
Applied Mathematics, 2015, 6, 2069-2076 
Published Online November 2015 in SciRes. http://www.scirp.org/journal/am 
http://dx.doi.org/10.4236/am.2015.612182  

How to cite this paper: Dragan, I. (2015) On the Coalitional Rationality of the Banzhaf Value and Other Non-Efficient Semi-
values. Applied Mathematics, 6, 2069-2076. http://dx.doi.org/10.4236/am.2015.612182 

 
 

On the Coalitional Rationality of the Banzhaf 
Value and Other Non-Efficient Semivalues 
Irinel Dragan 
University of Texas, Arlington, USA 

 
 
Received 28 September 2015; accepted 22 November 2015; published 25 November 2015 

 
Copyright © 2015 by author and Scientific Research Publishing Inc. 
This work is licensed under the Creative Commons Attribution International License (CC BY). 
http://creativecommons.org/licenses/by/4.0/ 

    
 

 
 

Abstract 
In the Inverse Set relative to a Semivalue, we are looking for a new game for which the Semivalue 
of the original game is coalitional rational. The problem is solved by means of the Power Game of 
the given game. The procedures of building the new game, as well as the case of the Banzhaf Value 
are illustrated by means of some examples. 
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1. Introduction 
In an earlier work of the author [1], the Inverse Problem for the Shapley Value has been introduced and solved: 
for whatever n-vector, find out the set of all TU games for which the Shapley Value equals that a priori given 
vector. In a more recent work [2], the Inverse Problem was solved for Semivalues, including the Banzhaf Value. 
Like in the first case, the solution was called the Inverse Set, relative to the Semivalue, and was given by an ex-
plicit formula expressing all games associated with that Semivalue, defined by a fixed weight vector. In a recent 
work [3], it was also reminded that the Shapley Value, may not be coalitional rational, that is, in general, it does 
not belong to the Core of the game. In [3], another problem was introduced and solved: given a TU game, for 
which we know the Shapley Value, or some other efficient value, find out a game with the same Shapley Value, 
or the alternative efficient value, but in which the considered value is coalitional rational. For the Shapley Value, 
in technical words, in the Inverse Set relative to the given Shapley Value, find out a TU game for which this 
Shapley Value is coalitional rational. 

In the present paper, the similar problem is now considered for the Banzhaf Value and the Semivalues, (val-
ues introduced in [4] [5], respectively). These values are usually non-efficient, so that they will not be in the 
Core; therefore we have to define now what it is a coalitional rational Banzhaf Value, and more general a Semi-
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value. The main idea will be that of going on the path met in a previous joint work [6]. 
Precisely, for each game, we associate a Power Game, relative to the Semivalue, and the value of the original 

game, efficient in the Power Game, is coalitional rational, if it belongs to the Core of the Power Game, called 
the Power Core. If the Semivalue happens also to be an efficient one, for the original game, then the Power 
Game is the game itself, so that the new definition of the coalitional rationality should be extending the defini-
tion given above for the efficient values. Note that, on the other hand, the Semivalue of the original game is al-
ways efficient in the Power Game, hence in the general case we should discuss only the coalitional rationality. 
An example with some details will be given for a Banzhaf Value, which is efficient for a particular game. 

In the following, the concept of Semivalue as well as the solution of the Inverse Problem for Semivalues, will 
be sketched in the second section. The concept of Power Game and the solution of the above new problem con-
nected to coalitional rationality will be shown in the third section, where several three person games will also il-
lustrate the results, for some non-efficient Semivalues, defined by a priori given weight vectors.  

More remarks, about the efficient values, and the computational means for finding solutions of the problem, 
will be shown in the last section. 

2. The Inverse Set for Semivalues 
The set of all cooperative TU games, on a finite set of player N, with two operations, addition and scalar multip-
lication, is a linear vector space, to be denoted by ( )G N , with a dimension of 2 1n − . In this space of games, 
the Semivalue of a game ( ),N v , denoted by ( ),SE N v , will be defined by a weight vector ( )n n n

sp p R= ∈ , 
satisfying some condition of normalization, precisely 

1

1
1.

