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Abstract 
With the use of a model Hamiltonian and retarded double time green’s function formalism, we 
obtain mathematical expressions for spin density wave and superconductivity parameters. The 
model reveals a distinct possibility of the coexistence of magnetic phase and superconductivity, 
which are two usually irreconcilable cooperative phenomena. The work is motivated by the recent 
experimental evidences of coexistence of spin density wave and superconductivity in a number of 
FeAs-based superconductors. The theoretical results are then applied to show the coexistence of 
spin density wave and superconductivity in iron pnictide compound Ba1−xKxFe2As2 (0.2 ≤ x < 0.4). 
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1. Introduction 
The interplay between superconductivity and magnetism has been an interesting topic in condensed mater phys-
ics which has been considered until very recently hostile and incompatible. Since the discovery of superconduc-
tivity in quaternary pnictide-oxides with critical temperatures (TC) up to 55 K a lot of tremendous interest has 
been generated in the study of coexistence of these two cooperative phenomena of superconductivity and mag-
netism. After first reports on superconductivity in undoped LaNiPO [1] [2] below 5 K, shortly after this discov-
ery the breakthrough was a TC of 26 K in the F-doped arsenide LaO1−xFxFeAs system [3].  

In addition to this several groups reported an increase of TC values by replacing La with smaller-size rare- 
earth ions like CeO1−xFxFeAs [4], and samarium-arsenide oxides Sm(O1−xFx)FeAs with a critical temperature TC 
of 55 K [5] [6]. The iron based superconductors promise interesting applications. While the interplay of super-
conductivity and magnetism, as well as their mechanisms remains the issues of active debates and studies, one 
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thing in FeSC riddle is clear that it is the complex multi-band electronic structure of these compounds that de-
termine their rich and puzzling properties. What is important and captivating is that this complexity seems to 
play a positive role in the struggle for understanding the FeSC physics and also for search of the materials with 
higher TC [7]. 

The FeSC is quite promising for applications. Having much higher Hc than cuprates and high isotropic critical 
currents [8] they are attractive for electrical power and magnet applications, while the coexistence of magnetism 
and superconductivity makes them interesting for spintronics [9]. All the compounds share similar electronic 
band structure in which the electronic states at the Fermi level are occupied predominantly by the Fe 3d elec-
trons [7]. 

By combining transport, X-ray and neutron diffraction experiment studies, the first member of a new family 
of iron pnictide superconductors (Ba1−xKx)Fe2As2 with the ThCr2Si2-type structure was discovered a bulk su-
perconductor with TC = 38 K and both the SDW and the superconducting orders coexist in the (Ba1−xKx)Fe2As2 
(0.2 ≤ x < 0.4). The structural and electronic properties of the parent compound BaFe2As2 are closely related to 
LaFeAsO. The induced superconductivity by hole doping is found to have a significantly higher TC in compar-
ison with hole doped LaFeAsO. In contrast to previously stated opinions, the results prove that hole doping is 
definitely a possible pathway to induce high-TC superconductivity, at least in the oxygen-free compounds [10].  

The above exciting discovery stimulated a lot of interest in the study of coexistence of superconductivity and 
magnetism. The proximity of the magnetic and superconducting (SC) phases suggests a close relationship be-
tween the two phenomena. It is generally believed that the magnetic couplings between the itinerant electrons 
and/or between the itinerant electron and local spin are essential to both spin density wave instability and super-
conductivity. Besides, other experimental and theoretical findings, especially the antiferromagnetic ground state 
and the SDW anomaly of LaFeAsO strongly suggest that the pairing mechanism of the electrons is likely to be 
connected with spin fluctuations, as it has been assumed for the cuprates [10]. 

Triplet superconductivity appears provided that we have coexistence of singlet superconductivity and SDW. 
In many high scT  superconductors, superconducting mechanism is attributed to strong coulomb interactions of 
the electrons in the system, which can also be the cause for the appearance of SDW state. This suggests the ex-
istence of competition between the two states [11]. The properties of the unconventional triplet superconductiv-
ity and SDW with an emphasis on the analysis of their order parameter were reviewed. 

Research on superconducting iron arsenides has largely focused on ternary compounds with the ThCr2Si2-type 
structure, rather than arsenide oxides (LaFeAsO derivatives) [12]. This is because single-phase samples and also 
large single crystals of the ternary compounds are much easier to obtain. Partial replacement of barium for po-
tassium (hole doping) induced superconductivity at 38 K in (Ba0.6K0.4)Fe2As2, [13]. 

