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Abstract 
In present work, post-buckling behavior of imperfect (of eigen form) laminated composite cylin-
drical shells with different L/D and R/t ratios subjected to axial, bending and torsion loads has 
been investigated by using an equilibrium path approach in the finite element analysis. The New-
ton-Raphson approach as well as the arc-length approach is used to ensure the correctness of the 
equilibrium paths up to the limit point load. Post-buckling behavior of imperfect cylindrical shells 
with different L/D and R/t ratios of interest is obtained and the theoretical knock-down factors 
are reported for the considered cylindrical shells. 
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1. Introduction 
Cylindrical shells are very often used as primary load carrying structural members in aerospace, civil, mechani-
cal and nuclear engineering fields and these structural elements are very often subjected to multiple states of load-
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ing simultaneously such as the combination of axial, bending and torsion loads. The mechanical behavior of the 
above structural elements is extremely sensitive to the presence of geometric imperfections and the modeling of 
these geometric imperfections plays a pivotal role in accurately understanding the mechanical behavior by means 
of either an analytical or finite element analysis approaches. The complex behavior of these imperfect composite 
cylindrical shells subjected to axial compressive [1]-[3], bending [4] [5] and torsion [6]-[13] loads has been in-
vestigated by many researchers across the world and the complete understanding of the mechanical behavior of 
these cylindrical shells subjected to different combinations of these fundamental loads is still an active area of 
current research. 

Recently authors have carried out an extensive literature review in References [1]-[3] on analysis of imperfect 
(eigen form) cylindrical shells made up of isotropic as well as laminated composite cylindrical shells subjected 
to axial compressive load, and much emphasis is not made here on the same in order to abridge the proposed 
paper. The work done by the authors’ in Ref. [2] on analysis of cylindrical shells is only restricted to axial com-
pressive load only and is a major source of motivation to pursue the proposed research work with an endeavor to 
understand the post-buckling behavior of cylindrical shells with other forms of fundamental loading. 

Karyadi [4] investigated the influence of length variation on the linear buckling behavior of isotropic cylin-
drical shells subjected to pure bending and the results of this study show that the maximum critical bending stress 
is essentially equal to the critical uniform axial compressive stress. Although the aforementioned statement by 
Karyadi [4] is concluded quantitatively by performing a linear buckling analysis only, however the concluding 
statement needs a better explanation from the nonlinear phenomenon as this approach can effectively capture the 
influence of imperfections on post-buckling behavior of imperfect cylindrical shells. 

Yamaki [6] [7] and Wang et al. [8] have carried out many experiments on the torsional buckling of elastic cy-
lindrical shells and described that the buckling wave doesn’t occupy the complete length of the long cylindrical 
shell in contrast to the short cylindrical shell. Wang et al. [8] also compared their experimental torsional buck-
ling results with that of Yamaki [6] results and furthermore they concluded that the influence of axial and cir-
cumferential boundary condition was less important in the torsional buckling analysis of elastic cylindrical shells. 
Kim et al. [10] developed a 3D elastic solution to the buckling of orthotropic cylindrical shells subjected to tor-
sional loads and the accuracy of the existing shell theories had been assessed with that of 3D elastic solution. 
Park et al. [11] investigated the torsional buckling loads (limit point loads) of various composite cylindrical 
shells by using the geometrically nonlinear finite element analysis approach. Bisagni et al. [12] have carried out 
an experimental study on post-buckling behavior of CFRP cylindrical shells subjected to axial and torsion loads 
which are applied separately as well as in combination to arrive at various interaction curves. 

The exhaustive study on post-buckling behavior of laminated composite cylindrical shells subjected to general 
fundamental load cases such as axial, bending and torsion loads with different L/D and R/t ratios is meagerly 
seen in the available open literature. The proposed piece of work makes a modest attempt to bridge this gap with 
an endeavor to understand the post-buckling behavior of the laminated composite cylindrical shells subjected to 
these fundamental loads. 