1

n
n
s

s

n
p

s=

− 
= − 

∑                                     (1) 

The Semivalue may be extended to the sets of games in ( ) , ,G T T N∀ ⊆  that contain among others the sub-
games ( ),T v , of the game ( ),N v , obtained by restricting this game to the player sets , .T N T⊆ ≠∅  For the 
games in such spaces, one defines the restrictions of the weight vector np  to the weight vectors tp  obtained 
by means of what we call the inverse Pascal triangle property: starting from the given weight vector np , let the 
weight vectors 1, ,n tp p−

  be already defined by the formulas 
1

1, 1, 2, , 1, ,t t t
s s sp p p s t t n−

+= + = − ∀ ≤                            (2) 

for , 1, , 1,n n t− +
 and use (2) to define 1tp − , up to 1p . We see that all weight vectors satisfy normalization 

conditions similar to (1). The union of all spaces ( ) , , ,G T T N T∀ ⊆ ≠∅  is denoted by NG . On this set, in-
cluding the subgames of ( ),N v , the Semivalue defined by the given weight vectors n np R∈  and those de-
rived in (2) is expressed as 

( ) ( ) { }( )
:

, , , ;t
i s

S i S T
SE T v p v S v S i i T T N

∈ ⊆

 = − − ∀ ∈ ∀ ⊆ ∑                    (3) 

Among the Semivalues, we have the popular particular cases of the Banzhaf Value, obtained for the weight 
vectors ( )n n

sp p= , where we have the components 12 , 1, 2, , ,n n
sp s n−= =   and the Shapley Value where the 

components of the weight vectors are 

( ) ( )1 ! !
, 1, 2, , ,

!
n
s

s n s
p s n

n
− −

= =                               (4) 

together with the weight vectors derived by means of (2). 
The first is usually non-efficient, while the second is always efficient. We mean that the Banzhaf Value may 

be efficient for some games and non-efficient for others, while the Shapley Value is efficient for all games. An 
example showing the first situation follows. 

Example 1: a) Consider the game 

( ) ( ) ( )
( ) ( ) ( )
( )

1 100, 2 200, 3 300,

1,2 400, 1,3 500, 1,3 600,

1,2,3 900.

v v v

v v v

v

= = =

= = =

=
                           (5) 
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By computing the Banzhaf Value via formula (3), with the weight vector 3 1 1 1, ,
4 4 4

p  =  
 

, and the Shapley 

Value with the weight vector 3 1 1 1, ,
3 6 3

p  =  
 

, we get ( ) ( ) ( ), , 200,300,400 ,B N v SH N v= =  so that we may 

check that both are efficient and coalitional rational. 
It happened that the two values are equal, a fact discussed in [7]. 
For those Semivalues which are efficient, only in the case of some games, there is no need to define again the 

coalitional rationality. 
b) The fact that this may not happen is shown by the game 

( ) ( ) ( ) ( ) ( ) ( ) ( )1 2 3 3, 1,2 10, 1,3 2,3 8, 1,2,3 14,v v v v v v v= = = = = = =               (6) 

for the Banzhaf Value, which is a particular Semivalue. With the same weight vector, we find 

( ) 21 21 17, , ,
4 4 4

B N v  =  
 

, and this is not efficient, because the sum makes 59 14
4
≠ , while the coalitional ratio-  

nality conditions are satisfied. Clearly, we have to discuss also the coalitional rationality for non-efficient Semi-
values. 

c) The most general case is the one when for some game and some value, both the efficiency and the coali-
tional rationality conditions do not hold. For example, if we take for the same game (6) the Semivalue defined 

by the weight vector 3 1 1 1, ,
2 6 6

p  =  
 

, which satisfies the condition (1), then from formula (3), we obtain 

( ) 9 9 23, , , .
2 2 6

SE N v  =  
 

 