The relation between the spin-density-wave (SDW) and superconducting order is a central topic in current re-
search on the superconducting iron pnictide based high TC superconductors. So, in this paper, we start with a 
model Hamiltonian which incorporates not only terms of the BCS but also by assuming the pairing interaction is 
due to spin fluctuations for iron pnictide superconductors Ba1−xKxFe2As2, to examine the coexistence of spin 
density wave and superconductivity. 

2. Model Hamiltonian of the System 
The purpose of this work is to study theoretically the co-existence of spin density wave and superconductivity 
properties in the compound Ba1−xKxFe2As2 in general and to find expression for transition temperature and order 
parameter in particular. For this purpose, we tried to find the mathematical expression for the superconducting 
critical temperature (TC), superconducting order parameter (∆sc) the magnetic order parameter (M) and SDW 
transition temperature (TSDW). Within the framework of the BCS model, the model of the Hamiltonian for coex-
istence SDW and superconductivity in the compound can be express as: 

( ) ( )† † † † †
SCˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆp p p p q p p p q p p p p

p p p
H a a M a a a a a a a aσ σ

σ
+ ↑ − ↓ − ↓ + ↑ ↑ − ↓ − ↓ ↑= + + + ∆ +∑ ∑ ∑               (1) 

where ( )†ˆ ˆp pa aσ σ  are the creation (annihilation) operators of an electron having the wave number p and spin σ .  

Whereas ( SC∆ ) superconducting order parameter and (M) SDW order parameters. The Hamiltonian in (1) will 
be used to determine the equations of motion in terms of the Green function. 
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2.1. Coupling of SDW and Superconducting Order Parameters 
The Double time dependent Green’s function equal to the change of the average value of some dynamic quantity 
by the time t and useful because they can be used to describe the effect of retarded interactions and all quantities 
of physical interest can be derived from them. To get the equation of motion we use the double-time temperature 
dependent retarded Green function is given by Zubarev [14]: 

( ) ( ) ( )

( ) ( ) ( ) ( )

ˆ ˆ;

ˆ ˆor , ,

r

r

G t t A t B t

G t t i t t A t B tθ

′ ′− ≡

 ′ ′ ′= − −  

                            (2) 

where Â  and B̂  are Heisenberg operators and ( )t tθ ′−  is the Heaviside step function. Now, using Dirac 
delta function and Heisenberg operators, we can write as: 

( ) ( ) ( ) ( ) ( ) ( )d ˆ ˆˆ ˆ, , , .
d ri G t t t t A t B t A t H B t

t
δ    ′ ′ ′ ′− = − +     

The Fourier transformation ( )rG ω  is given by 

( ) ( ) ( )exp d .r rG t t G i t tω ω ω′ ′− = − −  ∫                            (3) 

Taking the Fourier transform we get: 

( ) ( ) ( ) ( ) ( )ˆ ˆˆ .ˆ, , ,rG A t B t A t H B t
ω ω

ω ω    ′ ′= +                         (4) 

From (4), it follows that 
† † † †ˆ , ,ˆ ˆ,ˆa a a H aκ κ κ κω ↑ − ↓ ↑ − ↓

 =                              (5) 

where the anti-commutation relation, 

{ }†,ˆ ˆk kka aκσ σ σσδ δ′ ′ ′ ′=                                  (6) 

has been used. To derive an expression for † †ˆ ˆ,a aκ κ↑ − ↓ , we have calculate the commutator † ,â Hκ↑
   , using  

(1) and using the identities and  

[ ] { } { }, , ,A BC A B C B A C= −  and [ ] { } { }, , , .AB C A B C A C B= −               (7) 

Solving the commutator in Equation (5) by using the Hamiltonian in e Equation (1), we get 

{ } { }( )† † † † † † † †ˆ ˆ ˆ ˆ ˆ ˆ, ˆ ˆ ˆ ˆ ˆ, , ˆ,p p p p p p p p p p p
p p p

a a a a a a a a a a a aσ σ σ σ σ σ σ σκ κ κ κ
σ σ σ

↑ ↑ ↑ ↑

 
= = −


 


 ∑ ∑ ∑    

† † †,ˆ ˆ ˆ ˆ .p p p
p

a a a aσ σ κκ κ
σ

↑ ↑

 
= − 

 
∑                               (8a) 

