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Abstract 
To solve the selling problem which is resembled to the buying problem in [1], in this paper we 
solve the problem of determining the optimal time to sell a property in a location the drift of the 
asset drops from a high value to a smaller one at some random change-point. This change-point is 
not directly observable for the investor, but it is partially observable in the sense that it coincides 
with one of the jump times of some exogenous Poisson process representing external shocks, and 
these jump times are assumed to be observable. The asset price is modeled as a geometric Brow-
nian motion with a drift that initially exceeds the discount rate, but with the opposite relation af-
ter an unobservable and exponentially distributed time and thus, we model the drift as a two-state 
Markov chain. Using filtering and martingale techniques, stochastic analysis transform measure-
ment, we reduce the problem to a one-dimensional optimal stopping problem. We also establish 
the optimal boundary at which the investor should liquidate the asset when the price process hit 
the boundary at first time. 

 
Keywords 
Optimal Stopping Time, Posterior Probability, Threshold, Markov Chain, Jump Times, Martingale, 
Brownian Motion 

 
 

1. Introduction 
In this paper we consider the following problem: How to find the optimal stopping time to sell a stock (or an as-
set) when the expected return of a stock is assumed to be a constant larger than the discount rate up until some 
random, and unobservable, time τ, at which it drops to a constant smaller than the discount rate. 

An investor wants to hold the position as long as the inertia is present by taking advantage of the drift which 
is exceeding the discounted rate (or interest rate). On the other hand, when the inertia disappears the investor 
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would like to exit the position by selling the asset. 
The under study problem in this paper was also addressed in [1] where the buying problem with the same as-

sumption was solved. The results of [1] showed that the optimal buying time was the first passage time over 
some unknown level for the a posteriori probability process tπ  defined below and by simulating it was found 
that the optimal time to buy an asset was the time which the asset price process had just passed the trough.  

The author of [2] studied a problem of finding an optimal stopping strategy to liquidate an asset with un-
known drift; more exactly he wanted to find the best time to sell a stock when its drift was a discrete random va-
riable which took the given values. The first time the posterior mean of the drift passes below a non-decreasing 
boundary that is the unique solution of a particular integral equation is shown to be optimal. 

Some classical optimal stopping time problem has been considered in [3]. These are applied in mathematical 
finance but these are basic problem, and it is difficult to apply in real world. 

For related studies of stock selling problems, see [4] [5] and for studies of basic optimal stopping problems 
see [3]. The method we use to study in this paper is the martingale theory, the transformation theory of measur-
ing and the optimal stopping time is referenced in the literature [3] [6] [7]. 

In this paper, the asset price is modeled as a linear Brownian motion with a drift that drops from one constant 
to a smaller constant at some unobservable time. This drift is modeled as a Markov chain with two states which 
are denoted by 0 and 1 where 0 is denoted for price decrease and 1 is denoted for price increase. 

We define the asset price model in Section 2, and the optimal selling problem is set up. In Section 3, we study 
the simulation to examine our studies and finally, Section 4 is conclusion. 

2. The Model 
We take as given a complete probability space ( ), ,F PΩ . On this probability space, let the change-point τ be a 
random variable with distribution  

( ) ( )0 , 0 e tP P t t λτ π τ −= = > > =  

where λ is the intensity of the transition from state 1 to state 0 and assume that λ is positive and that belongs to 
[0; 1). Denote the drift of the price process at, t ≥ 0, can be modeled as a Markov chain with two states al de-
noted by state 0 and ah denoted by state 1 such that ( ) 0hP a a π= = ; ( ) 01lP a a π= = −  at time 0, al < r < ah 
where r is discounted rate which is a given constant and process at, t ≥ 0 can only transit from state 1 to state 0  

with transition density matrix as follows 
0 0

.Q
λ λ
 

=  − 
 Next, let W be a Brownian motion which is indepen-  

dent of τ. The asset price process X is modeled by a geometric Brownian motion with a drift that drops from ah 
to al at time τ. More precisely,  

d d dt t t t tX a X t X Wσ= +  

and 0 0X x= > , where ( ) ( )t h h la a a a I t τ= − − ≥  i.e. t ha a=  if t τ<  and t la a=  if t τ≥  the volatility 
0σ >  is a constant. 