Now, neither the efficiency, nor the coalitional rationality conditions are holding, because the sum of payoffs  

makes 77 14
6
≠ , and 

( ) ( ) ( )1 2, , 9 1, 2 10,SE N v SE N v v+ = ≥ =  

does not hold; in other words, the last situation is the general case. 
Note that in (6) the Shapley Value is ( ) ( ), 5,5, 4 ,SH N v =  which is efficient and coalitional rational. Note 

the fourth situation, the well known fact that efficient Semivalues equal the Shapley Value, but this may be, or 
not, coalitional rational; the first case was met above. 

Return to the set of games NG , the union of the vector spaces ( ) , .G T T N∀ ⊆  Consider a game ( ),N v , 
and compute the Semivalue ( ),SE N v , by formula (3), for a weight vector np , satisfying the normalization 
condition (1). Let us have ( ),SE N v L= . where nL R∈ . 

The Inverse Problem for Semivalues, discussed in [2], can be stated as follows: find out all TU games in the 
space ( )G N  for which the Semivalue associated with the weight vector np , equals L. This problem has al-
ready been solved in the above mentioned work of the author, and we shall sketch the solution, before going to 
the related problem of coalitional rationality. In the space ( )G N , denote a basis 

{ }: , ,n
TW w R T N T= ∈ ∀ ⊆ ≠∅                             (7) 

defined by means of the formulas 

( ) ( )
( )

0

1
1 , , ,

l

s t

T Tt t l
lt t l

s t
l

w T w S S T
p p

−

+
= +

− 
−  

 = = ∀ ⊃∑                       (8) 

and ( ) 0Tw S =  otherwise. Note, that the denominators t l
t lp +
+  are obtained from the weight vector np  via the 

inverse Pascal triangle relationships (2). It is easy to see that these are linearly independent vectors and the set W 
has the cardinality 2 1n − , hence this is a basis of the space. Thus, any TU game ( ),N v  has an expansion 
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{ } { }
: 2

,S S N NN i N i
S S n i N

v c w c w c w− −
≤ − ∈

= + +∑ ∑                           (9) 

for some values of the constant coefficients. In the earlier work, it has been shown the following auxiliary re-
sults: 

( ) { }( )
( )

, 0, , 2, , , , ,

, 1, .

i
T j jN i

i N

SE N w T T n SE N w i j N

SE N w i N

δ−= ∀ ≤ − = − ∀ ∈

= ∀ ∈
                (10) 

These equalities, as well as the linearity of the Semivalues, shown by formula (3), give { } , ,N iN ic c L i N−− = ∀ ∈  
so that from (9) we obtain 

{ } { }
: 2

.S S N N iN i N i
S S n i N i N

v c w c w w L w− −
≤ − ∈ ∈

 = + + − 
 

∑ ∑ ∑                       (11) 

In [2], it has been proved that this is the general solution of the Inverse Problem for the considered Semivalue, 
that is it is offering an explicit expression for the games in the Inverse Set. Note also from (10) that the paren-
thesis in (11) has a null Semivalue, hence a basis of the null subspace is also shown in (11), namely 

{ } { }: 2 ,S N N i
i N

w W S n w w −
∈

 ∈ ≤ − + 
 

∑                           (12) 

with dimension 2 1.n n− −  Now, a new problem to be discussed in this paper will be introduced, starting with 
the concept of Power Game, to be used in connection with the coalitional rationality. 