After some lengthy but straightforward calculations; we arrive at the following results: 

( )† † † †ˆ ˆ ˆ ˆ ˆ ˆ, q q qa M a a a a Maκ κ κ κ κ κ
κ

↑ + ↑ − ↓ − ↓ + ↑ − ↓

 + = − 
 

∑                      (8b) 

( )† † †
SC SCˆ ˆ ˆ ˆ ˆ ˆ ., p p p p k

p
a a a a a aκ↑ ↑ − ↓ − ↓ ↑ − ↓

 
∆ + = −∆ 

 
∑                      (8c) 

Substituting (8) in to (5), we get 
† † † † † † †

SCˆ ˆ ˆ ˆ ˆ ˆ ˆ, , , ˆ,q ka a a a M a a a aκκ κ κ κ κ κ κω ↑ − ↓ ↑ − ↓ − ↓ − ↓ − ↓ − ↓= − − − ∆  

( ) † † † † †
SCˆ ˆ ˆ ˆ, , , .ˆ ˆq ka a M a a a aκ κ κ κ κ κω ↑ − ↓ − ↓ − ↓ − ↓ − ↓+ = − − ∆                  (9) 
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The equation of motion for the correlation † †,ˆ ˆqa aκ κ− ↓ − ↓  in (9) can be described as: 

† † † †, ,ˆ ,ˆ ˆ ˆkkq qa a a H aκ κ κ κω δ ′− ↓ − ↓ − ↓ − ↓
 = +    

† † † †, , , .ˆ ˆ ˆ ˆq qa a a H aκ κ κ κω − ↓ − ↓ − ↓ − ↓
 =                             (10) 

Evaluating the commutator in Equation (10) using Hamiltonian: 

{ } { }( )

† † † †

† † † †

ˆ ˆ ˆ ˆ ˆ ˆ

ˆ ˆ ˆ ˆ ˆ ˆ

, ,

, ,

p p p p p pq q
p p

p p p p pq q
p

a a a a a a

a a a a a a

σ σ σ σκ κ
σ σ

σ σ σ σκ κ
σ

− ↓ − ↓

− ↓ − ↓

 
= 

 

= −

  ∑ ∑

∑

 


 

† † †ˆ ˆ ˆ ˆ ., p p p qq q
p

a a a aσ σ κκ κ
σ

−− ↓ − ↓

 
= − 

 
∑                                (11a) 

After some lengthy but straightforward calculations; we arrive at the following results: 

( )† † † †ˆ ˆ ˆ ˆ ˆ ˆ,q q qa M a a a a Maκ κ κ κ κ κ
κ

− ↓ + ↑ − ↓ − ↓ + ↑ ↑

 + = −  
∑                         (11b) 

( )† † †
SC SCˆ ˆ ˆ ˆ ˆ ˆ .,q p p p p k q

p
a a a a a aκ − ↓ ↑ − ↓ − ↓ ↑ − + ↓

 
∆ + = ∆ 

 
∑                       (11c) 

Substituting (11) in to (10), we get 
† † † † † †

†
SC

ˆ ˆ ˆ ˆ ˆ ˆ

ˆ

, , ,

, ˆ

qq q

k q

a a a a M a a

a a

κκ κ κ κ κ κ

κ

ω −− ↓ − ↓ − ↓ − ↓ ↑ − ↓

− + ↓ − ↓

= − −

+ ∆


 

( ) † † † † †
SCˆ ˆ ˆ, , .ˆ ˆ,ˆq q k qa a M a a a aκ κ κ κ κ κω − − ↓ − ↓ ↑ − ↓ − + ↓ − ↓+ = − + ∆                 (12) 

Similarly as we did in the above the equation of motion for the correlation †,ˆ ˆqa aκ κ− + ↑ − ↓  and †ˆ ˆ,a aκ κ− ↓ − ↓   

is given by: 
† † † † †

SCˆ ˆ ˆ ˆ ˆ ˆ ˆ, ˆ, , ,qq q qa a a a M a a a aκκ κ κ κ κ κ κ κω − +− + ↑ − ↓ − + ↑ − ↓ − ↓ − ↓ − ↓ − ↓= + + ∆  

( ) † † † †
SC, , ,ˆ ˆ ˆ ˆ ˆ ˆq q qa a M a a a aκ κ κ κ κ κ κω − + − + ↑ − ↓ − ↓ − ↓ − ↓ − ↓− = + ∆                (13) 

and 

( ) † † † †
SCˆ ˆ ˆ ˆ ˆ ˆ, 1 , , .qa a M a a a aκ κ κ κ κ κ κω − − ↓ − ↓ − + ↑ − ↓ ↑ − ↓− = + − ∆                (14) 

From Equation (12), we obtain: 

( ) ( )

†† †
SC† †

ˆ ˆ,,
, .

