during the time of ( , it 1it  ) in  
field. 

0a

In the same way, the 8th order of transient 2D cluster, 
, can be obtained in 0  field, as in Figure 5. As 

there is no 9th cluster in system, (the result of limited 
domain-wall vibration frequencies based on Random 
First-Order Transition Theory proposed by Wolynes et al 
[2,7]) percolation should be adopted at the instant time 

8 , and the 8th order of cluster must be corrected by 
percolation. 

 8 0V a

t

a

The uncorrected number of IEs of  is 68, de-
noted by blue-black arrows in Figure 5. When percola-
tion appears in system, the 4 excited cells, by thick up-
ward diagonal lines, with τ8 in  are also the mo-
saic cells of in the 4 neighboring 7 -clusters (Note: here 
the 4 7V -clusters are respectively in the 4 neighboring 
5-particle cooperative excited fields) with  field. And 
4 cells with 7

 8 0V a

0

0a

8V a
V

   in the 4 neighboring 7 -clusters, by 
the color of blue green, are also the mosaic cells in 

8 0 . (A region of space that can be identified by a 
single mean field solution is called a mosaic cell [10]. 
Mosaic cell is identified by the different action time in 
our work.) The 4 thick-black inverted arrows in Figure 5 
are the mutual interfaces of  and its 4 

7 -clusters in neighboring 4 5-particle cooperative ex-
cited fields. Thus the number of interfaces of 

V

 8 0V a

V a

V



 8 0V a  
should be corrected as 60, that is,  (corrected by per-
colation) = 60. 

8L

Note that there are 4 inverted thick-black arrows in the 
corrected 8  loop-flow in Figure 5. Thus, the number 
of excited particles in  should be firstly cor-
rected as 141 because the 4 mosaic cells of 8 , marked 
by the color of blue green, belong to that of the 

7 -clusters neighboring 5-particle cooperative excited 
fields. In addition, the central 5 empty cells, according 
with de Gennes’ simple picture of a localized “vacancy” 
among clusters [3], representing the 5 particles in 

0  have first delocalized (indicates 0  local coor-
dinates invalidation partly!). Therefore, the number of 
cooperative excited particles in 8th order of cluster 
should finally be corrected as 136.  

V
 8 0V a

V

V

1V a  a

3. Results and Discussions 

3.1. Average Energy of Cooperative Migration 

In Figure 5, each (small square) chain-particle has a z- 
axial hopping energy   that comes from the 
non-integrable phase of parallel transport of its 4 IEs 
surround its z-axis. From (1), the energy of cooperative 
migration along z-direction in a domain is 0136 17   . 
As the migrating direction in different domain can be 
statistically selected as x-, y-, z-axial, and the appearing 
of all thawing domains is one by one and forming 

flow-percolation, the average energy of cooperative mi-
gration, mig , along one local space direction can be 
denoted by 2 , the non-integrable random Brownian 
directional regression energy for excited particles inside 
8th order of loop-flow. 2  can be also balanced by 
the random thermal motion energy of  for general 
unexcited particles.  

E
kT 

mi

kT 

T

2kT

032 2 17 /gE k kT   

t

t

d

f h

          (2) 

Here 2  is similar to the energy of Curie tempera-
ture in magnetism, also the energy of a ‘critical tempera-
ture’ existing in the GT presumed by Gibbs based on 
thermodynamics years ago [11]. The denotation of 2  
is the same as that of Gibbs. Emig along one direction, e.g., 
along the direction of external stress at GT, is an intrinsic 
attractive potential energy, independent of temperature 
and external stress and response time. This will be one of 
the key concepts directly prove the WLF equation. It 
stands to reason that the attractive potential comes of the 
IE loop-flows in Brownian motion existing in any ran-
dom system at any temperature. 

kT

t

kT

3.2. Fractal Dimension 

The 8 orders of loop-flows in Figure 5 are the track re-
cords of selected IEs, from many dipole charge-electron 
pairs in fluctuation in 3D local space, respectively at the 
instant of 0 , 1 , 2 … 8  discrete time on a reference 

 particle 2D projection plane. In other words, in 3D 

0  local space, the cyclic direction, selected from many 
random oriented IE loops, returns to the direction of  
z-axial at the instant of i  (i = 0, 1, 2, …8) time, which 
indicates that the distribution of IE loop in 3D local 
space obeys the distribution of the Graph of Brownian 
Motion [12]. Therefore, it can be directly obtain the Hau- 
sdorff fractal dimension h , or the Box fractal dimen-
sion dc of dipole charge electron coupling pairs at the GT 
is the fractal dimension df of Graph of Brownian Motion 
[12],  

t t

0a
a

3 / 2cd d d                (3) 