3. The Power Game of the Inverse Set and the Coalitional Rationality 
For any game ( ),N v , and any value Φ  defined on NG , the Power Game of ( ),N v  is the game ( ),N πΦ , 
derived from the given game by 

( ) ( ), , .i
i S

S S v S NπΦ
∈

= Φ ∀ ⊆∑                                (13) 

Formula (13) shows a nice interpretation of the Power Game: for each coalition in the original game, the 
worth of the coalition in the Power Game equals the total win of its members, when they use the value Φ . Thus, 
for a Semivalue, that is if ( ) ( ), , , ,S v SE S v S NΦ = ∀ ⊆  then, by (13), the Semivalue of the original game 
( ),N v  is efficient in any subgame of the Power Game. The Core of the Power Game is called the Power Core. 
Now, the natural approach in discussing how to share fairly the total win of the grand coalition in the given 
game is that of following the ideas introduced in the earlier paper [6]: we shall consider the Semivalue of the 
given game as efficient and coalitional rational, if it belongs to the Power Core. Hence, to check whether, or not, 
this happens, we should compute the Power Core. 

However, it will be easier to use a computational formula for the Power Core proved also in the same paper 
[2]; this will be done next, because we shall compute only the worth of coalitions of size 1n − . The problem 
similar to the one discussed above may be stated as: for a given game ( ),N v , find out a game ( ) ( ),N w G N∈ , 
with the Semivalue ( ) ( ), ,SE N w SE N v= , but in which the Semivalue of the given game is also efficient and 
coalitional rational. Now, there are two cases: either the Semivalue is in the Core of the Power Game for the 
given game, or not. In the first case, the Semivalue is considered coalitional rational; in the other case, from 
( ),N v  we build a new game ( ),N w  in the Inverse Set, where this happens. In the following, we shall confine 
ourselves to a solution ( ),N w  in the subfamily of the Inverse Set, to be called the null subfamily. In other 
words, if the Semivalue is not in the Core of the Power Game of the initial game, then for this game ( ),N v , we 
want the Semivalue of this given game to belong to the Core of the new game ( ),N w , from the almost null 
subfamily. 

Now, an arbitrary game in the almost null subfamily of the Inverse Set, relative to the Semivalue 0L ≥ , is 
given by 

{ } { }.N N iN i N i
i N i N

w c w w L w− −
∈ ∈

 = + − 
 

∑ ∑                             (14) 
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and depends on the parameter Nc . From (14) and (8), as all the characteristic functions of the basic games are 
null when 2S n≤ − , we get ( ) 0, , 2.w S S S n= ∀ ≤ −  For { }S N i= − , from (14) and (8),we get 

{ }( ) { } { }( )( ) ( )1 .N i N iN i n i
n i

w N i w N i c L c L
p− −

−

− = − − = −                      (15)’ 

Similarly we obtain 

( ) 1 1
1 1

1 1 1 ,N in n n n
i Nn n n n

n nw N c L
p p p p− −

∈− −

   −
= − − −   

   
∑                        (15)” 

As noticed above, this game belongs to the almost null subfamily of Inverse Set, for any value of the parame-
ter, and we may check that the Semivalue of any game in this family equals the Semivalue of the original game. 
From (15), based upon the definition (13), we can compute the Power Game of ( ),N w , denoted ( ),N π , and 
its Core. 

Instead, the Power Game of ( ),N w  may be easier computed by using the formula from the previous work 
mentioned above, precisely 

( ) ( ) ( )1
:

, .t t
s s

S S T
T sp t s p w S T NπΦ +

⊆

 = − − ∀ ⊆ ∑                        (16) 

For { }T N i= − ,from (8) and (16) we get 

{ }( ) ( )( )1 , ,N iN i n c L i NπΦ − = − − ∀ ∈                           (17) 

and the efficiency is holding, because we have also 

( ) .i
i N

N LπΦ
∈

= ∑                                    (18) 

In this way, we almost proved the following main result: 
Theorem: Suppose that the Semivalue, associated with a given weight vector ( )n n

sp p= , is 0L ≥ . Then, in 
a game belonging to the subfamily of the Inverse Set relative to the Semivalue, defined by 

( ) { } { }0 : ,N N iN i N i
i N i N

I w G N w c w w L w− −
∈ ∈

  = ∈ = + −  
  

∑ ∑                   (19) 

the Semivalue is in the Power Core, if and only if the parameter Nc  satisfies the inequality 

