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Abstract 
In this paper, we present a new approach (Kalman Filter Smoothing) to estimate and forecast survival 
of Diabetic and Non Diabetic Coronary Artery Bypass Graft Surgery (CABG) patients. Survival propor- 
tions of the patients are obtained from a lifetime representing parametric model (Weibull distri- 
bution with Kalman Filter approach). Moreover, an approach of complete population (CP) from its 
incomplete population (IP) of the patients with 12 years observations/follow-up is used for their 
survival analysis [1]. The survival proportions of the CP obtained from Kaplan Meier method are 
used as observed values ty  at time t (input) for Kalman Filter Smoothing process to update time 
varying parameters. In case of CP, the term representing censored observations may be dropped 
from likelihood function of the distribution. Maximum likelihood method, in-conjunction with Davi- 
don-Fletcher-Powell (DFP) optimization method [2] and Cubic Interpolation method is used in esti- 
mation of the survivor’s proportions. The estimated and forecasted survival proportions of CP of the 
Diabetic and Non Diabetic CABG patients from the Kalman Filter Smoothing approach are presented 
in terms of statistics, survival curves, discussion and conclusion. 
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1. Introduction 
The Coronary Artery Disease (CAD) is a chronic disease, which progresses with age at different rates. CAD is a 
result of built-up of fats on the inner walls of the coronary arteries. Thus, the sizes of coronary arteries become 
narrow and as a result the blood flow to the heart muscles is reduced/blocked. Therefore, the heart muscles do not 
receive required oxygenated blood, which leads to the heart attack. CAD is a leading cause of death worldwide 
(see Hansson [3], John [4], and Sun and Hong [5], William, Stephen, Thomas and Robert [6]). The medical scien-
tists Goldstein [7] and Jennifer [8], William [6] are of the opinion that CABG is an effective treatment option for 
CAD patients. The medical research organizations like Heart and Stroke Foundation Canada [9], American Heart 
Association [10] and Virtual Health Care Team Columbia have classified risk factors of CABG patients as mod-
ifiable (Hypertension, Diabetes, Smoking, High Cholesterol, Sedentary Lifestyle and Obesity) and non-modifi- 
able (Age, Gender and Family History-Genetic Predisposition).  

William, Ellis, Josef, Ralph and Robert [6] carried out the survival study on incomplete population (progressive 
censoring of type 1) of CABG patients comprising 2011 patients using Kaplan Meier method [11]. The patients 
were grouped with respect to Male, Female, Age, Hypertension, Diabetes, and Ejection Fraction, Vessels, Con-
gestive Heart Failure, Elective and Emergency Surgery. The patients were undergone through a first re-operation 
at Emory University hospitals from 1975 to 1993 (see William [12]. The patients were observed/followed up for 
12 years. In the article [13] [14] we proposed a procedure, to make an IP, and a CP.  

The Weibull distribution model has been used for survival analysis by Abrenthy [15], Bunday [16], Cohen [17], 
Crow [18], Gross and Clark [19], Klein & Moeschberger [20], Lang [21], Lawless [22], and Paul [23]. In particu-
lar, the survival study of chronic diseases, such as AIDS and Cancer, has been carried out using Weibull distribu-
tions by Bain and Englehardt [24], Khan & Mahmud [23] [25], Klein & Moeschberger [20], Lawless [22] and 
Swaminathan and Brenner [26]. Lanju & William [27] used Weibull distribution to human survival data of pa-
tients with plasma cell and in response-adaptive randomization for survival trials respectively. We [14] have car-
ried out survival analysis of CABG patients by parametric estimations-classical approach, in modifiable risk fac-
tors (Hypertension and Diabetes). 

