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Abstract 
The model of a tired random walker, whose jump-length decays exponentially in time, is proposed 
and the motion of such a tired random walker is studied systematically in one-, two- and three- 
dimensional continuum. In all cases, the diffusive nature of walker breaks down due to tiring which 
is quite obvious. In one-dimension, the distribution of the displacement of a tired walker remains 
Gaussian (as observed in normal walker) with reduced width. In two and three dimensions, the 
probability distribution of displacement becomes nonmonotonic and unimodal. The most proba-
ble displacement and the deviation reduce as the tiring factor increases. The probability of return 
of a tired walker decreases as the tiring factor increases in one and two dimensions. However, in 
three dimensions, it is found that the probability of return is almost insensitive to the tiring factor. 
The probability distributions of first return time of a tired random walker do not show the scale 
invariance as observed for a normal walker in continuum. The exponents, of such power law dis-
tributions of first return time, in all three dimensions are estimated for normal walker. The exit 
probability and the probability distribution of first passage time are found in all three dimensions. 
A few results are compared with available analytical calculations for normal walker. 
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1. Introduction 
In statistical physics, process of polymerization [1] [2], diffusion [3] in restricted geometry etc. are some classic 
phenomena, which have drawn much attention of the researcher in last few decades. The underlying mechanism 
of such physical phenomena is tried to explain by random walk [4]. Different types of random walk are studied 
on the lattice in different dimensions by the method of computer simulation. The absorbing phase transition in a 
conserved lattice gas with random neighbour particle hopping is studied [5]. Quenched averages for self avoid- 
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ing walks on random lattices [6], asymptotic shape of the region visited by an Eulerian walker [7], linear and 
branched avalanches are studied in self avoiding random walks [8]; effects of quenching are studied in quantum 
random walk recently [9]. The drift and trapping in biased diffusion on disordered lattices are also studied [10]. 

Very recently, some more interesting results on random walk were reported. The average number of distinct 
sites visited by a random walker on the random graph [11], statistics of first passage time of the Browian motion, 
conditioned by maximum value of area [12] are studied recently. It may be mentioned here that the first passage 
time in complex scale invariant media was studied [13]. The theory of mean first passage time for jump pro- 
cesses is developed [14] and verified by applying in Levy flights and fractional Brownian motion. The statistics 
of the gap and time interval between the highest positions of a Markovian one dimensional random walker [15], 
the universal statistics of longest lasting records of random walks and Levy flights are also studied [16]. 

The random walks in continuum are studied to model real life problems. The exact solution of a Brownian 
inchworm model and self-propulsion was also studied [17]; theory of continuum random walks and application 
in chemotaxis was developed [18]. Random walks in continuum were also studied for diffusion and reaction in 
catalyst [19]. Very recently, the random walk in continuum is studied with uniformly distributed random size of 
flight [20]. The statistics of Pearson walk are studied [21] [22] in two dimensions for shrinking stepsize and 
found a transition of the endpoint distribution by varying the initial stepsize. 

The living random walker in continuum gradually becomes tired as the time passes, in reality. This would 
reduce its energy, as a result the size of flight gets reduced gradually with time. The first-passage properties [23] 
of a walker are important in various aspects, namely, the fluorescence quenching in which a fluoresecent mole- 
cule stops while reacting with a quencher, firing neurons when the fluctuating voltage level first reaches a speci- 
fied value, in econophysics, the execution of buy/sale orders when a stock price first reaches a threshold. What 
will be the first passage properties if the stepsize of a Pearson walker decreases exponentially in time? In this 
paper, addressing this particular problem, a model of tired random walker is proposed in continuum and 
statistics of its motion are studied systematically in one-, two- and three-dimensional continuum. The first 
passage properties, return and exit probabilities are studied here. The numerical results of detailed statistical 
analysis of the motion of a tired random walker are also reported here. This paper is organised as follows: In the 
next section (Section 2) the model of tired random walk is proposed and the results obtained from numerical 
simulations are given. The paper ends with a summary given in Section 3. 