{ }
( )1 Min 1 ,

1N j i
j N i

c L n L
n ∈ −

 
≤ + −  −  

∑                           (20) 

where the minimum is taken over the index i N∈ . 
Proof: Taking into account the above formulas (17), (18), for the Power Game, the Power Core is given by 

0,iL i N≥ ∀ ∈ , and 

{ }
{ }( ) ( )( )1 , ,j N i

j N i
L w N i n c L i N

∈ −

≥ − = − − ∀ ∈∑                       (21) 

from which the result (20) follows, as the efficiency is obvious. ■ 
Note that the inequality (20) does not depend on the weight vector and it is the same as in [2], the case of the 

Shapley Value and other efficient values. This is not surprising, because this theorem is also applicable to the 
Shapley Value, as the Shapley Value is a particular Semivalue. Other remarks will be discussed later, for the 
moment let us illustrate the results contained in the theorem. 

Example 2: Consider the same three person game of Example 1a, shown in (5). Compute the Semivalue asso-  

ciated with the weight vector 3 1 1 1, ,
6 6 2

p  =  
 

. From formula (3), we get 

( ) 700 1000 1300, , , ;
3 3 3

SE N v  =  
 

                             (22) 
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Obviously, the conditions ( ) , ,i
i S

L v S S N
∈

≥ ∀ ⊂∑  hold, but the Semivalue is not efficient, because this sum  

makes 1000; hence, it does not belong to the Core, even though the coaltional rationality conditions hold. Com-
pute the characteristic function for all the coalitions of size two in an arbitrary game belonging to the almost null 
subfamily of the Inverse Set, relative to the Semivalue and to the vector shown in formula (22), by using the 
formulas (15). We get 

( ) ( ) ( ) ( )3 3 3 11,2 650, 1,3 500, 2,3 350, 1,2,3 500.
2 2 2 2N N N Nw c w c w c w c= − = − = − = +       (23) 

We may check that the Semivalue of this game is the same as the one in the original game, for whatever value 
of the parameter Nc  The inequality which gives the coalitional rationality, that is (20), is 

( )1 2 3 1 2 3 1 2 3
1 Min 2 , 2 ,2 ,
2Nc L L L L L L L L L≤ + + + + + +                  (24) 

where the Semivalue denoted by L, is provided by (22). We have 

2150 2000 1850Min , , .
3 3 3Nc  ≤  

 
                           (25) 

By taking for example 1850
3Nc =  in formulas (23), we get the game 

( ) ( ) ( ) ( ) 24251,2 275, 1,3 425, 2,3 575, 1,2,3 ,
3

w w w w= = = =                 (26) 

where the null worth of the singletons have been omitted. We may check that the Semivalue equals L, and it be-
longs to the Core of the Power Game for ( ),N w , which is ( ),N π , with ( ) ( ) ( )1 2 3 0,π π π= = =  

( ) ( ) ( ) ( )1100 1700 23001,2 , 1,3 , 2,3 , 1,2,3 1000,
3 3 3

π π π π= = = =               (27) 

It follows that the Semivalue of the original game and of the game in the almost null family (26) are coali-
tional rational as it is in the Core of (27), Hence, the game (26) is a solution for our problem, that is the Semiva-
lue of the original game is coalitional rational, in the above introduced sense. In the next section we shall con-
sider a Semivalue, corresponding to another weight vector, for which neither the efficiency, nor the coalitional 
rationality will hold, in the original game. 