The dynamic linear model (DLM) and Kalman Filter (KF) equations have been described by Harrison and 
Steven [28]. According to the researchers, Sorenson [2] and Greg [29] Kalman Filter is a mathematical tech-
nique, used to estimate the state of a process by minimizing error of estimation. Kalman Filter extracts signals 
from a series of incomplete and noisy measurements. It removes noises from the process parameters and retains 
useful information. Kalman filter estimates the state of a dynamic linear model through its recurrence equations 
which minimizes the variance of estimation error. To implement Kalman filter, observed values as dependent 
variables are required for updating the process parameters. Though, since time of introduction, the Kalman Filter 
has been subject of research for engineering processes see Frank [30], however the KF methodology has been 
applied extensively in medical research/life-testing studies/survival analysis; for example, Meinhold and Sing-
purwalla [31] proposed a new method for inference and extrapolations in certain dose-response, damage-assess- 
ment, and accelerated-life-testing studies, using Kalman-filter smoothing. Anatoli, Kenneth and James [32] in-
dicated that various multivariate stochastic process models have been developed to represent human physiologi-
cal aging and mortality. These researchers considered the effects of observed and unobserved state variables on 
the age trajectory of physiological parameters. The parameters of the distribution used were estimated based on 
an extension of the theory of Kalman filters to include systematic mortality selection. Ludwig [33] considered 
models for discrete time panel and survival data; and used a generalized linear Kalman filter approach.  

In our study, Kalman filter technique is applied to estimate parameters of Weibull probability distribution us-
ing Diabetic and Non Diabetic CABG patient’s data sets. For construction of KF equations, survivor function of 
the probability distribution is linearized by transformation of double-log. The procedure to construct linear form 
of the survivor function, as advocated by researchers (see Gross and Clark [19], Kalbfleisch and Prentice [34] 
and Lawless [22], Meinhold and Singpurwalla [35]) is followed. Survival proportions for complete population 
of Diabetic CABG patients obtained from Kaplan Meier method are used as observed values ty  at time t, for 
updating the time varying parameters of the distribution. After defining the updating system of parameters of a 
probability distribution with KF approach (discussed in the methodology), the parameters are estimated at each 
time t by maximizing likelihood function of double-lognormal distribution, through Davidon-Fletcher-Powel 
method of optimization [36]. Since, in KF approach the observed values are from complete population, therefore, 
censored part is excluded (dropped) from log-likelihood function. The survival proportions obtained by the pro- 

http://www.sciencedirect.com/science/article/pii/0040580985900085
http://www.sciencedirect.com/science/article/pii/0040580985900085
http://link.springer.com/search?facet-author=%22Ludwig+Fahrmeir%22
http://link.springer.com/search?facet-author=%22Ludwig+Fahrmeir%22
http://link.springer.com/search?facet-author=%22Ludwig+Fahrmeir%22


M. Saleem et al. 
 

 
407 

bability distributions with KF approach are presented with respect to Diabetic and Non Diabetic patients i.e. 
Diabetes Present ( pD ) and Diabetes Absent ( aD ) Groups of CABG patients.  

2. Methodology 
For the estimation of survival proportions Kaplan Meier [11] proposed a method and latter discussed by William  

[6] and Lawless [22] i.e. ( )
:

1 j

j t t jj

d
S t

n<

 
= −  

 
∏ , where jd  and jn  are the number of items failed (died indi-  

viduals/patients) and number of individuals at risk at time jt  respectively, that is, the number of individuals 
survived and uncensored at time 1jt − .This method may be applied to both censored and uncensored data, see 
Lawless [22]. In case of censored individuals (items) the analysis is performed on IP. Khan, Saleem & Mahmud 
[1] proposed that the censored individuals jc  may be taken into account. The inclusion of splitted-censored in-  

dividuals, jc  proportionally 
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 into known survived, jn  and died in-  

dividual’s jd  respectively make populations complete. Thus the survival analysis may be performed on the CP 
from its IP. We apply Kaplan Meier method on CP of pD  and aD  groups of CABG patients to obtain surviv-
al proportions ty ’s and use as input in the DLM and KF equations/process. In this study the observed values 
(survival proportions) are denoted by ( )0,1tY ∈ , where tY  may take value 1 2 3, , , , ty y y y  at time  