3.3. Eight-Order of Hard-Spheres and Chain 
Segments 

We introduce the concept of i-th order of directional 3D 
hard-sphere (hard-cluster) for directional i-th order of 2D 
cluster in order to refract the number of particles in an 
orienting and compacted cluster in density fluctuation 
when the maximum loop-V a  occurs.  8 0

a) Compacting cluster and density fluctuation. The 
first order of hard-sphere 1  contains 5 (the number of 
particles in 1 ) + 12 (the number of interfaces of 1V , 
each interface corresponds to an excited particle taking 
in any direction in 3D local space) = 17 chain-particles 
that are compacted to form a hard-sphere. Which has an 

V
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internal density larger than average, because the IEs with 
extra volumes on  inside  have been 
compacted and transferred to that on  (static 
electricity screen effect of IE loop-flow).  

 0 0V a  1 0V a
 1 0V a

b) Hard-sphere with finite acting facets. Note that 

1  is a vector. The direction of 1  is negative, as same 
as the direction of , if the direction of  1 0V a  V a0 0  is 
positive. Finite acting facets surround this orienting 3D 
hard-sphere. The complexity of dynamical hard-sphere 
here comes down to the finite acting facets in mosaic 
structures.  

c) 8 orders of self-similar z-axial 3D hard-spheres. 
In the same way, the second order of hard-sphere 2  
contains 13 (the number of particles in 2 ) + 20 (the 
number of interfaces of 2 , the number of side-excited 
particles) = 33 excited particles. The direction of 2

V
V

  is 
positive. Therefore, the number, i , of particles in i-th 
order of hard-sphere 

S

i  can be obtained as 

17,  3 ,  77

      173,     for 
iS

i

   

 

3,  53

200,  (6)

 ,  105,  

1,  2 8

 

 

137,

.
   (4) 

In (4), the sign denotes the moving direction along 
z-axial of i-th order hard-sphere. By i-th order of hard- 
sphere is meant that the interaction-interface energy of 
its two-body is the IE energy or transferred energy, 

 i  , independent of the distance of two excited cents 
of two-body in z-space.  

d) 8 orders of self-similar chain-segments. In Figure 
5, each of 200 acting (excited) particles connects with a 
z-component chain-particle in a chain. Accordingly, in 
macromolecular system, the lengths of the 8 orders of z- 
component statistical chain-segments  (if chain-long 
N  200) are also categorize as 8 orders 

il

,  173,  17,  33,  105,  137

                   2 8
il 



 53,  77,

 for 1,i 

200;
    (5) 

e) Number of structure rearrangements. The num-
ber of particles in the 8th order of hard-sphere,  8N  , 
or the 8th order of chain-segment sizes, l8, also is the 
number of particles c  in structure rearrangement in  N

 8N   and 8l , can be easily found out from Figure 5. 
The number of excited particles in corrected 8  is 136. 
The number of interfaces of 8  before percolation is 68, 
from which subtracts 4 mutual interfaces (that belong to 
4 neighboring local fields) of 8  and its 4 neighboring 

7 -clusters when percolation appears, and each of the 64 
(= 68  4) interfaces respectively relates to a side-excited 
particle taking any direction. Thus, the number of acting 
particles in 8

V
V

V
V

  is 136 + 64 = 200, a magic number in 
mosaic nano-structure, .   8 8 c

The numerical value is consistent with the conjectural 
results of encompassing rearrangements [13].  is 

also the critical entangled macromolecule length. The 
numerical value is in accordance with the experimentally 
determined critical entanglement chain length of  200 
[14]. 