2. Model and Results 
Generally, the motion of a random walker is studied by considering the time (t) independent size (R) of flight in 
each move. In this study, the model of a tired random walker is proposed in such a way that the size of flight of 
a walker decreases exponentially as ( ) e tR t α−= . A simple logic behind it may be stated as follows: if a living 
cell is moving continuously, its energy (basically kinetic energy) gradually decreases and hence the velocity, 
which in turn reduces its size of flight (i.e., jump-length per unit time). Here, α  is tiring factor. The statistical 
behaviour of such a tired random walker is studied in one-, two- and three-dimensional continuum. It may be 
noted here that such kind of behaviour of a tired random walker cannot be studied on the lattice. 

In one dimension, the size of flight in each time step is ( ) e t
lx t α−= . A walker starts its journey from the 

origin having the equal probability of choosing the left and right direction. The updating rule, in one dimem- 
sional tired walk, may be expressed as: ( ) ( ) ( )1 .lx t x t x t+ = ±  

In two dimensions (planar continuum), the tired walker starts its journey from the origin and it has a uniform 
probability of choosing any random direction (θ) distributed between 0 and 2π . Its motion can be represented 
mathematically as: 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )1 cos ; 1 sin .x t x t R t y t y t R tθ θ+ = + + = +                     (1) 

The displacement at time t is ( ) ( ) ( )2 2r t x t y t= + . In planar continuum, the area of the region visited by a 
tired walker is obviously shorter than that visted by a normal walker, in a specified course of time. A typical 
such comparison is shown in Figure 1 with α = 0.001. As a result, the mean square displacement does not show 
diffusive behaviour as shown by a normal walker. In long time, it gets saturated (motion stops practically). 

A typical such comparison is shown in Figure 2 for α = 0.001 and α = 0.0005. The similar behaviours are also 
observed in one and three dimensions (not shown). The tired walk is not diffusive ( )2 ~r t  as observed in 
normal ( )0α =  walk. It is also observed that the motion stops earlier if the tiring factor α increases. 
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Figure 1. A sample random walk in 2D continuum. The top one 
shows a walk for 0.0α =  and the bottom one shows a tired 
walk for 0.001α = . Here, in both figures same sequence of 
random numbers are used. Note the scales of the axes of two 
figures. 310tN =  in both cases.                                        

 
Now, let it be discussed systematically in one, two and three dimensions. In one dimensions, the probability 

distribution of the displacements of a walker are studied for 0.0α =  (normal), 0.001(moderately tired) and 
0.01(heavily tired). As usual, the distribution is normal (Gaussian) with zero mean in all the cases. However, as 
the tiring factor increases the distribution becomes sharper and sharper. These are depicted in Figure 3. Here, it 
may be mentioned that the values of α and the maximum time allowed ( )tN  are such that the walker gets 
frozen (due to exponential decrease of step-size after such long time). The distribution shown in Figure 3, is 
practically the density distribution of frozen walker. It would be interesting to study the density distribution of 
these frozen walker as a function of α  through the scaling. 

What will be the probability of return ( )RP  in one dimension? First of all, in continuum one should be 
careful in defining the probability of return. In the lattice the probability of return is defined as the walker 
returns to its initial starting point. However, in continuum, it is quite unlikely that a tired walker returns to its 
initial starting point. Here, one may think that whether the tired walker returns within a linear zone [ ]( ),z zr r−  
centered around the origin. Now put a large number ( )sN  of walker at origin and allow them to walk (with 
different random sequence) upto a certain time ( )tN  and then check how many walkers return within the 
preassigned returning zone (of size zr ). The calculated fraction is the probability of return (within time of 
observation tN ) in this particular model. In the lattice model this probability is 1, which can also be derived 
from exact calculations [24]. In this model of tired walker, considering 0.5zr = , 0.992RP =  for 0.0α = . 
This numerical estimate of returm probability agrees well with exact calculation of return probability (PR = 1) 
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Figure 2. The mean square displacement ( )2r  versus time (t) 

in two dimensions for various values of α  (marked by different 
symbols). The tired walkers ( )0α ≠  do not show the normal 

( )2 ~r t  diffusive behaviour.                                       

 

 

Figure 3. The distribution ( )( )P x  of the displacements (x) of a 

tired random walker in one dimension. () represents 0.0α = , 

() represents 0.001α = , and (∗) represents 0.01α = . Note 
that tiring reduces the width of the distribution.                            