At the time of 0t >  we define the a posteriori probability process tπ  by  

{ }t l
X

tP a aπ = =   

where { }
0

X
t t T≤ ≤
  is a filter generated by X and τ. The process tπ  indicate the probability of event that the 

price process decreases. We consider the optimal stopping problem: 
Find X -stopping time ,0 Tτ τ≤ ≤  such that: 

0
sup e .r

T
V E Xτ

τ
τ

−

≤ ≤
 =                                    (2.1) 

Similar the buying problem, posterior probability process tπ  satisfying the following stochastic differential 
(see theorem 9.1, [6]): 

( )
( )1

d 1 d dh t h t l t t
t t t t

t

a X a a X
t W

X
π π

π λ π π
σ

 − + − = − −  
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or 

( ) ( )d 1 d 1 dh l
t t t t t

a at Wπ λ π π π
σ
− = − − −  

 
 

where d tW  is a P-Brownian motion with respect to X
t  given by 

( ) ( ){ }

( ){ }

1 d dd 1 d
d

1
d d .

t l t ht l t h
t

t l t h

t t t tt t

t t

t
t

a a a X t X WX a a X t
W

X X

a a a
t W

π π σπ π
σ σ

π π

σ

− − + + − − +    = =

− − +  = +

 

Moreover, in terms of 
t

W  we have 

( )d
d d 1 d d .t l t h

Xt
t t t t

t

X
E a t W a a t W

X
σ π π σ = + = − + +     

Processes tX  and tπ  satisfy the following system equations: 

( )( )

( ) ( )

d
d d

d 1 d 1 d .

l t h l t

t

t

t

h l
t t t t

X
a a a t W

X
a a

t W

π σ

π λ π π π
σ

 = + − +



−  = − + −    

 

Put ;
1

t

t

h l
t

a aπ ω
π σ

−
Φ = =

−
 and Ito’s formula gives that: 

22d d d .
1 t

t
t t t tt Wλ

ω π ω
π

 Φ = + Φ − Φ − 
 

We define new process { }tW  as follow: 

( )d d dt ttW t Wωπ σ= − + +  

and a new measure P∗  satisfying: 

( ) ( )

( ) ( )

2

0 0

2

0 0

d 1exp d d
d 2

1exp d d .
2

t t t

t t t

T T

T T

P t W
P

t W

σ ωπ σ ωπ

σ ωπ σ ωπ

∗  
= + − + 

 
 

= − + − + 
 

∫ ∫

∫ ∫ 

 

By Girsanov theorem, tW  is a P∗ -Brownian motion. Furthermore, 

( )( ) 1
0

0

d d d d ;
t

t t t t t t st W Z Z sλ λ σω ω λ − 
Φ = + − Φ − Φ ⇒Φ = Φ + 

 
∫  

where 
2

2exp
2t tZ t Wωλ σω ω

   = + − −  
   

 . 

The price process tX  satisfying the following stochastic differential 

( ) ( )( )d 1 d d dt h t l t
t

t
t

X a a t W t
X

π π σ ωπ σ= − + + + +     
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or in term of tW   

( )2d
d d .h

t
t

t

X
a t W

X
σ σ= + +   

The solution of this stochastic equation is 

2

0 exp .
2ht tX X a t Wσ σ

  
= + +  

  
  

Now we consider the process: 

( ) ( )2

0 0

1exp d d
2

t t

t t t tt Wη σ ωπ σ ωπ
 

= − − − − 
 

∫ ∫   

then tη  is a X -martingale and ( )d dt
t t

t

Wη ωπ σ
η

= − +   where 0 1.η =  

Let tU  is a process which defined by d d dt t t tU U t U Wλ σ= − −  , we have 
( )

