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Abstract 
Approximation theory experienced a long term history. Since 50’ last century, the rise of spline 
function as well as the advance of calculation promotes the growth of classical approximation theory 
and makes them develop a profound theory in maths, and application values have shown among 
the field of scientific calculation and engineering technology and etc. At present, the study of spline 
function had made a great progress and had a lot of fruits, as for that, the reader could look up the 
book [1] or [2]. Nevertheless, the research staff pays less attention to exponential spline function, 
since polynomial spline function is a special case of that, so it is much essential and meaningful for 
one to explore the nature of exponential spline function. 
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1. Introduction 
At the beginning, we introduce the definition of exponential spline function. From literature [3], we could learn  
the definition: if function ( )S t  satisfies equation ( ) ( )k k

k
L S t c t tδ= −   ∑ , we describe it as exponential  

spline function, where L is a differential operator ( ) 1 0
0

n n
nLf t D f a D f a D f+= + + + . Here, ia R∈   

( )0 i n≤ ≤  are constant coefficient and kD  represent kth-order derivative. By this definition, we learn that 
( )S t  exists continuous derivative 1n −  and in each interval ( )S t  is linear combination of  

( ){ }
( )

1

1, , ; 1, ,
e m

d m

tk

m N k k
t α−

= = 

 ( )( )1 1dN
mm k n

=
= +∑ , where the ( )mα ’s are the Nd distinct roots of characteristic poly-  

nomial and ( )mα  is of order ( )mk . As exists a single root 0 for characteristic polynomial, ( )S t  is polynomial 
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spline function. Next we will deal with the case of there being unique real root. 

2. Main Result 
Theorem 1: 

If the differential operator’s characteristic polynomial is ( ) ( ) 1nL s s α += −  ( )Rα ∈ , where α  is a root of 
multiplicity 1n + . Then the expression for exponential spline function of this special case is 

( ) ( ) ( ) [ ]0
1

e , .
N nx

j j
j

S x S x c x x x a bα
+

=

= + − ∈∑  

Proof: 
Let ( )S x  be on interval [ ] ( )1, 0,1, ,i ix x i N+ =  , ( ) ( ) { }e ,e , ,ex x x n

iS x S x span x xα α α= ∈ ⋅⋅ ⋅  Suppose  

( ) ( ) ( )1 0x S x S xη = −  And we have ( ) ( ) ( )( )1 0e ex xx S x S xα αη− −= −  

( ) ( ) ( )( ) ( ) ( ) ( )
0

e e 1
i ki i kx k x

i
k

x C x i nα αη η −− −

=

  = ≤ −  ∑  

Since there exists order 1n −  continuous derivatives for ( )S x , 
Hence 

( ) ( ) ( )1 0 0,1, , 1i x i nη = = ⋅⋅ ⋅ −  

So that ( ) ( ) ( )
1

e 0 0 1
ix

x x
x i nα η−

=

  = ≤ ≤ −   

Furthermore, ( )e x xα η−  is polynomial of nth degrees. 

Therefore ( ) ( )1 1e .nx x c x xα η− = −  

We get ( ) ( ) ( )1 0 1 1e nxS x S x c x xα= + − , 

put 
0

.
0 0
x x

x
x+

≥
=  <

 

In terms of this idea, we obtain ( ) ( ) ( ) [ ]0
1

e ,
N nx

j j
j

S x S x c x x x a bα

+
=

= + − ∈∑ . 

Theorem 2: The dimension of the exponential spline function space is 1n N+ + . 
Proof: 

Suppose ( ) ( ) ( )
1

e
N nx

j j
j

S x p x c x xα

+
=

= + −∑ , ( ) { }e ,e , ,ex x x np x span x xα α α∈ ⋅⋅ ⋅  

We have ( ) ( )( )( ) ( )( ) ( )
( )

( )1
0

e 0 1
m m kkm nk x

i i i m i
k

S x S x c C x x m nα
−

+
=

 − = − ≤ ≤ − ∑  

Since ( )
( )

0
i

m kn
i

x x

x x
−

=

 − =   

So that ( ) ( )mS x  is continuous at the knot ( )0, , 1ix m n= ⋅⋅ ⋅ − , hence ( )S x  has order 1n −  continuous de-
rivatives on interval [ ],a b . 