2. Finite Element Formulation 
The finite element discretization process for geometrically non-linear analysis yields a set of simultaneous equa-
tions: 

{ } { }aTK u fδ δ  =                                      (1) 

where TK    is the tangent stiffness matrix, { }uδ  is the incremental nodal displacement vector and { }afδ  
is the incremental nodal force vector. For determining the buckling load, the equation can be simplified by tak-
ing small deformation and we can omit the nonlinear terms which are functions of nodal displacements in the 
tangent stiffness matrix. The following expression [14] gives the tangent stiffness matrix after linearization 

T LK K Kσ     = +                                         (2) 

where LK    is a linear stiffness matrix and Kσ   , a stress stiffness matrix. If a stress stiffness matrix 
nr

Kσ    is generated according to a reference load nrF , for another load level aF  with λ , a scalar multiplier, 
we have 
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{ } { } ,
nra nrF f K Kσ σλ λ   = =                                   (3) 

When buckling occurs, the external loads do not change, i.e., { } 0afδ =  Then the bifurcation solution for 
the linearized buckling problem may be determined from the following eigenvalue equation: 

( ) { } 0
nrL

crK K uσλ δ   + =                                     (4) 

where crλ  is an eigenvalue and { }u  becomes the eigenvector defining the buckling mode. The critical load
crF  can be obtained from { } { }nr

crf fλ= . In ANSYS, a subspace iteration technique is employed to extract 
the eigenvalues and the corresponding eigenvectors. Geometric non-linearity is considered using the 
von-Karman strain–displacement relations, where the moderately large rotations and displacements of the order 
of characteristic dimension of the problem are allowed. For the non-linear problem, the stiffness matrix [K] itself 
is function of the unknown degrees of freedom which leads to system of non-linear equations. An iterative process 
of solving the non-linear equations is required and these can be written as follows: 

{ } { } { }_ nraT
i i iK u f f  =                                   (5) 

{ } { }{ }1i i iu u u+ = ∆                                     (6) 
T
iK    is the tangent stiffness matrix, i representing the current equilibrium iteration and { }nr

if vector of 
restoring loads corresponding to the element internal loads. Equation (5) represents a generalized system of si-
multaneous non-linear equations which needs to be solved for evaluating the equilibrium path of the cylindrical 
shell structure subjected to various fundamental loads which are considered in this study. Following summary 
explains a detailed procedure involved in these analysis approaches. Figure 1 shows the geometry and different 
fundamental loading conditions considered on laminated composite cylindrical shell for post-buckling analysis. 

3. Post-Buckling Analysis 
Nonlinear analysis of a geometrically perfect or imperfect cylindrical shell using Newton-Raphson approach gen-
erally involves the determination of the equilibrium path up to the limit point load and beyond which the slope 
of the load-deflection curve (or equilibrium path) ceases to be positive. Post-buckling analysis by means of an 
arc-length approach generally involves the determination of the full equilibrium path which also includes tracing 
of the unstable solution of the equilibrium path. Salient steps involved in arriving at the post-buckling behavior 
of imperfect cylindrical shells are briefly summarized below: 

Steps Followed in Post-Buckling Analysis 
1) The linear buckled mode shape has been chosen as the basis of initial imperfection. Magnitude of initial  

 

 
Figure 1. (a) Axial compressive load; (b) Bending moment; (c) Torsion load.                    
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imperfection is referred with reference to the thickness (t) parameter of the cylindrical shell. It must be noted 
that the shape of imperfection can be given in the form of linear combination of buckled mode shapes or random 
imperfection or experimentally measured imperfection shape. 

2) After applying initial geometric imperfection, a nonlinear analysis has been performed to trace the equili-
brium path of interest. 

3) Nonlinear analysis involves the application of either Newton-Raphson approach or an arc-length approach 
to solve Equation (1). 

4) Load-deflection curve obtained from the Newton-Raphson approach represents the primary equilibrium 
path where as the load-deflection curve traced in an arc-length approach includes the primary (stable) as well as 
secondary (unstable) equilibrium paths. All the proposed results use an arc-length method for post-buckling analy-
sis results unless otherwise it is explicitly mentioned. 

4. Results & Discussion 
In present work, post-buckling behavior of the laminated composite cylindrical shells subjected to axial, bending 
and torsion loads has been investigated by using the post-buckling analysis. 

