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Abstract 
Previous works have demonstrated that Laplacian embedding can well preserve the local intrinsic 
structure. However, it ignores the diversity and may impair the local topology of data. In this pa-
per, we build an objective function to learn the local intrinsic structure that characterizes both the 
local similarity and diversity of data, and then combine it with global structure to build a scatter 
difference criterion. Experimental results in face recognition show the effectiveness of our pro-
posed approach. 
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1. Introduction 
Local geometric structure has received much attention in dimensionality reduction [1]-[3] and proven its effec-
tiveness in image recognition, image retrieval, and document clustering [4]-[6]. One of the most popular ap-
proaches for this purpose is locality preserving projection (LPP) [1], a linear approximation of Laplacian eigen-
map (LE) [2]. LPP seeks to find project axes along which the nearby data points in the high-dimensional space 
are mapped to nearby data points and well characterizes the local intrinsic structure of data. However, some 
nearby data points may come from different classes due to the uneven distribution in real-world applications. 
Thus, LPP does not encode the local discriminating information in this case. 

Motivated by LPP and LDA, many local linear discriminant approaches have been developed for image clas-
sification, among which the most prevalent ones include MFA (Margin Fisher Analysis) [5] and LSDA (Locali-
ty Sensitive Discriminant Analysis) [6]. MFA and LSDA represent the intra-class compactness by LPP that 
maps nearby points from the same class to nearby points in the reduced space. However, LPP emphasizes the 
large distance pairs. Thus, it does not guarantee that the smaller the distance between two points in the local 
neighbourhood, the closer they should be embedded together in the reduced space, resulting in the impairment 
of local topology among nearby data with small distance [7]-[9]. Moreover, in the ideal case, the nearby data 
points from the same class are mapped to a single point in the reduced space by LPP. Thus, these discriminant 
approaches mainly capture the geometric properties of similarity, and ignores the diversity of the within-class 
data that is important for data recognition [7]-[10]. 
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In real-world applications, the intrinsic structure of data is often complex, and only local or global structure is 
not sufficient to represent the underlying intrinsic structures. So, a reasonable approach should be the one that 
integrates global and local structures into the objective function of dimensionality reduction. Two of the most 
popular approaches are LapLDA [11] and semi-supervised discriminant structure by Laplacian Embedding (LE) 
[12]. As the previously discussed, the local geometry preserved by LE only considers the similarity and may 
impair the local topology of data [13] [14]. This may reduce the stableness and recognition performance of the 
algorithms. 

In this paper, motivated by [14] [15], we build an objective function to learn the local intrinsic geometrical 
structure, which characterizes both the similarity and diversity of data, and then combine the local intrinsic 
structure with global intrinsic structure to build a scatter difference-based objective function, called Laplacian 
maximum margin criterion (LapMMC), for image recognition. Experiments on image databases demonstrate the 
effectiveness of LapMMC. 

2. LapMMC 

Given n  data points { }1 2, ,..., l
n= ∈x x xX R , we construct an adjacency graphs { },v s− =G X D  with a vertex 

set { }1 2, ,..., n= x x xX  and a weight matrix D  to model the intrinsic structure of data. Where the elements 

ijD  in D  can be defined as follows 
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where 0t > , ( )k iN x  denotes the set of k  nearest neighbors of ix , ( , )i j i jd = −x x x x  denotes the Euc-
lidean distance between vectors ix  and jx . iτ  denotes the class label of data ix . 

Now considering the problem of mapping the data points into a line, so that the local topology, which charac-
terizes both the similarity and diversity of data, can be well preserved. As it happens, a reasonable criterion for 
choosing a good map is to optimize the following objective function 
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where iy  denotes an one-dimensional representation of ix . 
In order to conveniently analyze the objective function (2), we only consider the nearby data, thus the objec-

tive function (2) can be also written as 
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where lm  denotes the mean vector of nearby data. The elements ijB  in B  can be defined as follows: 
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It is easy to see that the first term in (3) is PCA, which preserves the diversity of data, while the second term, 
which is just LE, preserves the similarity of data. Equation (3), i.e. Equation (2) seeks to find low-dimensional 
representations of iy , which characterizes the diversity among nearby data, such that the similarity among 
nearby data can be preserved in the reduced space. Thus, Equation (2) is essentially different from LE that only 
characterizes the similarity of data. Taking the points in Figure 1 as an example, we show the projection direc-
tion of our approach, i.e. Equation (2) and LE, and one-dimensional embedded results in Figure 1. It is easy  
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(a) 

 
Figure 1. Difference between LE and our approach in preserving the local topology of 
data. (a) Two-dimensional data and one-dimensional embedding spaces obtained by 
LE and our approach, respectively; (b) One-dimensional embedded results obtained 
by LE; (c) One-dimensional embedded results obtained by our approach. 

 
to see that, our approach well characterizes the local topology preserving at small distance data pairs in circle 
and thus well preserve the local intrinsic structure, which characterizes both the similarity, diversity of data and 
improves the stableness of the intra-class representation. 