 
[24] in one dimensional normal random walk. It may be noted here that for α = 0, the walker returns at origin 
(the starting point also) and the probability of return can be compared to that obtained in random walk on one 
dimensional lattice. As the tiring factor increases, PR decreases. For moderately tired ( )0.001α =  walker, PR = 
0.955 and for heavily tired walker ( )0.01α = , PR = 0.874. In Figure 4, the PR is plotted against tN  for 
various values of α . Now, this probability of return (PR) must depend on the size (rz) of returning zone. To 
study the dependences of PR on rz, PR is studied as a function of rz for different values of α  and shown in 
Figure 5. It shows that the PR grows as rz increases in the case of tired walker ( )0.001,0.01α = , but PR does 
not depend on rz for normal walker. It is important to note here that even for heavily tired ( )0.01α =  random 
walker, the size of the flight, after t = 10 is larger than 0.90. So, the range of values of rz, chosen here, does not 
have any chance that the walker remains in the returning zone immediately after starting its journey. So, the 
choice rz = 0.5 is quite safe to study the probability of return in this context. 

How long a tired walker takes to return first time within returing zone? How does the distribution of this first 
returning time ( )rt  look like? The probability distribution of first returning time ( )rt  of a tired random 
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Figure 4. Probability of return (PR) plotted against the maxi- 
mum time Nt in one dimension. Different symbols correspond 
to different values of α . 0.0α =  (), 0.001α =  () and 

0.01α =  (∗). Here in all cases 510sN = . The absolute dis- 

tance ( )zr  of returning zone [ ]( ),z zr r−  is 0.5zr =  here.                

 

 
Figure 5. Probability of return (PR) plotted against the absolute 
distance rz of returning zone [ ]( ),z zr r−  in one dimension. Diffe- 

rent symbols correspond to different values of α . 0.0α =  (),

0.001α =  () and 0.01α =  (∗).                                         
 
walker is shown in Figure 6. A normal walker ( )0.0α =  shows a scale invariant ( )( )~r rP t t β−  distribution 
of first returning time ( )rt . The exponent estimated is 1.49β  . This result agrees well with analytical result 
[23], where it is found ( ) 3 2~r rP t t− . However, this scale invariant nature of the distribution of first returning 
time, breaks down in the cases of tired walking (for 0.001,0.01α = ) (see Figure 6). More detail investigation is 
required to propose any functional behaviour of ( )rP t  for 0α ≠ . 

In one dimension, how long ( )et  a tired walker takes to exit (first time) from a zone [ ]( ),e er r− ? The pro- 
bability distribution ( )( )eP t  of first passage time ( )et  (for a fixed value of 25.0er = ), is studied for diffe- 
rent values of α and shown in Figure 7(a). As the α increases, the most probable first passage time decreases. It 
should be noted here that the probability of first passage is defined (in this study) as the probability to escape in 
a given time, from a bounded [ ]( ),e er r−  linear (in one dimension) region. If it would be defined as the pro- 
bability to escape through a given point (say ex r= ) the power law ( )( )1.49~e eP t t−  distribution in long time 
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Figure 6. Probability distribution ( )( )rP t  of first returning time ( )rt  in one dimension. Different 

symbols correspond to different values of α . 0.0α =  (), 0.001α =  () and 0.01α =  (∗). The solid 

line is 1.4970.0y x−= .                                                                          
 

 

Figure 7. Probability distribution ( )( )eP t  of first passage time ( )et  in one dimension. (a) Different 

symbols correspond to different values of α . 0.0α =  (), 0.001α =  () and 0.004α =  (∗). Here, 
510sN = , 410tN =  and 25.0er = . In (a) the first passage is defined as the probability of exit first from 

a bounded [ ]( ),e er r−  linear region around the origin; (b) the first passage is defined to cross first a point 

(here 25.0er = + ). The solid line is 1.491000y x−=  supporting analytical prediction ( )( )1.5~e eP t t−  [23].    
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limit ( )et →∞  is found which supports the analytical prediction ( )( )3 2~e eP t t−  [23]. This is shown in Figure 
7(b). 