20N  0N l  

cN

f) Evolution direction of cluster growth transition. 
From c = 200, 8N     5.8 (chain-particle units), which 
is the size of ‘cage’ at GT. According to the definitions 
of 2D clusters and 3D hard-sphere, an interaction of two 
z-space i-th order of 3D hard-spheres is always equal to 
the IE interaction with i . This m ans that the cluster in 
[3] turns out to be i-th order of hard-sphere. During the 
time of ( it , 1it

e

 ), i-th o r of 2D clusters cannot be 
welded together, as same as [3], however, at the instant 
time 1it

rde

 , all i-th der of 2D clusters in local field will 
be compacted together to form a compacted (i + 1)-th 
order of 2D cluster with the evolution direction of 1

 or

  in 
rse cascade. inve

3.4. Localization-Delocalization (Percolation) 
Transition Energy, cE  

The steady excited energy is exactly the flow-percolation 
energy in percolation on a continuum of classical model 
in condensed matter physics. The energy of steadily ‘ex-
cited state energy flow’ in the process of 8  vanishing 
and reoccurring is defined as the localization-delocalize- 
tion (percolation) transition energy, named as c  (the 
same denotation of c  as Zallen [1] did) at GT. The 8 
orders of mosaic structures directly manifest that the ex- 
ternal DoF of an (inverse cascade) excited state energy 
flow is 1 and the (i  1) order inner DoF of a (cascade) i- 
th order cluster in renewed cluster state (rearrangement 
structures) is 5 at GT. 

V

E
E

a) Macroscopic melt temperature m . It is a very 
important consequence that the external DoF of an en-
ergy flow is 5 in the melting state phase transition; and 
the renewed energy of a microscopic i-th order cluster (i 
 8), 

T

 m ikT  , being in renewed cluster within (i + 1)- 
th order cluster zone, is numerically equal to the energy 
of the macroscopic melting state of . Namely, mkT

         0 0 0 0  m i ckT E b c        ,  ,m i kT  i i i  
   0 0 ,  i ie0,  d 0    , i  8, corresponds to 5 inner 

DoF, in which    8c i gE kT  , (10);  0 0 ,  ic 

 8mkT

 
denotes the energy of one external DoF of i-th order 
loop-flow in 0  field. The energy of macroscopic melt-
ing state can be denoted as 

c
 , 

     8 8 0 84m gkT kT kT      m  (for flexible system) 

       
   

8 8 0 0 8 0 0 8

0 0 8 0 0 8

,  ,  

,  ,   (for general system)

m g

m

kT kT b c

d e kT

     

   

  

  
 (6) 

b) Percolation transition energy cE . The step (in-
terface) number of 8V -loop is 8  = 60. c , is less 
than 60

L E
 8   because of the regression state energy 
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effect of IE and the dynamical mosaic structures of IE 
loop-flows. The IE energies on 8 -loop in Figure 5 are 
shared by 

V
 0 0V   –  8 8V   interfaces and  7 7V   – 

 8 8V   interfaces.  
The key concepts are that a few of interfaces, named 

as Linver, on the 8 -loop will be excited by the interfaces 
with relaxation time of 8i

V
 

V

 in new local fields after 

0 . This is the effect of mosaic structures, or, Linver is the 
step number of mosaic in slow inverse cascade. The oth-
ers, named as Lcas, on the 8 -loop will one by one van-
ish and their excited energy will rebuild many new 

a

0 -interfaces in the new local fields in fast cascade.   
Thus, in the flow-percolation on a continuum, the 60 

interfaces of a reference 8 -loop in Figure 5 are dy-
namically divided into two parts: the Lcas interfaces that 
occur at the local time of 8  in 0  field and the Linver 
interfaces that are the mosaic structures of energy flow 
and occur at a time after . Formula (7) is obtained 

V

t

8t

8casL L 

V

 8/cE  

a

inverL

iV

cE


              (7) 

The energy of cas  is also the fast-process cascade 
energy of rebuilding new 0  loop-flows when the Lcas 
interfaces vanish. The energy of Linver is the slow-process 
inverse cascade energy of all  loop-flows from  
to  in new local fields.  

L

0V

7

The balance excited energy of inverse cascade and 
cascade in flow-percolation (contained many local fields) 
is exactly the localized energy . Therefore, in fast- 
process cascade, cas , in which 8

V

L   is 
used as timescale of 8  vanishing, c  here is the cas-
cade potential energy in flow-percolation.  