ˆ ˆ
ˆ ˆ k q

q
q q

a aM a a
a a

κκ κ
κ κ

κ κω ω
− + ↓ − ↓↑ − ↓

− ↓ − ↓
− −

−
= +

+

∆

+ 
                   (15) 

And from Equation (14): 

( ) ( ) ( )

† † †
SC†

ˆ ˆ ˆ ˆ
ˆ ˆ

, ,1, .
qM a a a a

a a
κ κ κ κ

κ κ
κ κ κω ω ω

− + ↑ − ↓ ↑ − ↓

− ↓ − ↓
− − −

= + −
− − −

∆

  
               (16) 

Plugging Equations (15) and (16) in (9), yields: 
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( ) ( )

( ) ( ) ( )

22
† †SC

†SC SC SC ˆ , ˆ

, ˆ

.

ˆ
q

k q
q

M a a

M M
a a

κ κ κ
κκ

κ
κ κκ

ω
ωω

ω ωω

↑ − ↓
−−

− + ↓ − ↓
− −−

 ∆ + − −
 −+ 

 ∆ ∆ = − − +
 − −

∆

+ 




 

                     (17) 

And insert Equations (15) and (16) in (13), we have: 

( ) ( ) ( )

( ) ( ) ( )

22
†SC

† †SC SC

,

,

ˆ ˆ

ˆ ˆ .

q
q

k q

M a a

M MM a a

κ κ κ
κ κ

κ κ
κ κ

ω
ω ω

ω ω ω

− + − ↓ − ↓
− −

↑ − ↓
− − −

 ∆ − − −
 − + 

 ∆ ∆ = − − +
 − − + 


 

  

                      (18) 

Applying nesting condition qκ κ±= −  , qκ κ− =


   and use approximation, κ κ−=  ; Equations (17) and (14) 
becomes: 

( ) ( )

( ) ( ) ( )

22
†SC

†SC SC SC

,

,

ˆ ˆ

ˆ ˆ

k

k q

M a a

M M a a

κ κ κ
κ

κ
κ κ κ

ω
ω ω

ω ω ω

↑ − ↓

− + ↓ − ↓

 ∆
+ − −  − − 

 ∆ ∆
= − − +  − − − 

∆


 

  

                       (19) 

and 

( ) ( ) ( )

( ) ( ) ( )

22
†SC

† †SC SC

ˆ ˆ

ˆ , .

,

ˆ

k
k

k k k

M a a

M MM a a

κ κ
κ

κ κ

ω
ω ω

ω ω ω

− ↓ − ↓

↑ − ↓

 ∆
+ − −  − − 

 ∆ ∆
= − − +  − − − 


 

  

                        (20) 

Let kx ω= +   and .ky ω= −   
Then Equations (19) and (20) respectively becomes: 

2 2 ?
SC SC SCˆ ˆ ˆ ˆ, 2 ,k qxy M a a M a aκ κ κ↑ − ↓ − + ↑ − ↓

 − − ∆ = −∆ − ∆                    (21) 

2 2 ?
SC SC SCˆ ,ˆ ˆ2 ˆ, .k qxy M a a M a aκ κ κ− + ↓ − ↓ ↑ − ↓

 − − ∆ = −∆ − ∆                   (22) 

Finally we can express: 

( )
( )

( )
( )

SC SC† †
2 22 2 2 2

SC SC

1 2 1 2
, .ˆ ˆ

M M
a a

M Mκ κ
κ κω ω↑ − ↓

− ∆ + − ∆ −
= +

− − ∆ + − − ∆ − 
                   (23) 

Using the expression ( ) ( ), 1 j
n ji k Mω ω→ ∆ = − − , where ( )j k∆  is effective order parameter and the Mat-

subara’s frequency, we can write Equation (23) as: 

( )
( ) ( )( )

2
† †

2 2 2 2
1,2

2

1, .
2 2 1 π

ˆ ˆ j

j j

k
a a

n kκ κ
κ

β

β↑ − ↓
=

∆
=

+ ∆+ +
∑


                      (24) 