1 2 3, , , ,t t t t . Harrison and Stevens [28] described the DLM which may be reproduced as system of following 
two equations: 
Observation Equation: 

( ){ }2, ~ 0,
tt t t t t eY F e e Nθ σ= +                             (1) 

System Equation:  

( ){ }1 , ~ 0,t t t t tG w w N Wθ θ −= +                            (2) 

where tY  and tθ  are of arbitrary dimensions. tY  is a scalar, tθ  is vector of process parameters at time t, tF  
is matrix of independent variables, known at time t, G is known system matrix (identity matrix), te  is error 
term, a difference between observed and expected value ty  and ˆty  respectively at time t. 2

teσ  is the variance 
of te . It is assumed that te  has Gaussian distribution with mean 0 and variance 2

teσ . The system equation de-
scribes the change which occurs when process parameter changes from preceding value 1tθ −  to current value 

tθ  and tW  is the variance of disturbance term tw . According to Harrison and Stevens (1976), it is assumed 
that distribution of the parameter vector tθ  at time t = 0 i.e. 0θ  prior to the first observation 1y  is in the form 
of normal probability distribution with mean say 0m  and variance 0C  i.e. ( )0 0 0~ ,N m Cθ . If the observed 
values; , 1, 2,3,ty t =   are described through DLM, then the posterior distribution of parameter vector tθ  is 
also normally distributed with mean say tm  and variance tC  i.e. ( )~ ,t t tN m Cθ . Whereas, the values of tm   

and tC  are recursively obtained as: 1ˆt t ty F Gm −= ; ˆt t te y y= − ; 1t t tR GC G W−
′= + ; 2 2

t ty t t t eF R Fσ σ′= + ;  

( ) 12
tt t t yA R F σ

−
′= . The Kalman filter equations are: 1t t t tm Gm A e−= +  and 2

tt t t y tC R A Aσ ′= −  (for detail see 
Harrison and Stevens [28]). 2

tyσ  is variance of ty  and tA  is a matrix which update tm  & tC  at each time 
t recursively. 

The KF equations of Weibull probability distribution models are constructed by linearizing survival function 
of the distribution with transformation; double-log. The parameters of the probability distributions are estimated 
at each time t, by maximizing log-likelihood function of lognormal distribution (which is transformed form of 
Weibull distribution), through the Davidon-Fletcher-Powel method of optimization. For the entire system, the 
parametric space at each time point t is ( ), ,t t tm C WΦ = . Specification of starting values of the parameters is a 
common difficulty in implementing Kalman Filter. Practitioners have to check the sensitivity of the final results 
with different sets of assumed values (see Meinhold and Singpurwalla, [31]. After obtaining the prior values of 
the parameters of the probability distributions at time t = 0, the values ( ), , for 1,2,3,t t tm C W tΦ = = 

 are ob-
tained recursively by using the Kalman filter updating equations. The survival proportions for complete popula-
tion of pD  and aD  CABG patients are used as observed values ty ’s at time t, for updating the time varying 
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parameters of the distributions. Since, in the Kalman filter approach the observed values are from complete pop-
ulation, therefore, censored part is dropped from the log-likelihood function. To find maximum likelihood esti-
mates we take negative log-likelihood function of the distribution. A subroutine for maximizing log-likelihood 
function of each distribution along with KF process is developed in FORTRAN program. The subroutine 
in-conjunction with the DFP optimization method is used to find the optimal initial estimates of the mean and 
variance parameters included in the model, 0 0,m C  and 0W , from final iteration of the program. For outside 
sample period (forecasting), due to non-availability of dependent values ty ) we stop the process of updating the 
mean parameters. Therefore, values of these optimal mean parameters remain constant and are utilized for up-
dating the variance parameters for outside sample period, using the KF equations. The survival proportions ty ’s 
of these probability distributions are estimated. 