V E

Since the excited energy in inverse cascade is not dis-
sipated, the evolution energy of each order closed loop is 

0 i   8i     , (1), namely, the ‘singular point en-
ergy’ of any i-th order IE closed cycle (Gauss theorem).  

Each mosaic step (either the inverted arrow, or the 
shared interface by  – 8V ) in Figure 5 connects a 
mosaic closed cycle 

7V
 7 7V   that does not belong to the 

reference a0 local field. Thus, in the slow-process inverse 
cascade from 0  to 7V  in flow-percolation, the num-
ber of the inverse cascade energy c  forming mosaic 
step is inver . For flexible polymer, 

V

0 7/cE  
 8

E
  L

0 i0 0     . Therefore, formula (8) is obtained  

 80cE  

  2c i

= 6 / 8 


cE             (8) 

Or           0 / 3 iE 0              (9) 

Equation 8 is a representative mean field formula. It 
can be seen that the physics meaning of the right term 
containing left term on equation is the contribution of 
mosaic structure. Equation 9 denotes that the delocalized 
energy c  (the localized energy, the percolation trans-
fer energy, the transfer energy from inverse cascade to 
cascade) at the GT has 8 components, 

E

 icE  , i = 1, 

2…8 and the numerical value of each component energy 
is the same, namely, 20/3 0 . This is also one of the sin-
gularities at GT. c  is a characteristic invariable with 8 
order of relaxation times at the GT, independent of GT 
temperature 

E

gT .  
c) Glass transition temperature gT . We see c  

also comes from the directional non-integrable additional 
energy at GT, instead of general thermo-random motion 
energy of molecules. Similar to (2), z-axial 
non-integrable random regression vibration energy, 

E

 g ikT  , of i-th order clusters with i  can be used to 
denote the energy of  c iE  , and it can be also balanced 
by random thermal vibration ( i -scale) energy of gkT  
for general unexcited particles. That is 

      020 / 3c i i g i iT kT gE k   

 
       (10) 

The numerical value of g i gT  that can be 
called the fixed point of clusters from small ( 1

T  
 , i  

scale) to large ( 8 , 8  scale) in inverse cascade at GT, 
it is independent of GT temperature gT .  8g g  
is traditionally accepted as GT temperature, which is 
obtained by slow heating rate. Therefore, c  is a measur-
able by experiments. From (2), numerical relationship is: 

T T 

E

2gkT kT 0 

320

8 te

rticl

               (11) 

d) Geometric frustration and high-density percola-
tion. It can be seen that Equation 9 is based on the result 
of corrected 8  value and this correction from 7  to 

8  in Figure 5 also can be regard as the geometric frus-
tration effect, which appearance corresponds to the GT 
[2,3,8] This also indicates that the percolation at GT be-
longs to the high-density percolation [1]. The filling fac-
tor of instantaneous polarized dipole  in Figure 1(d) 
is also 1. 

L

8

    

 evol

ticle

i


L
L

0a

3.5. Activation Energy to Break Solid Lattice  

Figure 5 has given out the number of all IE states at GT: 
the 320 different IE states. The numerical value is from  

  
 

                  8

8 spatial mporal evolution

   5 5 par -pa e cooperative excited

 

 



1

ution

s in 5

iL

  (12) 

The 8 evolution IE states together with the 4 IEs on a 
reference particle a0 will evolve a new first order of IE 
loop-flow being of 12 IEs when 8th order cluster ap-
pears.  

The energy summation of the 320 different IE states is 
named the cooperative orientation activation energy to 
break solid lattice, denoted as co . The reason to call it 
activation energy is that although in microscopical, the 
energy to break solid lattice is seemly only 

E

gkT ,  

coE , in microcosmic, the energy of 320 IE space-time 
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states in every solid domain is needed. Thus,  

0320 40coE                 (13) 

1/ 6c gE kT E   

 
co            (14) 

Using   8g gT T  , thus, 1/ 6g coE kT    (15) 

co  can be measured on melt high-speed spinning- 
line. In fact, the author [4] had obtained the experimental 
data of co  for polyethylene terephthalate (PET) by 
using the on-line measuring on the stretch orientation 
zone during melt high-speed spinning. The experimental 
result shows 

E

E

gkT
k

 (for PET)  1/6 co  (for PET), and 
. Thus, for PET, the extra IE energy 

E
2coE  035    

6.4 5.5 10 eVk   
38 51 4.4 10 ek      


V

4        (16) 

Moreover, . 0

0  is the energy of one DoF of 8 -loop. This value 
is consistent with the experimental results (4  12  103 
eV) for Boson peak measured by high-resolution inelas-
tic neutron scattering [12]. 