0
0

e 1,  .
ha t

t
t

U U
X X

λ−

= =  

Put ( )
( ) 0

0 0

1
,  1

1
t t

t
U

Y Y
U

+Φ
= =

+Φ
 and according to Itô’s formula: 

( )d
d .t

t t
t

Y
W

Y
ωπ σ= − +   

From this we have t tY tη= ∀  (a.s.), thus: 

( ) ( )0

0

e e e 1 .
1

ha rr r X
X Y X λ ττ τ

τ τ τ τ τη − −− −= = +Φ
+Φ

 

Denote 

0 0,X x φ= Φ =  

then 

( ) ( )e e e e 1 .
1

h
P P P

a rr r r
P T

xE X E X E X E λ ττ τ τ
τ τ τ τ τη η

φ∗ ∗ ∗
− −− − −= = = +Φ

+
 

To solve the problem (2.1) we solve the following auxiliary problem: 

( ) ( ) ( )sup e 1 .ha r
tP

G E λ τ

τ
φ ∗

− −

∈
= +Φ

M

                             (2.2) 

Put 
( ) ( )e 1 .ha r

t tZ λ τ− −= +Φ  

The optimal stopping time is the first hitting time of the process tΦ  to the area [ ),B ∞  with some B. 
Moreover pairs ( ),B F  satisfying the flowing free boundary problem: 

( )
( )
( )
( )

0 0
1
1

0

hG a r G z B
G z z z B
G B
G

λ + − − = < <
 = + ≥
 ′ =
 + < ∞



                           (2.3) 

where   is infinitesimal generated operator. 
Differential equation in (2.3) has the general solution as follows: ( ) ( ) ( )1 1 2 2G z C G z C G z= +  where 
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( )
( ) ( )2

2ln ln 2 2 42

1 2 2 2

4 4 2 4 2e Whittaker , ,
2

x x x x
h l h lx

a a r a a
G x x W

x

λ λ ωσ
ω

ω λ ω ω λω ωσ λ λ
ω ω ω

− +  − + − + + − −+ − = −  
 

 

( )
( ) ( )2

2ln ln 2 2 42

2 2 2 2

4 4 2 4 2e Whittaker , , .
2

x x x x
h l h lx

a a r a a
G x x M

x

λ λ ωσ

ω
ω λ ω ω λω ωσ λ λ

ω ω ω

− +  − + − + + − −+ − = −  
 

 

Changing variables and using some analytic transformations we obtain: 

( ) ( )2
2 2

82 20,  0,  1 1hr aλλ σα β α γ β β
ωω ω

+ −
= > = − > = − + > −  

then 

( ) ( ) ( )( )1 23 2
1

0

e 1 duG z u zu uγ ββ γα
∞

− ++ −−= +∫  and ( ) ( ) ( )( )

1

1 23 2
2

0

e 1 d .
z

uG z u zu uγ ββ γα − ++ −= −∫  

We also have 

( ) ( )( ) ( ) ( )( ) ( ) ( )
1

1 11 2 1 23 2 4 4
2

0

21 d 1
1

z

G z z u u z z z
β γ β γγ β γ ββ γ ε

β γ

+ − + −
− + − + − −+ −> − = − > → +∞

+ −∫   

as 0z → +  since 0 1z< <  and 1 0.
4

β γ+ −
− <  

We have 

( ) ( ) ( )( )1 21 2
1

0

1 e 1 d 0
2

tG z t zt tγ ββ γαγ β ∞
− −+ −−− +′ = + >∫  

since hr aλ+ >  therefore ( ) ( )2
2

8
1 1hr aλ

γ β β
ω
+ −

= − + > −  and ( )1G z  is an increasing function.  