To take into account the temperature dependence of order parameters, we shall write as: 

† †
SC

,

ˆ ˆ,
n

V a aκ κ
κβ ↑ − ↓∆ = ∑                                    (25) 

† ,ˆ ˆk q
k

UM a aκβ ↑ − ↓= ∑                                    (26) 
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where 1 .
KT

β =  

Using Equation (24) into Equation (25), we obtain 

( )
( ) ( )( )SC 2 2 2 2

, , 1,2
2

.
2 2 1 π

j

n j j

kV
n kκ κ

β

β=

∆
=

+ +
∆

∆+
∑


                        (27) 

Let us use 

( )( )1 22 2
j kκγ β= + ∆                                    (28) 

and  

( )2 2

1 tanh 2 .
22 1 πn
γ
γγ

∞

−∞

=
+ +

∑                               (29) 

Plugging Equation (28) and Equation (29) in Equation (27), we get: 

( ) ( )( )
( )( )

1 22

SC 1 221,2

2

2

tanh
2 .

4

j

j

j

j

k kV

k

κ

κ

β

=

=
∆

+ ∆

+∆
∆ ∑




                         (30) 

For mathematical convenience, we replace the summation in (27) by integration. Thus 

( )0 d
b

bk
N

ω

κ
ω−

≡∑ ∫




  

where ( )0N  is the density of states at the Fermi level. 
The density of state ( ) ( ) ( )1 20 2 0 .N N N= +  
Assume ( ) ( )1 22 0N N=  this implies that ( ) ( )20 0 2N N= . For j = 2: 

( )
( )( )

( )( )

1 222
SC

SC SC 1 2220
SC

tanh
2 d

b M
M

M

ω κ

κ

κ

β

α
+

∆
∆ −

= ∆ −
+ ∆ −

∫
 




                   (31) 

where ( )20 .N Vα =  
Finally we can write Equation (31) as: 

( )( )
( )( )

1 222
SC

1 222SC0
SC

tanh
21 .1 d

b MM

M

ω κ

κ

κ

β

α

+ ∆ −
= −

+ ∆

 

 −

 ∆
∫
 




                     (32) 

From (32), it clearly follows that the order parameters SC∆  and M, for superconductivity and SDW are in-
terdependent. 

We now consider the equations of motion for SDW, we can write, 
† †ˆ ˆ ˆ ˆ, , , .Kkk q k qa a a H aκ κω δ ′↑ − ↓ ↑ − ↓

 = +                         (33) 

Doing a lot as we did in the above, we finally get: 

( ) † †
SC,ˆ ˆ ˆ ˆ ˆ, , ˆk q q k q k k qa a M a a a aκ κ κω ↑ − ↓ − ↓ − ↓ − ↓ − ↓+ = − − ∆              (34) 

( ) † †
SC, 1ˆ ˆ ˆ ˆ ˆ ˆ, ,q q k q k q k q k qa a M a a a aκ κ κω − − ↓ − ↓ ↑ − ↓ − + ↑ − ↓+ = − + ∆           (35) 

( ) †
SCˆ ˆ ˆ ˆ, ˆ,ˆ,q k q k q k k q q k qa a M a a a aκ κω − + − + ↑ − ↓ − ↓ − ↓ − ↓ − ↓− = + ∆            (36) 

and 
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( ) †
SCˆ ˆ ˆ, , ,ˆ ˆ ˆ .k k q k q k q k qa a M a a a aκ κω − − ↓ − ↓ − + ↑ − ↓ ↑ − ↓− = − ∆                 (37) 

Doing a lot as we did in the previous, we finally get: 

( ) ( )
( ) ( )( )

2
†

2 2 2 2 2
1,2

11, .
2 2 1 π

ˆ ˆ
j

j
k q

j k j

k
a a

n kκ

β

β↑ − ↓
=

−
=

+ + + ∆

∆
∑


                    (38) 

Using Equation (38) in to Equation (26), the SDW order Parameter M is given by: 

( )
( ) ( )( ),

22 2 2 2
, 12 2 1 π

j

k n j j

kUM
n kκ

β

β=

= −
+ + +

∆

∆
∑


                       (39) 

or  

( ) ( )( )
( )( )

1 2

2

2

2

2

121

tanh
2 .