Suppose w  is a projection vector, substituting T
i i=y w x  into the objective function (2), and following 

some simple algebraic steps, we can see that 
21max ( ) ( )

2
T T T

i j ij v s
ij

−− = − =∑ y y w w w wD X F D X S                     (5) 

where F  is a diagonal matrix whose entries are column (or row, since D  is symmetric) sum of L , i.e., 

ii ijj= ∑F D , ( ) T
v s− = −S X F D X . 

The aim of LapMMC is to combine the local structure with global structure characterized by LDA. Thus, the 
objective function of LapMMC can be written as 

arg max ( ) (1 )T T
opt b w v sa a−= − ⋅ + −

w
w w w w wS S S                        (6) 

where:  
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denote the between-class and within-class scatter matrix, respectively [7], 0 1a≤ ≤  is a parameter. 
The optimal projection vector w  that maximizes (6) is given by the maximum eigenvalue solution to the 

generalized eigenvalue problem 

( ( ) (1 ) )b w v sa a λ−⋅ − + − ⋅ =w wS S S                             (7) 

Noting that, in many real world applications, ( ( ) (1 ) )b w v sa a −⋅ − + − ⋅S S S  is singular, and the optimal pro-
jection vector can’t be calculated from Equation (7). In the following experiments, we simply choose the same 
way as in Fisherface [16], i.e., PCA is first used to reduce dimension, then LapMMC can be used in the PCA 
feature space to seek the optimal projection vectors. 

3. Experiments 
We evaluate the proposed approach LapMMC on image data databases (PIE and COIL20), and compare its per-
formance with classical discriminant approaches including Fisherface [17], MFA [18], LSDA [19], LapLDA 
[20], SDA [11] and EFDC [14]. In the following experiments, we use the Euclidean metric and nearest classifier 
for classification due to its simplicity. 

The CMU PIE database contains 68 subjects with 41368 face images as a whole. The face images were cap-
tured by 13 synchronized cameras and 21 flashes, under varying pose, illumination and expression. Each image 
is manually cropped and resized to 64 64×  pixels [11]. We select pose-29 images as gallery that includes 24 
samples for each individual in the experiments. The first 12 samples are used for training and the remaining 12 
for testing. 

The COIL20 image library [21] contains 1440 gray scale images of 20 objects (72 images per object). The 
images of each object were taken 50 apart as the object was rotated on a turntable. Each image is of size 
32 32× . In the experiments, we select the first 36 images per object for training and the remaining images for 
testing. 

Table 1 and Table 2 show the experimental results of different algorithms on the COIL20 and PIE database 
respectively. Figure 2 plots the recognition accuracy of seven methods vs. number of projection vectors on the 
PIE database and COIL20 database respectively.  

From Table 1, Table 2 and Figure 2, we can see that, our approach LapMMC is markedly superior to other 
approaches. This is probably because that Fisherface may impair the local geometric structure of data, which is 
important for improving the recognition accuracy and stableness of the algorithm. MFA and LSDA preserve the 
local geometric structure by LPP and LPP only captures the similarity and ignores the diversity of data, which 
may impair the local topology of data [13]-[15]. Another reason may be that they neglect the global geometric 
structure of data, which is important for image recognition. Moreover, LapMMC obtains robustness intrinsic  

 

    
Figure 2. The recognition accuracy of seven methods vs. features on the PIE database and COIL20 database.        
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Table 1. The top recognition accuracy (%) of seven methods on the COIL20 database and corresponding dimension of fea-
tures.   

Methods Fisherface. LSDA. MFA. LapLDA. SDA. EFDC. LapMMC 

Recognition Accuracy 66.90 68.69 69.17 87.78 94.72 94.72 95.97 

Dimension 66 137 125 19 21 21 9 

 
Table 2. The top recognition accuracy (%) of seven methods on the PIE database and corresponding dimension of features.   

Methods Fisherface. LSDA. MFA. LapLDA. SDA. EFDC. LapMMC 

Recognition Accuracy 86.89 89.85 85.66 86.88 85.66 90.81 96.45 

Dimension 45 64 61 68 64 52 130 

 
geometrical structure characterized by both similarity and variability. Although LapLDA, EFDC and SDA take 
into consideration both the global and local geometric of data, the local geometric structure preserved by 
LapLDA and SDA neglect the diversity of data, and EFDC only considers the local diversity of data. 

4. Conclusion 
In this paper, we propose a novel linear dimensionality reduction algorithm called LapMMC, which integrates 
global and local geometrical structures into the objective function. To be specific, we construct an adjacency 
graph to learn the local intrinsic structure that characterizes both the local similarity and diversity of data, and 
then combine it with global structure to build a scatter difference criterion for dimensionality reduction. Expe-
rimental results on the COIL20 and PIE databases demonstrate the effectiveness of our approach. 
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