Moreover 

( ) ( ) ( )( )3 21 2
1

0

1 1 e 1 d 0
2 2

tG z t zt tγ ββ γαγ β γ β ∞
− −+ +−− + − −′′ = + <∫  

since 

( ) ( ) ( ) ( )

( ) ( ) ( )

2 2
2 2

2 2
2

8 8
1 1

4 2
1 1 4 1.

h l hr a a aλ λ
γ β β

ω ω

λ σω
β β β β

ω

+ − + −
= − + > − +

× −
= − + = − + = +

 

These mean that the function ( )1G z  is increasing and convex on ( )0,∞ . 
Figure 1 shows the graph of function ( )1G z , we can check the increase and convex properties of it. The 

graph of ( )2G z  is shown in Figure 2, we can see that it tends to infinite when z as 0+. 

But ( )0G + < ∞  therefore 2 0C =  and ( ) ( ) ( )( )1 23 2
1

0

e 1 d .uG z C u zu uγ ββ γα
∞

− ++ −−= +∫  

According to (2.3) we have 

( ) ( )( )

( ) ( )( )

1 23 2
1

0

1 21 2
1

0

e 1 d 1  

1 e 1 d 1
2

u

t

C u Bu u B

C u Bu u

γ ββ γα

γ ββ γαγ β

∞
− ++ −−

∞
− −+ −−


+ = +




− + + =

∫

∫
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Figure 1. Graph of the function ( )1G x . 

 

 

Figure 2. Graph of the function ( )2G x . 

 
So B is the solution of the following equation: 

( ) ( )( ) ( )( ) ( ) ( )( )1 2 1 23 2 1 2

0 0

2 e 1 d 1 1 e 1 d .u uu Bu u B u Bu uγ β γ ββ γ β γα αγ β
∞ ∞

− + − −+ − + −− −+ = + − + +∫ ∫       (2.4) 

Lemma 2.1. The free boundary Equation (2.4) has unique positive solution B.  
Proof: The Equation (2.4) is equivalent to 

( ) ( )( ) ( )( ) ( ) ( )( )1 2 1 23 2 1 2

0 0

2 e 1 d 1 1 e 1 d 0.u uu xu u x u xu uγ β γ ββ γ β γα αγ β
∞ ∞

− + − −+ − + −− −+ − + − + + =∫ ∫  

Denote:  

( ) ( ) ( )( ) ( )( ) ( ) ( )( )1 2 1 23 2 1 2

0 0

2 e 1 d 1 1 e 1 d .u uh x u xu u x u xu uγ β γ ββ γ β γα αγ β
∞ ∞

− + − −+ − + −− −= + − + − + +∫ ∫  

The graph of ( )h x  is shown in Figure 3. We shall prove that the function ( )h x  satisfying ( )
0

lim 0
x

h x
→ +

> , 

( )lim
x

h x
→+∞

= −∞  and ( )h x  is decreasing and therefore the equation ( ) 0h x =  has unique solution on ( )0,+∞ . 

We have 
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Figure 3. Graph of the function ( )h x . 

 

( ) ( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( ) ( )

3 2 1 2

0 0

3 2 1 2

0 0

3 2 1 2

0 0

1 2 1 2 1 2

0
0 0

0 2 e d 1 e d

2 e d 1 e d

4 e d 1 e d
1

4 e e d 1 e d
1

4

u u

u u

u u

u u u

h u u u u

u u u u

u u u

u u u u u

β γ β γα α

β γ β γα α

β γ β γα α

β γ β γ β γα α α

γ β

γ β

γ β
β γ

α γ β
β γ

α
β γ

∞ ∞
+ − + −− −

∞ ∞
+ − + −− −

∞ ∞
+ − + −− −

∞ ∞∞+ − + − + −− − −

+ = − − +

= − − +

= − − +
+ −

 
= + − − + + −  

=
+ −

∫ ∫

∫ ∫

∫ ∫

∫ ∫

( ) ( )1 2

0

1 e d .
1

uu uβ γαγ β
∞

+ −− 
− − + 

 
∫

 

It follows that 

( ) ( ) ( ) ( ) ( )

( )
( ) ( )

( )
( )