V

3.6. Free Volume 

The classical free volume ideas have been questioned be- 
cause of the misfits with pressure effects, but here the 
pressure effects should be indeed minor [2]. It is inter-
esting in our model that there is no so-called classical 
free volume with an atom (molecule) migrating in sys-
tem. Except the 8th order of 2D clusters, in the i-th order 
of clusters, all (i  1)-th order of 2D clusters are com-
pacted to form i-th order clusters, and the extra volumes 
of the IEs of all (i  1)-th order clusters vanish and reap-
pear on the interfaces of i-th order. Thus, when the cen-
tral 8th order loop appears and vanish in cascade, the 
extra vacancy volumes of the IEs on the loop suddenly 
form vacancy volumes of 5 cavity sites in the center of 
the loop, in Figure 5, in order to induce the first order of 
cluster delocalization. The definition of free volume is 
modified by the cooperatively appearing 5 cavities, i.e., 
using clusters rather than atoms, same as that proposed 
by de Gennes [2]. The modified free volume idea is still 
true, because the action of pressure should be only 
through the same percolation field generating cavity vo-
lume; and the extra volume energy in the 8 orders of 
loop-flows in Figure 5 should be balanced with the ex-
ternal pressure or tension. Each cavity is also an orienta-
tion vector as same as the direction of excited domain. 
Since all excited domains are in random orienting at GT, 
5 statistically isotropic 3D cavities (so-called classical 
free volume) thus are obtained by per 200 statistically 
isotropic 3D particles. In other words, the free volume 
fraction: 5/200 = 0.025 can be directly and explicitly 
obtained, which is in accordance with the experimental 
results for flexible polymer. 

    
(a)                          (b) 

 

    
(c)                         (d) 

Figure 6. The soft matrix of self-similar 2body-3body clus-
ter coupling. 

3.7. Mode-Coupling and Icosahedral Directional 
Ordering  

In the inverse cascade at GT, if each IE appears in the 
way of one arrow after another according to the appear-
ance probability as mentioned in Figures 2-5, the prob-
ability is rather low. In fact, the more probable situation 
is the evolutive mode of self-similar 2body-3body cluster 
coupling in the soft matrix of IE loop-flows in Figure 6. 

In Figure 6, the i-th order of IE loop-flows can be 
simply denoted as some squares with IE  i   in (a), 
each of which is self-similar with Figure 1(d). Figure 
6(a) first evolves into three 2-body interaction in (b), 
then into two three-body interactions in (c), named as 
i-th order of 2body-3body cluster coupling in 5-particle 
cooperative excited field. Finally into (i + 1)-th order of 
IE loop-flow in (d) and cooperatively eliminate IEs in-
side the loop-flow (static screen effect) in order to form 8 
order 2D IE loop-flows and clusters slightly more com-
pact than the matrix. 

The mode of 2body-3body cluster coupling is in statis-
tically advantage (soft matter concept): e.g., per 4 IEs 
needs 5 instantaneous polarized ions in Figure 1(d) and 
Figure 6(a). The parameter of polarized ion number- 
density of per IE (the density of particles occupy addi-
tional vacancy volume in IEs) in soft matrix,  0ionD   
= 5/4 = 1.25. However, 21 IEs needs 24 polarized ions, 
the ion number-density  = 24/21  1.14 in Figure 
6(b), large than 

ionD
 D 0 1ion    = 22/20 = 1.1 in Figure 

6(c), each evolutive 3body cluster only needs the excita-
tion energy of 10 IEs. In Figure 6(c), the two clusters 
(two 3body clusters excited at different times need 20 
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IEs) move randomly and they are not in superposition. 
Once they are in superposition, Figure 6(c) immediately 
mutates into Figure 6(d) to form first order of uncom-
pacted cluster,  1ionD   = 17/16  1.06 in Figure 6(d). 
Finally, the IEs inside the loop-flow disappear to form 
hard-cluster. The parameter ion  will be less and less in 
inverse cascade with cluster augment.  