What is the probability of exit ( )eP  of a tired walker one dimensional continuum? The exit probability (for a 
fixed time of observation tN ) from a zone of absolute distance er  (measured from the origin) is also studied, 
in one dimension, as a function of er  and shown in Figure 8. Here, the exit probability, of a tired walker, was 
found to decreases as the absolute distance of zone ( )er  increases. However, it remains fixed (nearly 1) for a 
normal walker [24]. It may also be noted that, the rate of fall of exit probability increases as the tiring factor (α) 
increases. 

In two dimensions, the motion of a tired random walker is studied by using the rule given in Equation (1). 
Here, the mean square displacement 2r  is proportinal to the time t for 0.0α = , reveals the conventional 
diffusive ( )2 ~r t  behaviour. However, a moderately tired ( )0.001& 0.0005α =  walker does not show 
long time diffusive behaviour. This is quite obvious and already shown in Figure 2. 

The distribution of absolute displacement is nonmonotonic unimodal function. It is shown in Figure 9. It is 
observed that the maximum probability of finding the walker at a distance ( )mr  from the origin and the 
average distance ( r ) both decreases as the tiring factor (α) increases. In this case, 64.0mr = , 89.13r =  for 

0.0α = , 15.0mr = , 20.04r =  for 0.001α =  and 5.0mr = , 6.42r =  for 0.01α = . Here also this distri- 
bution is practically the density distribution of frozen walker. 

What will be the probability of return ( )RP  of a tired walker in planar continuum? The probability of return 
within a circle of return having radius 0.5zr =  is studied as a function of maximum time of observation tN  
and shown in Figure 10. In planar continuum, a tired walker has a probability of return in a circle of radius 

0.5zr =  as follows: for 0.0α = , 0.737RP = , for 0.001α = , 0.620RP =  and for 0.01α = , 0.524RP = . 
For a fixed value of tN , the probability of return of a tired walker in planar contunuum, grows as the radius 

of returning zone increases. This is shown in Figure 11. 
Here, like in one dimensional tired walker, the probability distribution of first returning time ( )rt  shows a 

scale invariance ( )( )~r rP t t β−  for 0.0α =  with 1.10β  . However, the analytic result [23] suggests  

( ) ( )( )( )2~ 1 lnr r rP t t t . The possible reason of disagreement may be stated as follows: in the analytic calcu-  

lation of ( )rP t , it was defined as the probability of return exactly at the origin from where the walker has 
started its journey. However, in the numerical simulation, ( )rP t  is defined as the probability of return (first 
time) within a circular zone of radius zr . As the tiring factor α  increases, the scale invariance nature of the 
distribution on first returning time breaks down. This is demonstrated in Figure 12. 

In two dimensions, the distribution of first passage time (for a fixed distance re = 25.0), is studied for different 
values of α and shown in Figure 13. As the α increases, the most probable first passage time and mean first 
 

 
Figure 8. Exit probability Pe plotted against re in one dimension. 
Different symbols correspond to different values of α. α = 0.0 (),

0.001α =  () and 0.01α =  (∗). Here, 510sN =  and 410tN = .          
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Figure 9. The distribution of displacements (r) of a tired random walker 
in two dimensions. () represents 0.0α = , 64.0mr = , 89.13r = , () 
represents 0.001α = , 15.0mr = , 20.04r =  and (∗) represents 

0.01α = , 5.0mr = , 6.42r = .                                             
 

 
Figure 10. Probability of return ( )RP  plotted against Nt in two dimen- 
sions. Different symbols correspond to different values of α . 0.0α =  
(), 0.001α =  () and 0.01α =  (∗). Here in all cases 510sN = . 
The radius of circular returning zone is 0.5zr = .                                  

 
passage time decreases. 

The exit probability (for a fixed time of observation tN ) from a circular zone of radius er  (measured from 
the origin) is also studied, in two dimensions, as a function of er  and shown in Figure 14. Here, the exit pro- 
bability was found to decreases as the radius of circular zone ( )er  increases. Here also, the rate of fall of exit 
probability increases as the tiring factor (α) increases. However, the exit probability of a normal walker ( )0α =  
remains unchanged (nearly 1) as er  increases. 