2 2
1 2 1 2

0 0

2 2 1 2 1 2
2

0 0

4 140 1 e d e d
1 1

88
8

e d e d 0
1 1

u u

h

hu u

h u u u u

r a
a r

u u u u

β γ β γα α

β γ β γα α

α β γα β γ
β γ β γ

λλ
ω ω

β γ ω β γ

∞ ∞
+ − + −− −

∞ ∞
+ − + −− −

 + − − 
+ = + − − =   − + − +    

 + −
−  −

= = > 
− + − + 

  

∫ ∫

∫ ∫
 

( ) ( ) ( ) ( )( ) ( ) ( ) ( )( )

( ) ( ) ( ) ( )( )

( ) ( ) ( ) ( )( )

1 2 1 21 2 1 2

0 0

3 21 2

0

3 21 2

0

1 e 1 d 1 e 1 d

11 1 e 1 d
2

11 1 e 1 d .
2

u u

u

u

h x u xu u u xu u

x u xu u

x u xu u

γ β γ ββ γ β γα α

γ ββ γα

γ ββ γα

γ β γ β

γ β γ β

γ β γ β

∞ ∞
− − − −+ − + +− −

∞
− −+ +−

∞
− −+ +−

′ = − + + − − + +

− −
− + − + +

− −
= − + − + +

∫ ∫

∫

∫

 

Because 

( ) ( ) ( )2
2 2 2

2 82 20,  0,  1 1l h ha a r aλ λλ σα β α γ β β
ωω ω ω

+ − + −
= > = − = > = − + > −  

and 
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( ) ( ) ( ) ( ) ( )22 2
2 2

8 8
1 1 1 4 1h l hr a a aλ λ

γ β β β β β
ω ω
+ − + −

= − + > − + = − + = +  

we obtain 

( ) ( ) ( ) ( ) ( )( )3 21 2

0

11 1 e 1 d 0     0.
2

uh x x u xu u xγ ββ γαγ β γ β
∞

− −+ +−− −′ = − + − + + < ∀ >∫  

We will prove that ( )lim
x

h x
→+∞

= −∞ . Indeed, with the large enough x we have 1 xu xu+ ∼  so 

( ) ( ) ( )( ) ( )( ) ( ) ( )( )

( ) ( ) ( ) ( )( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

( )

1 2 1 23 2 1 2

0 0

1 2 3 2 1 2 1 2 1 2 1 2

0 0

1 2 3 2 1 2 1 2 1

0 0

2 e 1 d 1 1 e 1 d

2 e d 1 1 e d

2 e d 1 e d

1

u u

u u

u u

h x u xu u x u xu u

x u u u x x u u u

x u u u x u u

γ β γ ββ γ β γα α

γ β β γ γ β γ β β γ γ βα α

γ β β γ γ β γ βα α γ

γ β

γ β

γ β

β γ

∞ ∞
− + − −+ − + −− −

∞ ∞
− + + − − + − − + − − −− −

∞ ∞
− + + − − + − +− − −

= + − + − + +

∼ − + − +

= − − +

= + −

∫ ∫

∫ ∫

∫ ∫

( )1 2 1

0

e dux u uγ β α γ
∞

− + − − → −∞∫

 

since 1

0

1 0, 1 0, e d 0.uu u constα γβ γ γ β
∞

− −+ − < − + > = >∫  

Consequently, ( ) ( )
0

lim 0, lim
x x

h x h x
→ + →+∞

> = −∞  and ( )h x  is decreasing so the equation ( ) 0h x =  has unique  

solution on ( )0,+∞ . The theorem is proved.   
Theorem 2.2. Stopping time { }inf 0 :B tt B= ≥ Φ ≥τ  is the optimal stopping time for (2.1).  
Proof: Let 

( ) ( ) ( )1
1

1

1

B G x x B
G BL x

x x B

+ <= 
 + ≥

 

and we will prove that ( ) 1L x x> +  x B∀ < , indeed 

( ) ( ) ( ) ( )1
1 1 1

1 1 11 .B B xG x x
G B G B G x
+ + +

> + ⇔ >  

Now, we examine the function ( ) ( )1

1 .xg x
G x
+

=  

Take the derivative we obtain 

( )
( )