When characteristic polynomial has single real root, the linear space can be written as 

( ) ( ){ }1e ,e , , e ,e , , e nnx x x n x x
Nspan x x x x x xα α α α α

+ +
⋅ ⋅ ⋅ − ⋅ ⋅ ⋅ −  

Next we prove that ( ) ( )1e ,e , , e ,e , , e nnx x x n x x
Nx x x x x xα α α α α

+ +
⋅ ⋅ ⋅ − ⋅ ⋅ ⋅ −  is linearly independent 

Set ( )
0 1

e e 0.
n N nx i x

i i i
i i

c x x xα αα
+

= =

+ − =∑ ∑  On the interval [ ]0 1,x x , above equation become 
0

e 0
n

x i
i

i
c xα

=

=∑ , we  
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have ( )0 0,1, ,ic i n= = ⋅⋅ ⋅  On the interval [ ]1 2,x x , we can get ( )1 1e 0nx x xαα
+

− = , so that 1 0α = , For the in-
terval [ ]1,i ix x + , By means of the same technique, we can obtain 0iα = , hence  

( ) ( )1e ,e , , e ,e , , e nnx x x n x x
Nx x x x x xα α α α α

+ +
⋅⋅⋅ − ⋅⋅⋅ −  is linearly independent. So that we conclude dim 1S n N= + + . 

According to theorem 1. 4. 23 of the book [4], we can prove next conclusion is true. 
Corollary: There exists the ( )S x  for every f belonging to [ ],pL a b , such that  

( ) ( )
( )

( ) ( )min
p ps x S

f x S x f x s x
∈

− = −  

Theorem 3: If condition of interpolation and boundary satisfy: 

( ) ( )
( ) ( ) ( ) ( )

0,1, , 1i iS x f x i N

S a f a S b f b

 = = +


′ ′ ′ ′= =



                              (1) 

then there exist the 3rd degree exponential spline function satisfied with condition. And we have formula of error 
evaluation 

( ) ( ) ( )4 4 ( )
0 0 0 4

5e where , max
384

b a i

i
f x S x c Mh c M fα − +

∞ ∞≤ ≤

 − ≤ = = 
 

 

Proof: 
Suppose ( )p x  is 3rd degree polynomial spline function, let ( ) ( )e xS x p xα=  
Hence ( ) ( ) ( )e ex xS x p x p xα αα′ ′= +  

Both of them can be denoted by: 
( )
( )

( )
( )

1 0
e

1
xS x p x

S x p x
α

α
    

=       ′ ′    
, 

1 0
1

A
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, 0A ≠ , so that A is inverti-

ble matrix. 1 1 0
1

A
α

−  
=  − 

 

This lead to 
( )
( )

( )
( )

1 0
e

1
xp x S x

p x S x
α

α
−

    
=       −′ ′    

                          (2) 

Since ( ) [ ]2 ,p x C a b∈ , hence ( ) [ ]2 ,S x C a b∈ , we can get ( )S x  is exponential spline function. 
If boundary condition is ( ) ( )S a f a′ ′= , ( ) ( )S b f b′ ′= , by matrix relation (2), let  
( ) ( ) ( )( )e ap a f a f aα α−′ ′= − +  and ( ) ( ) ( )( )e bp b f b f bα α−′ ′= − +  
Since one of 3rd degree polynomial spline function meet the constraint of interpolation ( ) ( )e ix

i ip x f xα−= , 
boundary condition is ( )p a′  and ( )p b′ . 

So that exponential spline function satisfied with condition (1) exists. That is ( )e x p xα . 
Next we prove formula of error evaluation. Suppose ( ) [ ]4 ,f x C a b∈ , ( )S x  is 3rd degree exponential spline 

function satisfied with condition (1). 
Let ( ) ( )e xS x p xα=  (where ( )p x  is 3rd degree polynomial spline function) 

( ) ( ) ( ) ( ) ( ) ( )( )
( ) ( )

e e e

e e

x x x

x x

f x S x f x p x f x p x

f x p x

α α α

α α

−
∞ ∞ ∞

−

∞ ∞

− = − = −

≤ −
 

Since ( ) ( )e ix
i ip x f xα−=  

( ) ( ) ( ) ( ) ( ) ( )( )e e e e ea a a a x

x a

p a S a S a f a f a f xα α α α αα α− − − − −

=

′′ ′ ′= − + = − + =  

( ) ( )( )e x

x b

p b f xα−

=

′′ =  

By formula of error evaluation for 3rd degree polynomial spline function, we can have  

( ) ( ) ( )( )( )4 4
0e ex xf x p x c f x hα α− −

∞ ∞
− ≤  
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( )( )( ) ( )( ) ( ) ( ) ( )
4 44 4 4

4 4
0 0

e e e
k kk kx k x k x

k k
f x C f C fα α αα

− −− − −

∞ = =∞ ∞

= = −∑ ∑  

In terms of book [5], we have 

( ) ( ) ( )
4 4 444

4 4
0 0

e e e 1kk kk x x k x

k k
C f M C Mα α αα α α−− − − −

∞ ∞
= =∞

− ≤ = +∑ ∑  

Since ( )1 e 0xx x+ ≤ ≥  

Hence ( )4 41 e αα+ ≤  

Furthermore ( )e e e b ax x αα α −−

∞ ∞
=  

By above expressions, we can conclude that 

( ) ( ) ( )4 4
0e

b af x S x c Mhα − +

∞
− ≤ . 
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