The tired walk in three dimensional continuum can also be generalized. The updating of coordinates obey the 
following rule: 

( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

1 sin cos ;

1 sin sin ;

1 cos

x t x t R t

y t y t R t

z t z t R t

θ φ

θ φ

θ

+ = +

+ = +

+ = +

                               (2) 

where ( ) e tR t α−= , θ is uniformly distributed random angle between 0 and π  and φ  is uniformly distributed  
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Figure 11. Probability of return ( )RP  plotted against the radius of return- 

ing zone ( )zr  in two dimensions. Different symbols correspond to diffe- 

rent values of α . 0.0α =  (), 0.001α =  () and 0.01α =  (∗).                
 

 

Figure 12. Probability distribution ( )( )rP t  of first returning time ( )rt  
of two dimensions. Different symbols correspond to different values of 
α . 0.0α =  (), 0.001α =  () and 0.01α =  (∗). Solid line represents 

1.109y x−= . The dotted line is ( )( )( )2
200 lny x x=  [23].                     

 

random angle between 0 and 2π . The displacement at time t is ( ) ( ) ( ) ( )2 2 2r t x t y t z t= + + . 

In 3D continuum, the motion of a tired random walker is studied by using the rule given in Equation (2). Here, 
the mean square displacement 2r  is proportinal to time t for 0.0α = , reveals the diffusive behaviour (not  
shown). However, a tired ( )0α ≠  walker does not show long time diffusive behaviour (not shown). 

The probability distribution of absolute displacement (or the density distribution of frozen walker in reality) in 
3D continuum is observed to be a nonmonotonic unimodal function. It is shown in Figure 15. It is observed that 
the maximum probability of finding the walker at a distance ( )mr  from the origin and the mean displacement 
( )r  both decreases as the tiring factor (α) increases. In this case, 72.0mr = , 91.59r =  for 0.0α = , 

16.0mr = , 20.65r =  for 0.001α =  and 3.0mr = , 6.96r =  for 0.01α = . 
What will be the probability of return in 3D continuum? The probability of return within a sphere of return 

having radius 0.5zr =  is studied as a function of maximum time of observation tN  and shown in Figure 16. 
In 3D continuum, unlike the cases in 1D and 2D continuum, a tired walker has a probability of return in a sphere 
of radius 0.5zr =  is almost insensitive ( )0.226RP =  of the tiring factor α. 
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Figure 13. Probability distribution ( )( )eP t  of first passage time ( )et  in 
two dimensions. Different symbols correspond to different values of α. α = 
0.0 (), α = 0.001 () and α = 0.02 (∗). Here, 510sN = , 410tN =  and 

25.0er = .                                                                
 

 
Figure 14. Exit probability Pe plotted against re in two dimensions. Diffe- 
rent symbols correspond to different values of α. α = 0.0 (), α = 0.001 () 

and α = 0.01 (∗). Here, 510sN =  and 410tN = .                                 
 

For a fixed value of tN , the probability of return of a tired walker in 3D contunuum, grows as the radius of 
returning zone increases keeping the independence on tiring factor α . This is shown in Figure 17. 

In 3D continuum, the probability distribution of first returning time ( )rt  shows a scale invariance  
( )( )~r rP t t β−  for 0.0α = . The exponent estmated 1.48β  . Accidentally, this is close the analytical pre-  

diction ( )( )3 2~r rP t t−  [23]. As the tiring factor ( )0α ≠  increases, the scale invariance of the distribution on 
first returning time, breaks down. This is demonstrated in Figure 18. 

In three dimensions, the distribution of first passage time (for a fixed distance 25.0er = ), is studied for 
different values of α and shown in Figure 19. As the α  increases, the most probable first passage time and the 
mean first passage time decreases. 