( ) ( )( ) ( ) ( ) ( )( )

( )
( )

( )
( )

( ) ( ) ( ) ( )

1 2 1 23 2 1 2
2

0 01

2 2
1 11 1

1 1e 1 d 1 e 1 d
2

1 10 .

u ug x u xu u x u xu u
F x

h x h B B xg B g x
G B G xF x F B

γ β γ ββ γ β γα αγ β∞ ∞
− + − −+ − + −− − − +′ = + − + + 

 
+ +

= > = ⇒ > ⇒ >

∫ ∫
 

This follows 

( ) 1    L x x x≥ + ∀ . 

Using the Dynkin’s formula to the process ( ) ( )e ha r t
t tY Lλ− −= Φ  we have: 

( ) ( )( ) { }
( ) ( )d e 1 d e dh h

t

a r t a r t
t h l t t t tBY a r a r t L Wλ λ ω− − − −

Φ >
′= − + − Φ − Φ Φ  . 



P. V. Khanh 
 

 
522 

Because B satisfying :h

l

a rB d
r a
−

≥ =
−

 so the drift of Y is positive and therefore Y is super martingale and 

BtY τ∧  is martingale. By optional theorem we have: 

( ) ( ) ( ) ( ) ( )0e 1ha r Y Y L G Lλ τ
φ τ φ τ φ φ φ φ− − +Φ ≤ ≤ = ⇒ ≤   . 

By Bτ τ=  we have ( )0B
Y Y Lφ τ φ φ= =   moreover  

( ) ( )sup
B

Q Q
y yG Y Y Lτ τ

τ
φ φ= ≥ =  . So ( ) ( )G Lφ φ= . 

We will show that B satisfy the condition: :h

l

a rB d
r a
−

≥ =
−

. Indeed, by general optimal stopping theory all 

points satisfy the form 

( )( ) ( )1h h la r a r a rλ φ φ+ − − + = − + −  

with positive value will be in continuation area 

( ){ }: 1C Gφ φ φ= > + . 

The optimal stopping time is the first hitting time of { } 0t t≥
Φ  to the area: 

( ){ }: 1D Gφ φ φ= = +  or { }inf 0 : .B tt Bτ = ≥ Φ ≥  

Thus function G satisfy the following condition: 
( ) ( )

:
( ) sup e 1h

t

a r

d
G λ

φ τ
τ

φ − −

Φ ≥
= +Φ . 

We define the function: 

( ) ( ) ( )1
1

1

1

d

d G d
GG

d

φ φ
φφ
φ φ

+ <= 
 + ≥

 

Now, we assume B d< , because ( )h x  is a decreasing function so ( ) 0h d < . Then the left derivative of 

( )( ) ( )( )d dG d G d′ ′− > + . Specially, ( ) 1dG φ φ< +  with some dφ < . This follows ( ) ( )2e ha r t d
tGλ− − Φ  is su-

per martingale and ( ) ( )e h d
d

a r t d
tGλ τ
τ

− − ∧
∧Φ  martingale. For the stopping time τ  satisfying dτΦ ≥  we have: 

( ) ( ) ( ) ( ) ( ) ( ) ( )e 1h ha r a r d d de G G G Gλ λ
φ τ φ τ φ φ φ− − − −+Φ = Φ ≤ ⇒ ≤  . 

This contradicts to the existence of φ  such that ( ) 1dG φ φ< +  when ( ) 1G φ φ≥ +  φ∀ . Finally, we 
achieve B d≥ . 

The optimal stopping time Bτ  is the first hitting time of { } 0t t≥
Φ  to the area 

( ){ }: 1D Gφ φ φ= = + . 

But ( ) 1G φ φ≥ +  φ∀  therefore  

{ }inf 0 :B tt Bτ = ≥ Φ ≥ ,  

by this, we have finished the provement. 