4 j
j

j jk kUM
k

κ

κ

β

=

∆ ∆

∆

+−
=

+
∑




                        (40) 

So, finally we get: 

( )( )
( )( )

1 2

2

2

0 2

2

1 2

tanh
2 d .b

j j

j

j

k
M

k

κω
κ

κ

β

α
+

= −
∆

+
∆

∆
∫






                       (41) 

From (41), it is again evident that the order parameters SC∆  and M, for superconductivity and SDW are in-
terdependent, as was the case from (32).  

It is, therefore, possible that in some temperature interval, SDW and superconductivity can co-exist, although 
one phase has a tendency to suppress the critical temperature and the order parameter of the other phase. 

2.2. Dependence of the Magnetic Order Parameter on the Transition Temperature for  
Spin Density Wave and Superconductivity 

To study Equation (32), we consider the case, when 0 K, .T β→ →∞  
We can then replace 

( )( )1 222
SCtanh 1.

2
Mκ

β
∆+ − →  

In (32) and get, 

( )( )1 20 22SC
SC

1 11 d .b M

M

ω
κ

κ
α
= −

+ −

 
 ∆  ∆

∫





 

Using the integral relation, 

( )1

2 2
d siny x y x y

y x
−=

+
∫  

( )
( )

1

SC SC

1 1 sin bM
M

ω
α

− 
= − 

∆ ∆ − 



                              (42) 

the above equation reduces to, 

SC

SC

12 exp
1

bM
M

ω
α

 
 
 − = −  
 −    

∆

∆

                            (43) 
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from the BCS theory, the order parameter SC∆ , at T = 0 for a given superconductor with transition temperature 
TC is given by 

( )SC2 0 3.53 B ck T∆ =                                     (44) 

using this result in (43), we obtain 

11.75 2 exp .
1

1.75

B c b

B c

M k T
M
k T

ω
α

 
 
 = − −  
 −    

                          (45) 

To solve (45) numerically we use Debay temperature and the interband BCS coupling constant.  
To estimate α, I consider the case cT T→  which implies, SC 0.∆ →  
From (32), we then have 

( )( )
( )( )

( )( )
( )( )0 0

1 2 1 22 22 2
SC SC

1 2 1 22 22 2SC
SC SC

tanh tanh1 2 2d d
b bM MM

M M

ω ωκ κ

κ κ

κ κ

β β

α

∆ ∆+ − + −
= −

+ − +∆∆ −∆
∫ ∫
  

 
 

 

1 2
1 I I
α
= −                                         (46) 

( )( )
( )( )

( )( )
( )( )SC

1 2 1 22 22 2
SC SC

1 2 1 202 22 2SC0 0
SC SC

tanh tanh1 2 2d lim .d
b bM MM

M M

ω ωκ κ

κ κ

κ κ

β β

α →∆

+ − + −
= −

+ − + −

∆ ∆

∆∆ ∆
∫ ∫
  

 
 

 

Putting 2 2 2Mκτ β= +  and for SC 0∆ =  we can write 

( )
( )

1 22 2

1 1 22 20 0

tanh 22 d tanh d
2 2

.
b bM

I
M

ω ωκ

κ κ

κ

β
τβ

τ

+
= =

+
∫ ∫
 

 


                       (47) 

Using Laplacian’s transformation with Matsuber relation result we can write, 

( )
( ) ( )

1 22 2
2

1 2 22 2 4 200 0 0

tanh tanh 42 2d d
1

b b b

n

M M

M a x

κω ω ωκ

κ κ
κκ

ββ

β

∞

=

+
= −

+ +
∑∫ ∫ ∫

  




 


 

where 
2

2
2x

a
κ=
  and ( ) π2 1a n

β
= +  and using integrating by part, 

( )
( )

( )( )
( )

1 22 2
2

1 2 2 202 2 4 200 0 0

tanh ln 42 d ln tanh d
cosh 1

b bx
x

n

M x Mx x x
xM a x

ω ωκ

κ

κ

β

β

∞

=

+
= − −

+ +
∑∫ ∫ ∫

 



 

( )
( )

1 22 2 2

2
1 22 20

tanh π 12 d ln ln 1.052.
2 4 π

b
b

SC

M
M

k TM

ω κ

κ
βκ

β
β ω

γ

+   
= − −      +  

∫








              (48) 

Using the fact that, for low temperature, tanh 1
2

b

Bk T
ω 

→ 
 

 , where γ  is the Euler constant having the value  

1.78γ =  (Hsian) [15] and the last equation can be neglected since 2M  is very small.  
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We can write (48) as, 

1 ln 1.14 .b

B sc

I
k T
ω 

=  
 

                                     (49) 

Using L’Hospital’s rule, it is easy to show that 

( ) ( )

2 2
2

2
2 2 2

0

sech
2

d
2

b

M

I M
M

κ

ω

κ
κ

β

β

 +
 
 
 = −

+∫







 

which can be neglected since 2
SDWM  is very small.  