The exit probability (for a fixed time of observation Nt) from a spherical zone of radius re (measured from the 
origin) is also studied, in two dimensions, as a function of er  and shown in Figure 20. Here, the exit pro- 
bability, of a tired walker, was found to decreases as the radius of circular zone ( )er  increases. However, like 
the earlier cases, it reamins same (nearly 1) for all er . Here also the rate, of fall of the exit probability of a tired 
walker, increases as the tiring factor α increases. 
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Figure 15. The distribution of the displacements of a tired random walker 
in three dimensions. () represents α = 0.0, 72.0mr = , 91.59r = , () re- 
presents α = 0.001, 16.0mr = , 20.65r =  and (∗) represents α = 0.01, 

3.0mr = , 6.96r = .                                                          
 

 
Figure 16. Probability of return (PR) versus Nt in three dimensions. Diffe- 
rent symbols correspond to different values of α. α = 0.0 (), α = 0.001 () 
and α = 0.01 (∗). Here in all cases Ns = 105. The radius of spherical re- 
turning zone is rz = 0.5.                                                       

 

 
Figure 17. Probability of return (PR) versus rz in three dimensions. Diffe- 
rent symbols correspond to different values of α. α = 0.0 (), α = 0.001 () 
and α = 0.01 (∗).                                                            
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Figure 18. Probability distribution ( )( )rP t  of first returning time ( )rt  
in three dimensions. Different symbols correspond to different values of α. 
α = 0.0 (), α = 0.001 () and α = 0.01 (∗). Solid line represents 

1.4870y x−= .                                                                 
 

 

Figure 19. Probability distribution ( )( )eP t  of first passage time ( )et  in 
three dimensions. Different symbols correspond to different values of α. α 
= 0.0 (), α = 0.001 () and α = 0.002 (∗). Here, 510sN = , 410tN =  and 

25.0er = .                                                                 
 

 
Figure 20. Exit probability Pe plotted against re in three dimensions. Diffe- 
rent symbols correspond to different values of α. α = 0.0 (), α = 0.001 () 

and α = 0.01 (∗). Here, 510sN =  and 410tN = .                                   



M. Acharyya 
 

 
2033 

3. Summary 
In this article, a model of tired random walker in continuum is proposed. Generally, a random walker moves 
with constant size of flight. However, as the time passes, if the walker gets tired, one should think of a time 
dependent size of flight. Here, this size of flight decays exponentially with time. The motion of such a tired 
walker is studied in one-, two- and three-dimensional continuum. In this statistical investigation, the distribution 
of the absolute displacement, mean displacement, probability of return (within a specified zone), distribution of 
time of first return are studied systematically. In one- and two-dimensional continuum, the probability of return 
decreases as the tiring factor increases. However, in three-dimensional continuum, this probability of return 
seems to be independent of the tiring factor. The distribution of first returning time in all dimensions (for normal 
walker with tiring factor α = 0), shows power law behaviours. This scale invariance of the distribution of first 
returning time breaks down for 0α ≠  in all dimensions. In the study of first returning probability, a very 
important point should be mentioned. For α = 0, the probability of return could be compared with that calculated 
analytically [23] in one dimension only, where the walker can return to the initial point. In higher dimensions, it 
returns within a circular (spherical) zone in two (three) dimensions. 

The exit probability and the distribution of first passage time are studied. In all dimensions, the exit pro- 
bability is found to decrease as the size of the zone (from where the tired walker exits out) increases. The rate of 
decrease of the exit probability was found to increase as the tiring factor α increases. Here also the probability of 
first passage (for α = 0) can only be compared with analytical calculations [23] in one dimension, if it is defined 
as the probability of escape through a particular point. 

The first passage time is defined (in this simulational study) as the time required by a walker to exit from a 
specified zone. This time has a distribution and this distribution is studied for various values of α. It is observed 
that, in all dimensions, the most probable first passage time decreases as α increases. A rigorous analysis and 
possible scaling behaviour (if any) may be investigated. 

Some more interesting studies can be done in this field. In this paper, only the numerical results are reported. 
A rigorous mathematical formulation of first passage properties for tired walk has to be developed following the 
same already developed [23] for normal walk ( )0α = . 

The possibilities of scaling of distribution of return time, distribution of first passage time, distribution of 
distances and exit probabilities with respect to the tiring factor (α) have also to be explored. 
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