3. Simulation Study 
To make visual for the above theory we simulate the asset price process, the posterior probability process tπ  

process ( )
1

t

t

t π
π

Φ =
−

 (notice that ( )tΦ  is an increasing function of tπ ) and the selling threshold B. Some  
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parameters is used in our simulating are 0.05la = − ; 0.06r = ; 0.2ha = ; 0.04σ = ; 0.5λ =  and the time 
interval is [0, 1]. 

As can be seen in the figures from 4 to 8 if the price is increasing then the ( )tΦ  and tπ  are decreasing and 
conversely.  

Figure 4 shows the price process has increased since the time 0.2 so the ( )tΦ  decreased from the respective 
time and it can not hit the red line denoted the threshold, therefore the optimal selling time in this case is 1. 

Figure 5 simulate a price process which is fluctuated from time 0 to 0.14 and decrease dramatically at the 
time 0.14 so the process ( )tΦ  increase sharply from this and crossover the threshold, it follows that the 
optimal time to liquidate the asset is about 0.17. At this time the price of the asset is lower than the origin but if 
we hold it we will sell it at a much more loss in the future. 

Another simulation is shown in Figure 6. Clearly, whenever the price process is increasing, the ( )tΦ  and 
the posterior probability process are decreasing and the liquidated time is 0.77. At this time the price is not the 
highest but it is significantly higher than the original value which is 1.5. 
 

 
Figure 4. A simulation of asset price process, the posterior probability process, process Φ(t), the 
threshold probability and the optimal stopping time. In this case, the process Φ(t) always under the 
threshold probability so the optimal stopping time is the final time 1. 

 

 
Figure 5. A simulation of asset price process, the posterior probability process, process Φ(t), the 
threshold probability and the optimal stopping time. In this case, the first time that the process Φ(t) 
over passes the threshold probability at the time 0.17 so the optimal stopping time is 0.17. 
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In Figure 7, we can see the same scenario with the simulation in Figure 6. The time to liquidate in this case is 
0.795, the price is about 1.75 whereas the started price was 1.5. We can see  

0.06 0.795
0e 1.75 e 1.668 1.5rt

tS S− − ∗= ∗ = > =  it means that we benefit by this trade affair. 
The same scenario with the simulation in Figure 1, the simulation results in Figure 8 show the price illu-

strates an uptrend from time 0 to the end that the process ( )tΦ  can not pass over the selling threshold B, con-
sequently, the optimal time to sell in this situation is 1. 

4. Conclusion  
This research considers the problem of how to find the optimal time to liquidate an asset when the asset price is 
modeled by the geometric Brownian motion which has a change point. In particular, the drift of the process 
drops from a high value to a smaller one and this drift process can be modeled as two-state Markov process. The 
results of this research indicate that a optimal selling decision is made when the probability of downtrend sur-
passed some certain threshold. We also simulate the price process with a number of parameters and conduct  
 

 
Figure 6. A simulation of asset price process, the posterior probability process, process Φ(t), 
the threshold probability and the optimal stopping time. In this case, the first time that the 
process Φ(t) over passes the threshold probability at the time 0.77 so the optimal stopping 
time is 0.77. 

 

 
Figure 7. A simulation of asset price process, the posterior probability process, process Φ(t), 
the threshold probability and the optimal stopping time. In this case, the first time that the 
process Φ(t) over passes the threshold probability at the time 0.795 so the optimal stopping 
time is 0.795. 
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Figure 8. A simulation of asset price process, the posterior probability process, process Φ(t), 
the threshold probability and the optimal stopping time. In this case, the process Φ(t) always 
under the threshold probability so the optimal stopping time is the final time 1, the same with 
the case in Figure 4. 

 
numerical solution to the experimental selling threshold. In next studies, we will consider problems in which the 
price growth rate is a Markov process which has more than 2 states and establish some properties as well as dis-
tribution of stopping time. 
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