Substituting (49) in (46), we then obtain 

1 ln 1.14 .b

B Ck T
ω

α
 

=  
 

  

This implies, 

1.14 1exp ,b
C

B

T
k
ω

α
 = − 
 



                               (50) 

which can be used to estimate 1exp
α

 − 
 

 for Ba1−xKxFe2As2, using the experimental value CT  and cut-off  

energy.  
To study how M depends on the magnetic transition temperature SDWT , we consider (41).  

( )( )
( )( )

1 22

1 22
0

2

2

tanh
2 d

b

j j

j

j

k
M

k

ω κ

κ

κ

β

α
∆+

+ ∆
= − ∆ ∫

 



                        (51) 

proceeding as before, it is easy to show that, 

2

2
1ln 1.14 1.052 .

π
b

j j
B SDW SDW

jM
k T k Tβ

ω
α

    = ∆− −       
∆

  



 

Neglecting 2
j∆  

( ) ln 1.14 .b
j j

B SDW

M
k T

ω
α

 
= − ∆  

 

  

This gives;  

1.14
expb

SDW
B j j

MT
k
ω

α

  
∴ =        ∆



                            (52) 

we can use (52) to draw the phase diagram for M and SDWT .  

2.3. Pairing of Spin Density Wave (SDW) and Triplet Superconductivity 
In this section we want to drive an expressions for the order parameters of SDW, M, and triplet superconductiv-
ity, SC∆ , as a function of both of them and temperature, and to compare the variation of each with temperature. 
Still we can use the Hamiltonian given by Equation (1), but in this case the superconducting order parameter 
depends on spin alignment [16] and they can be expressed as; 

( ) ( )† † † † †
SCˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆp p p p q p p p q p p p p

p p p
H a a M a a a a a a a aσ σ

σ
+ ↑ − ↓ − ↓ + ↑ ↑ − ↓ − ↓ ↑= + + + ∆ +∑ ∑ ∑            (53) 
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where the superconducting order parameter is given by: 
† †,ˆ ˆ .k k

P
a aσ σ−∆ = ∑                                     (54) 

We now consider the equation of motion: 

† † † †ˆ , , , .ˆ ˆ ˆa a a H aκσ κσ κσ κσω − − =                               (55) 

Doing a lot as we did in the above for the commutation and using the assumption , ,1, 0σ σδ δ↓ ↑= =  we finally 
get: 

( ) † † † † †ˆ ˆ ˆ ˆ ˆ, , , .ˆq k ka a M a a a aκ κ κ κ κ κω ↓ − ↓ + ↑ − ↓ ↓ − ↓ − ↓+ = − − ∆                 (56) 

The nesting property of the Fermi surface that expected for low dimensional band structure and attributed to 
the SDW ordering gives as an expression k k−∆ = −∆ . 

Finally: 

( ) † † †, ,ˆ ˆ ˆ ˆ .k ka a a aκ κ κ κω ↓ − ↓ ↓ − ↓ − ↓+ = −∆                         (57) 

Since we are dealing with only the triplet pair; we can ignore the singlet correlation. 
The equation of motion for correlation in RHS of (57) is written as: 

( ) † † † †, 1ˆ ˆ ˆ ˆ ,ˆ ˆ,k k k q ka a M a a a aκ κ κ κω − − ↓ − ↓ − + ↑ − ↓ ↓ ↓ − ↓− = + − ∆               (58) 

and  

( ) † †ˆ ˆ ˆ, ,ˆq k q k ka a M a aκ κω − + − + ↑ − ↓ − ↓ − ↓− =                       (59) 

which can be rewritten, after solving the commutation relation and removing the singlet pair. 
From Equations (58) and (59), we will get; 

( ) ( )
2

† † † †ˆ ˆ ˆ ˆ ˆ ˆ, 1 , , .k k k k k
q

Ma a a a a aκ κ κ
κ

ω
ω− − ↓ − ↓ − ↓ − ↓ ↓ ↓ − ↓

+

− = + − ∆
−




           (60) 