4.1. Axial Compressive and Bending Load 
Throughout this study, the cylindrical shell is assumed to be laminated composite cylindrical shell made up of 
E-glass/polyester resin and the material properties are directly taken from Ref. [15] which are indicated in Table 
1. The radius of the cylindrical shell is considered as 150 mm. The length and thickness of the cylindrical shell 
in general varies in accordance with the L/D and R/t ratios as specified wherever applicable. One end of the cy-
linder is simply supported, whereas the axial load or bending moment is applied on the other end of the cylin-
drical shell. Eigen form of imperfection shapes are considered on the basis of fundamental buckled mode shapes 
with different imperfection magnitudes of interest. Figure 2 and Figure 3 show the comparison of the numeri- 
 

 
Figure 2. Comparison of limit point loads of an axially com-
pressed composite cylindrical shell.                        

 
Table 1. Material properties [15] of the E-glass/polyester resin.                                                    

Material Properties Values 

E11 149.6 GPa 

G23 2.5 GPa 

ν23 0.45 

E22 = E33 9.9 GPa 

G12 = G13 4.5 GPa 
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cal results obtained from the Newton Raphson approach as well as the arc-length approach for a typical imper-
fection magnitude (ξ = w*/t, where w* is the maximum imperfection amplitude and t is the thickness of the cy-
lindrical shell) of laminated composite cylindrical shell subjected to axial compressive and bending load respec-
tively. In general, it is observed that these two approaches have shown good agreement in predicting the primary 
equilibrium path as well as in predicting the limit point load of the considered composite cylindrical shells 
which in turn poses as a benchmark validation for all the results discussed in this paper. For the sake of better 
clarity to the reader, only post-buckling analysis results obtained from the arc-length approach are only discussed 
subsequently in the paper. 

Figure 4 shows that influence of different eigen imperfection magnitudes on post-buckling behavior of the 
laminated composite cylindrical shells subjected to axial compressive load which indicates that the limit point 
load decreases with increase in imperfection magnitudes. Figure 5 shows the parametric influence of L/D ratio 
on variation of limit point loads which conveys that the cylinders with higher L/D values are less imperfection 
sensitive relative to the lower L/D values. Table 2 summarizes the eigen imperfection sensitivity (or knock-down 
factors) of various cylindrical shells subjected to axial compressive load with different L/D and R/t ratios which 
provides an overview on variation of the limit point load with different eigen imperfection magnitudes of inter-
est. Furthermore, the influence of bending load on post-buckling behavior is discussed in Figure 6 with different 
 

 
Figure 3. Comparison of limit point loads of cylindrical shell 
subjected to bending load.                                   

 

 
Figure 4. Effect of eigen imperfection sensitivity on cylindrical 
shell subjected to axial load.                                   
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Figure 5. Influence of L/D ratio on cylindrical shell subjected 
to axial load.                                            

 

 
Figure 6. Effect of eigen imperfection sensitivity on cylindrical 
shell subjected to bending load.                                   

 
Table 2. Knock-down factors of various cylindrical shells subjected to axial compressive load (ply sequence (−45/−45/+45)s).         
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eigen imperfection magnitudes and in Figure 7 with different L/D ratio with an objective of understanding the 
influence of loading nature. Table 3 summarizes the knock-down factors of various cylindrical shells subjected 
to bending load for various eigen imperfection magnitudes. A close comparison of Table 2 and Table 3 indi-
cates the sensitivity envelop of the limit point loads of various cylindrical shells subjected to axial and bending 
loads which infers that the limit points are more sensitive to the bending load rather than an axial load as the L/D 
ratio increases with eigen form of imperfection shape. 

4.2. Torsion Load 
Numerical results (Linear or Critical torsional buckling loads) obtained from the present work are first validated 
in Table 4, Table 5 and Table 6 with the various available literature values for the cylindrical shells subjected 
to torsion load which indicates the consistency and adequacy of the present numerical results. Subsequently, the 
post-buckling analysis has been carried out to the previously considered composite cylindrical shells (considered 
properties are shown in Table 7) in order to understand the influence of eigen imperfection sensitivity as well as 
the influence of other geometric parameters such as L/D and R/t ratios. Figure 8 shows the influence of different 
eigen imperfection magnitudes on post-buckling behavior of the composite cylindrical shells subjected to tor-
sional load which indicates the normalized load sustaining behavior of the cylindrical shell subjected to torsion. 
Figure 9 shows the parametric influence of L/D ratio on the normalized load sustaining behavior of the cylin- 
 

 
Figure 7. Influence of L/D ratio on cylindrical shells subjected 
to bending load.                                                    
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Figure 8. Effect of eigen imperfection sensitivity on cylindrical 
shells subjected to torsion.                                   