3. Application (Construction of KF Equations of Weibull Distribution)  
Since the values of survival proportions tY  (observed values) lies in the interval (0, 1), expected value, ( )tE Y  
of a probability distribution should also lie in the interval (0, 1). Keeping in view the natural process of deaths 
with the passage of time, it is assumed that ( )tE Y  as a function of t is monotonically decreasing. These re-  

searchers, Meinhold and Singpurwala [33] considered a quantity ( ) e tt t
tE Y

βα−=  ( )and 0t tα β >  which is a  
nonlinear, monotonically decreasing function of t and is survival function, ( )S t  of the Weibull distribution. 
Moreover, the form e tt t

βα−  (where tα  and tβ  are scale and shape time varying parameters respectively in 
KF approach) has property with respect to linearity; may be linearized by taking its double logarithm. The linear  
form is a requirement for filtering techniques. Thus to implement KF a random quantity ( ){ }* ln lnt tY Y= −  is  

defined, which require that *
tY  has a Gaussian density with expectation tµ  and variance 2

tyσ . This implies 
that the random quantity *

tY  must have double-lognormal distribution with pdfat ty  of the form: 

( )
( )

( )( )2

22

1 1exp ln ln .
22π ln

tt

t t t
t t yy

f y y
y y

µ
σσ

       = − − − 
−         

 

Now, ( ) ( )( )( ) ( )( ) [ ][ ] [ ][ ]* ln ln ln ln e ln ln 1 ln ln 1 ln ,tt t
t t t t t t tE Y S t t t t

βα β α α β γ β− ′ ′= − = − = + = =   

setting lnt tγ α=  

[ ][ ] ( ){ }* 21 ln ; ~ 0,
tt t t t t eY t e e Nγ β σ′= +                          (3) 

The corresponding system equation is: 

[ ] [ ] ( ){ }2 1 1 ; ~ 0,t t t t t t tI w w N Wγ β γ β− −
′ ′= +                        (4) 

Comparing Equations (3) and (4) with (1) and (2), we find that: 

[ ]1 lntF t= , 

[ ] [ ]1 1 1;t t t t t tθ γ β θ γ β− − −
′ ′= =  and 2G I=  (identity matrix). 

To find maximum likelihood estimates we consider negative log-likelihood function say ( )l Φ ) of the 
double-lognormal distribution, given as: 

( ) ( )( ), ln
it t t tl l l f f yΦ = =∑  

where, ty  and 
it

f  are observed values from CP and 
it

f  number of failures at time it  respectively and tl  may  

be obtained as: ( ) ( )2

ln 2π ln
2i

t
t t t t tl f y y a

δ 
 = − − +
  

. 

For derivation of tl  and its partial derivatives, see Appendix A. 
A subroutine for maximizing log-likelihood function of the double-lognormal distribution along with KF 

process (subroutine) is developed in FORTRAN program.  
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The subroutine in-conjunction with DFP optimization method is used to find the optimal initial estimates of 
the parameters included in the model 0 0,m C  and 0W , from final iteration of the program.  

The optimal initial estimates of parameters obtained by maximizing the log-likelihood function are presented 
in Table 1. 

The results (survival proportions obtained by using Weibull distribution and KF approach ( )( )ˆt KF
y  at each  

time point t as explained earlier) of aD  (Diabetic Absent) and pD  (Diabetic Present) groups of CABG pa-
tients are presented in Table 2 and Table 3 respectively. 