With help of Equation (60) and Equation (57): 
2 2

† †
2 2,ˆ ˆK KXYR XM R

a a
YR M YR Mκ κ

↓ ↓
↓ − ↓

− − ∆ −∆
=

− −
                       (61) 

which in turn can be written as: 

† †
2 2

ˆ , ˆ .K

K

R
a a

XYR XM Rκ κ
↓

↓ − ↓
↓

−∆
=

− − ∆
                          (62) 

Applying nesting condition qκ κ±= −  , qκ κ− =


   and use approximation, κ κ−=  ; Equation (62) becomes: 

† †
2 2,ˆ ˆ K

K

a a
XY Mκ κ

↓
↓ − ↓

↓

−
− ∆−

∆
=                             (63) 

Using the expression niω ω→ , Equation (29) and Matsubara’s frequency, we can write Equation (63) as: 

( )2 2 2

2 2 2

tanh
2

2

k

k
B

k
k k

M

k TV
M

κ

κ

↓

↓

′↓

↓

+ + ∆

=
+ +

∆
∆

∆
∑




                          (64) 

where 
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† †

,

ˆ , ˆk
k n

V a aκ κβ′↓ ↓ − ↓=∆ ∑  

2 2
,

K
k

k n n k

V
Eβ ω
↓

′↓

∆
∆ =

+∑  

and 2 2 2 2 .kE Mκ ↓= + + ∆  
By taking an approximation over the superconducting order parameter, such that it is independent of wave 

vector, finally we get: 

( )2 2 2

2 2 2

tanh
2

1 .
2

B

k

M

k TV
M

κ

κ

↓

↓

+ + ∆

=
+ + ∆

∑




                             (65) 

We now consider the equations of motion for SDW, we can write, 
† † †,ˆ ˆ ˆ ˆ ., ,k qa a a H aκσ κσκω −↑ − ↓

 =                             (66) 

Doing a lot as we did in the above, we finally get: 

†
2 2

ˆ ˆ, .k q
k q

Ma a
XZR X M Rκ↑ − ↓

− ↓

−
=

− ∆ −
                         (67) 

So, 

( )2 2 2

2 2 2

tanh
2

1 .
2

B

k

M

k TU
M

↓

↓

+ ∆ +

=
+ ∆ +

∑




                            (68) 

3. Results 
Starting with a model Hamiltonian for the system and using Green’s function formalism, we obtained expres-
sions for superconducting transition temperature (TC), magnetic order parameter (M) and spin density wave 
transition temperature (TSDW). Based on these result we found two very vital equations ((45) and (52)). Moreo-
ver, we scrutinized the effect of magnetic order parameter (M) on superconducting transition temperature (TC) 
and spin density wave transition temperature (TSDW) in Ba1−xKxFe2As2 by using the relevant parameters. For this 
purpose, we have used (45) which have been numerically solved using the relevant parameters to plot the phase 
diagram for magnetic order parameter (M) versus superconducting transition temperature (TC). In the same fig-
ure, we have also plotted the phase diagram of magnetic ordering (M) versus spin density wave transition tem-
perature (TSDW), using (52). From the graph we observe TC decreases with increase in M, whereas TSDW increases 
with increase in M. The phase diagrams of M versus TC and M versus TSDW, were merged to obtain the region 
where both spin density wave and superconductivity co-exist. The regions of intersection of the two merged 
graphs showed in Figure 1 indicate co-existence of spin density wave and superconductivity for Ba1−xKxFe2As2. 

4. Conclusion 
Using a model Hamiltonian consisting of spin density wave and superconducting part and applying Green’s 
function formalism we have got an expression which shows the relation of the two order parameters and their 
variation with temperature. From Figure 1 we observe that TC decreases with increase in M, whereas TSDW in-
creases with increase in M. The spin density wave and superconducting phases, therefore, resist each other. 
However, the present work shows that there is a small region of temperature, where both the phases may be in 
existence together, which is indicated by (SC + SDW) in the figure. In the absence of spin density wave the ex-
pression for both singlet and triplet cases reduces to the well known BCS result. My study explicitly shows that  
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Figure 1. Co-existence of spin density wave (SDW) and super-
conductivity in Ba1−xKxFe2As2.                                            

 
spin density wave and superconductivity truly coexist in Ba1−xKxFe2As2 (0.2 ≤ x < 0.4) in some range of mag-
netic order. 
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