 

 
Figure 9. Influence of L/D ratio on cylindrical shells subjected 
to torsion.                                                    
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drical shells. Table 8 summarizes the eigen imperfection sensitivity of various cylindrical shells subjected to 
torsion load with different L/D and R/t ratios which conveys the variation of the limit point loads with different 
imperfection magnitudes of interest. Finally, Table 9 shows the qualitative comparison of the knock-down fac-
tors of various cylindrical shells subjected to axial, bending and torsion loads which indicates that in general cy-
lindrical shells are relatively less imperfection sensitive in torsion loading as compared to axial compressive and 
bending loads. 

In all Table 2, Table 3, Table 8 and Table 9, Z is the Batdorf parameter (considered as a measure of Geome-
try parameter) and its value is presented to understand its qualitative influence on variation of knock-down fac-
tors. 
 
Table 6. Comparison of linear torsional buckling loads with R/t = 100 (ply sequence [30/30/−60]S).                          

L/D Torsional Buckling Load (Present) (N/m) Torsional Buckling Load 
Ref. [11] (N/m) 

L/D = 0.5 0.3281 × 106 0.3030 × 106 

L/D = 2.5 0.0681 × 106 0.0613 × 106 

 
Table 7. Mechanical properties [11] of composite cylindrical shell.                                                    

Material Properties Values 

E11 149.6 GPa 

G23 2.5 GPa 

ν23 0.45 

E22 = E33 9.9 GPa 

G12 = G13 4.5 GPa 

ν12 = ν13 0.28 

 
Table 8. Knock-down factors of various cylindrical shells subjected to torsion (ply sequence (−45/−45/+45)s).                  

L/D R/t Z Tcr (N-m) 
T/Tcr 

ξ = 0.1 ξ = 0.5 ξ = 1.0 

2.5 500 11913 1646.2 0.975 0.904 0.849 

0.5 500 477 5465.5 0.909 0.754 0.767 

2.5 100 2383 262320 0.948 0.845 0.754 

0.5 100 95 71688 0.863 0.697 0.645 

 
Table 9. Comparison of knock-down factors of various cylindrical shells subjected to axial, bending and torsion load (ply se-
quence (−45/−45/+45)s).                                                                                      

Type of Load L/D R/t Z Pcr/Mcr/Tcr 
P/Pcr/M/Mcr/T/Tcr 

ξ = 0.1 ξ = 0.5 ξ = 1.0 

Axial compressive load 
5.0 500 47650 7077 N 0.918 0.798 0.660 

0.5 500 477 7612 N 0.768 0.450 0.334 

Bending load 
5.0 500 47650 566.5 N-m 0.621 0.407 0.347 

0.5 500 477 594.9 N-m 0.762 0.495 0.395 

Torsion load 
5.0 500 47650 1050.0 N-m 0.974 0.867 0.819 

0.5 500 477 5465.5 N-m 0.909 0.754 0.767 



Y. V. Narayana et al. 
 

 
194 

4.3. Conclusion 
Post-buckling behavior of laminated imperfect (of eigen form) composite cylindrical shells subjected to different 
fundamental loads is investigated by using an equilibrium path approach. Numerical results obtained from the 
proposed study are validated with the available literature values wherever they are found applicable, apart from 
providing comprehensive post-buckling analysis results subjected to different fundamental loads. The sensitivity 
of the limit point loads (or knock-down factors) for various cylindrical shells with different fundamental loading 
conditions is clearly discussed. 

5. Future Works 
Proposed study finds an immediate application in fundamental understanding of the mode jumping phenomenon 
which is commonly associated with the behavior of cylindrical shells subjected to different combination of loads 
as well as material properties. The confidence gained on this study can also be extended to investigate the influ-
ence of either random imperfection shapes (or) actually measured imperfection shapes. The detailed outcome of 
the above studies will be reported in future works planned by the authors’. 
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