 
Table 1. The estimates of parameters of Weibull distribution and KF using data of aD  and pD  groups of CABG patients.                                                            

Parameters 
aD  Group pD  Group 

Estimates Gradients Estimates Gradients 

0α  20.2093 10−×  73.6 10−− ×  
70.214 10−×  

283380. 10−×  79.02 10−×  
61.54 10−×  

0β  1.2999 1.0546 
2
0σ  1.2197 1.9704 

0C  
4

5

1.348 10 0
0 8.76 10

−

−

× 
 

× 
 

3

4

1.543 10 0
0 2.95 10

−

−

× 
 

× 
 

0W  
8

9

1.8183 10 0
0 7.6737 10

−

−

× 
 

× 
 

6

8

2.38 10 0
0 8.75 10

−

−

× 
 

× 
 

Value of 
Log-Likelihood 161.4857 84.236929169 

 
Table 2. Survival proportions ty  of 12 years estimated and 3 years forecasted of CP (complete population) of aD  (di-
abetic absent group) of CABG patients obtained by Kalman Filter approach.                                                            

Years (t) ty  ( )ˆt KF
y  

0 1 1 

1 0.90 0.979 

2 0.87 0.949 

3 0.85 0.916 

4 0.83 0.880 

5 0.79 0.843 

6 0.77 0.805 

7 0.73 0.767 

8 0.69 0.729 

9 0.65 0.692 

10 0.61 0.656 

11 0.56 0.620 

12 0.53 0.586 

13  0.552 

14  0.520 

15  0.489 
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4. Conclusion 
The graphs of observed survival proportions from the complete population ty  and expected survival propor-
tions ( )ˆt KF

y  of aD  and pD  groups of CABG patients (Figure 1 & Figure 2) indicate that the behavior of 
( )ˆt KF

y from aD  group is like linear throughout the sample period, whereas ( )ˆt KF
y  of the pD  group is al-

most linear for the first 7 values and curved for the rest of values; due to more noises, however it remains around 
ty  of the pD . This reflects that the complete population (forecasting) data has been modeled adequately. Kal-

man Filter smoothing approach is appropriate and forecast of aD  and pD  groups of CABG patients is reliable 
outside the sample observations. 
 
Table 3. Survival proportions ty  of 12 years estimated and 3 years forecasted of CP (complete population) of pD  (di-

abetic present group) of CABG patients obtained by Kalman filter approach ( )ˆt KF
y .                                                            

Years (t) ty  ( )ˆt KF
y  

0 1 1 

1 0.85 0.9200 

2 0.82 0.8410 

3 0.79 0.7667 

4 0.73 0.6978 

5 0.66 0.6343 

6 0.60 0.5760 

7 0.53 0.5225 

8 0.51 0.4737 

9 0.45 0.4291 

10 0.36 0.3885 

11 0.34 0.3515 

12 0.23 0.3179 

13  0.2873 

14  0.2596 

15  0.2345 

 

 
Figure 1. Diabetes absent group.                                                                                      
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Figure 2. Diabetes present group.                                        
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Appendix-A 
The Double-Lognormal Distribution 
Consider p.d.f of log-normal distribution:  

( ) ( )2
2

1 1exp ln ,
22π

tt

t t t
yy t

f y y
y

µ
σσ

  = × − − 
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 where tµ  and 
tyσ  are parameters of the distribution. 

Let 1

t

t
y

η
σ

=  and ( )lnt ta η=  or e ta
tη= ,  

then, 
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t
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= × . 

Let ( )ln e ta
t t tyδ µ = −  , we may write as: ( )

( )2

2e e .
2π

tta

t
t

f y
y

δ

= ×  

To find maximum likelihood estimates, we consider negative log-likelihood function say ( )l Φ ) of the double- 
lognormal distribution, given as:  

( ) tl lΦ =∑ , 

where ( )( )ln
it t tl f f y= , by excluding the censored part since observed values ty  are from complete popula-  

tion, 
it

f  are the number of failures (died) at time it  and tl  may be obtained by replacing value of ( )tf y . We 
get tl  as: 

( )2

[ln 2π
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t
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For partial derivatives, differentiating above equation with respect to tδ  and ta , we get 
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