4. Discussion 
The following remarks are appropriate: 

a) Note that the Semivalue of the Power Game (27) is 

( ) 2450 3650 4850, , , ,
9 9 9

SE N π  =  
 

                           (28) 

not the same as the Semivalue (22), as the Power Game is not in the almost null subfamily of the Inverse Set. 
Moreover, it does not belong to the Power Core, as it is not efficient, to be easily checked. 

b) It is well known that the Semivalues are efficient if and only if they are Shapley Values. Hence, the above 
theory applies also to the Shapley Value. However, due to the efficiency the Power Game is the game itself, so 
that after getting the game belonging to the almost null family, we should get the coalitional rationality condi-  

tion from this game. Indeed, looking at the games (15), and using the fact that ( ) 11
1 1n

np n
−−

− = − , from (15) we get  

(17), and from here we obtain (20), which gives the same coalitional rationality condition as in the study of coa-
litional rationality for efficient values (see [3]). 

c) The above results may be applied to the Banzhaf Value, which is a Semivalue defined by the weights 
12 , 1, 2, , .n n

sp s n−= =   The game from the almost null inverse set relative to the Banzhaf Value, with these 
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weight vectors and the value L, is derived from formulas (15) by an easy computation: 

( ) { }( ) ( )

( ) ( )

2

2

0, , 2, 2 , ,

2 2 .

n
N i

n
N i

i N

w S S N S n w N i c L i N

w N n c L

−

−

∈

= ∀ ⊂ ≤ − − = − ∀ ∈

 = − +  
∑

               (29) 

Returning to the game in our example 1, where the Banzhaf Value is 

( )200,300,400 .L =                                  (30) 

that happens to be efficient, and if the parameter is chosen to satisfy (20) with equal sign, 550Nc = , we get 
( ) ( ) ( )1 2 3 0,w w w= = =  and 

( ) ( ) ( ) ( )1,2 300, 1,3 500, 2,3 700, 1,2,3 700,w w w w= = = =                  (31) 

The Power Game for (31) is 

( ) ( ) ( ) ( )1,2 300, 1,3 500, 2,3 700, 1,2,3 900,π π π π= = = =                  (32) 

derived from (15), the Banzhaf Value of original game and the value of the parameter Nc , chosen to satisfy the 
coalitional rationality. We may check that the Banzhaf Value of the original game belongs to the Core of (32), 
hence it is coalitional rational. 

Example 3. Consider the game (6) of example 1c, and the Semivalue with the weight vector 
1 1 1, ,
2 6 6

 
 
 

, given 

by ( ) 9 9 23, , ,
2 2 6

SE N v  =  
 

. As already noticed, this is neither efficient, nor coalitional rational. Let us apply the  

result of the above Theorem. We may check that this Semivalue is neither efficient, nor coalitional rational.  

From formula (20) we see that the Semivalue will be coalitional rational if we have 25
3Nc ≤ ; we may compute 

from (11) the value of 71 25
6 3Nc = > , which means that the Semivalue is not coalitional rational, as it does not  

satisfy the above inequality. Now, find out a game in the almost null subset of the Inverse Set, from formula (15),  

where we take 25
3Nc = . 

This game is 

( ) ( ) ( ) ( ) ( ) ( ) ( )27 23 271 2 3 0, 1,2 , 1,3 2,3 , 1,2,3 .
2 2 2

w w w w w w w= = = = = = =            (33) 

From formulas (17), (18), we compute the Power Game and we obtain the game 

( ) ( ) ( ) ( ) ( ) ( ) ( )23 771 2 3 0, 1,2 9, 1,3 2,3 , 1,2,3 .
3 6

π π π π π π π= = = = = = =             (34) 

We see that the Semivalue is efficient in the Power Game (34) of the Game (33) and we check easily that it is 
also coalitional rational; hence (33) is the solution of our problem. 

d) An interesting case is the case of the Binomial Semivalues, a class of Semivalues introduced in [8], and 
discussed in [9]. 

5. Conclusion 
The present work is a continuation of our earlier work [2], on the Inverse Problem of Semivalues. By discussing 
the new problem of the game with the same value, but coalitional rational, we believe that we give also a moti-
vation for the concept of Inverse Set. We introduced this new problem and we offered an explicit numerical 
procedure for solving the problem, as seen in the examples that are following the theory given above. A nice in-
troduction is the case of efficient values considered in [3], as well as the application to the case of Binomial Se-
mivalues shown in [9]. 
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