D

The minimum value of the polarized ion number den-
sity  8ionD   = 200/320 = 5/8, in 8th order 2D cluster 
in Figure 5, which indicates the single-ion polarization is 
slow process formed IE closed loop, Figure 1(d), corre-
sponding the maximum static electricity repulsive state 
in polarized field. In addition, there are 60 + z-axial hop-
ping ions and 60  z-axial hopping ions in 136 z-axial 
excited particles in Figure 5. The 120 ions form 60 pairs 
of antiparallel ion-pairs. So, the polarized ion pair num-
ber density in IE soft matrix, pairD  8  

D D

= 120/320 = 3/8, 
which indicates the polarization of a pair of ion is fast 
process, Figure 1(b) in IE. It is an important relation 
equation has been fined that n pair . This im-
plicates the polarized structure of classical boson peak in 
local polarized filed. Especially, the number of 60 pairs 
of antiparallel ions inside 8th order loop-flow equals the 
number of the 60 pairs of synchronal polarized electron 
charges on the loop-flow. Therefore, z-axial slower ran-
domly non-integrable kinetic energy of antiparallel ion- 
pairs inside 8-th order loop-flow also balances the faster 
induced potential energy on the IE loop-flow, which is a 
kind of mode-coupling scheme between the fast-motion 
induced charge-electron coupling pairs and the slow-mo- 
tion delocalized ion pairs. 

1io

Moreover, there is still 16 (= 136  120) + z-axial re-
mainder ions inside the 8-th order of loop-flow, which 
can offer a static charge repulsive force to facilitate the 
first excited + z-axial ion a0 delocalization in Figure 5. 
Since the 16 + z-axial ions to drive ion a0 to leave its 
coordinates needs 320 IEs, 16/320 = 1/20, this leads to 
each directional delocalization uncompacted particle 
needs 20 z-directional excited interfaces with 8  in its 
8-th order of loop-flow. On the other hand, disappearing 
the 8-th order of loop-flow of reference a0 particle also 
needs its 4 concomitant excited particle, 0b , 0 , 0 , 
and 0 , one by one finish respective 8th order of loop- 
flows in inverse cascade and delocalize along z-axial. 
This leads to 5 compacted conformational rearrangement 
particles in cascade precisely need 20 z-directional ex-
cited interfaces disappearing with 8

c d
e

 . That is another 
explanation for icosahedral directional ordering at the 
GT.  

Distinctly, the mode-coupling scheme based on mo-
saic geometric structure adopted in this paper is different 
from the mathematical expressions in the current mode- 
coupling theory of GT. However, the spirit in both mode- 

coupling schemes is the same that deals with the cou-
pling of fast-slow relaxation modes and two density 
modes in structure rearrangements at the GT. In our 
scheme, we focus on finding out the three direction non- 
integrable energies 2 , kT  gkT   and m  existing in 
the coordinate invalidation from i-th order clusters to (i + 
1)-th order in solid-to-liquid transition, whatever the time 
complications of anharmonic frequencies may be. The 
mode-coupling trick is that the relaxation time complica-
tions have been beforehand reduced and replaced by the 
long time Brownian directional regressions with the 2 
closed loop-flows of IEs in Figure 5. 

kT 

4. Conclusions 

It is proposed that the soft matrix surrounding clusters is 
2D soft nano-scale 8 orders of IE loop-flows; the filling 
factor of 2D lattices is 1. The key of the theory is that the 
random thermo-motion kinetic energy, from glass transi-
tion to melt transition, should be balanced by the non- 
integrable random regression vibration energy in random 
systems. That is, entire molecule-cluster delocalization 
energy (also the GT energy) origins form the maximum 
order potential energy in random systems. This 2D 
structure corresponds to the appearance of boson peak 
and geometric frustration at the GT, and can directly 
deduce three non-integrable directional energies: 2 , kT 

gkT  , and m  along one local space direction, re-
spectively corresponding to Gibbs temperature 2 , glass 
transition temperature 

kT 
T

gT , and melt transition tempera-
ture .  mT
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