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Abstract 
It is shown that when backorders, setup times and dynamic demand are included in capacitated 
lot sizing problem, the resulting classical formulation and one of the transportation formulations 
of the problem (referred to as CLSP_BS) are equivalent. And it is shown that both the formulations 
are “weak” formulations (as opposed to “strong” formulation). The other transportation version is 
a strong formulation of CLSP_BS. Extensive computational studies are presented for medium and 
large sized problems. In case of medium-sized problems, strong formulation produces better LP 
bounds, and takes lesser number of branch-and-bound (B&B) nodes and less CPU time to solve the 
problem optimally. However for large-sized problems strong formulation takes more time to solve 
the problem optimally, defeating the benefit of strength of bounds. This essentially is because of 
excessive increase in the number of constraints for the large sized problems. Hybrid formulations 
are proposed where only few most promising strong constraints are added to the weak formula-
tion. Hybrid formulation emerges as the best performer against the strong and weak formulations. 
This concept of hybrid formulation can efficiently solve a variety of complex real life large-sized 
problems. 
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1. Introduction and Literature Survey 
Researchers have extensively studied the lot sizing problem in last five decades, but finding an effective and 
practicable solution to this problem in real time remains to be a challenge faced by the production planners in a 
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manufacturing setup. This was evident from our recent visit to a leading Indian automobile manufacturer, lo-
cated in the southern part of the country. Nearly all versions of capacitated lot sizing problem are NP-Hard; and 
hence better heuristics are required for solution.  

Even the basic model of single item capacitated lot sizing problem (CLSP) is well known to be NP Hard [1]. 
With the addition of setup times, the problem becomes so hard that even finding a feasible solution is NP com-
plete [2]. Chen & Thizy [3] showed that even without considering setup times, just the inclusion of setup cost 
makes the lot sizing problem strongly NP Hard. Hence it becomes actually intricate to solve a CLSP with con-
siderations of realistic situations like capacity, backorders, setup times, setup costs, setup carryovers, etc.  

The focus of this work is on the capacitated version of the lot sizing problems; the readers are hence referred 
to [4] that extensively reviews various research done on CLSP. Karimi et al. [4] concluded that although lot siz-
ing had been one of the favorite research areas in last few decades but still the realistic and practical variants of 
the CLSP, specially which considers backorders, setup times and setup carry-overs, had not received much at-
tention. Also Quadt & Kuhn [5] gave an extensive review of the literature on the different extensions of the ca-
pacitated lot sizing problem. It is again evident from the review work of Quadt & Kuhn [5] that models with in-
clusion of backorders have received least attention in the past. Hence despite a common outlook that lot sizing is 
an over-researched problem, it still remains to be one of the preferred research areas; this again becomes appar-
ent from the most recent works of [6]-[8], to name only a few. 

Apart from the classical (denoted by PC) formulation of CLSP given by [9], CLSP is also modelled as the 
transportation problem (denoted by PT) type of formulation or plant location type of formulation [10] and the 
shortest path (denoted by PS) type of formulation [11]. Alfieri et al. [10] took up the relative analysis of the PC, 
PT and PS models; however their analysis did not consider setup times and backorders. Later Denizel et al. [12] 
added setup times to their model and verified the proposed relationship between strength of different types of 
formulations. 

Multi-item multi-period capacitated lot sizing problem with dynamic demands, backorders and setup times 
(CLSP_BS) is considered in this work. Apart from the formulation PC, two PT formulations (PTa and PTb) of 
CLSP_BS are considered in this work; and the relative strength of these three formulations is investigated. This 
is important because it has an impact on the choice of model formulation and the corresponding solution proce-
dure. Also as it is observed by Alfieri et al. [10] that although PT provides better lower bounds, it takes more 
computational time as compared to PC. Hence choosing an appropriate formulation to solve the lot sizing prob-
lem is critical. Chen & Thizy [3] and Barany et al. [13] did mathematical comparison of the Lagrangian and li-
near relaxations for the classical version of the multi-item CLSP. They however did not consider the variables of 
backorders and setup times in their model. 

Limiting the size of the problem by selective inclusion of variables and constraints in different forms has been 
attempted and discussed by some researchers in the recent past. Tightening of the MIP using extended formula-
tions drastically amplifies the size of the problem. Hence Van Vyve and Wolsey [14] developed approximate 
extended formulations, where in order to get a good quality lower bound, partial reformulations were applied. 
Through a control parameter the trade-off between strength and size of formulation is manipulated. They basi-
cally used a coefficient modification based heuristic algorithm within the branch-and-cut enumeration frame-
work. Pochet and Wolsey [15] gave that adding a limited number of (l, S) inequalities to the regular formulation 
and to the backlogging extensions gave improved upper bounds or same bounds as the transportation formula-
tion in the presence of Wagner-Whitin costs. Akartunali and Miller [16] dealt with the multi level single re-
source big bucket problem with extension to backlogging and used the cutting planes to tighten their formulation. 
Their flexible and easy heuristics generate multiple solutions and competitive lower bounds. A complete ma-
thematical survey of the compact extended formulations applied into the combinatorial optimization problems is 
done very recently by Conforti et al. [17]. They provide some mathematical tools for studying the extended 
formulations. The minimum size up to which an extended formulation could be compacted was also devised. 

An interesting concept of hybrid formulations is introduced in this work, where a small percentage of the 
most promising strong constraints are added to the weak PT formulation to note that the hybrid formulations 
swiftly produce better bounds than the weak formulation and gives optimal solution in least time as compared to 
weak or the strong formulations. Hence for the large sized problem instances, hybrid formulations actually are 
the best performers. 

Here we provide the breakup of this paper. In Section 2, we provide the classical and two types of transporta-
tion formulations. The relationship between cost structures of the two formulations is also shown which makes 
the classical and transportation formulations equivalent. In Section 3, linear programming (LP) relaxations of 
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the three types of formulations are proposed. Section 4 provides empirical investigations on medium sized prob-
lems to note the behavior of strong and weak formulations. In Section 5 we attempt the large sized problems and 
note a reverse behavior of strong and weak formulations. Hybrid formulations are then proposed, which is 
shown to be the best performer as against strong and weak formulations. We conclude in Section 6 by hig-
hlighting the important contributions of this work. 

2. Formulations 
Here we discuss the classical and two transportation formulations of CLSP_BS. Conversion of classical formu-
lation to the transportation formulation is done using a relationship between the cost parameters and the va-
riables. Note the difference in the names of variables and parameters used in this paper compared to that existing 
in the literature. An attempt has been made to simplify the notations; viz. starting all variable names with X and 
Y, parameters cost by C, time by T, etc. 

2.1. Classical Formulation of CLSP_BS: “PC” 
The standard formulation of CLSP available in the literature is extended to include the proposed variables and 
situations. Note suffix “PC” added to the parameters—inventory and backorder costs, indicating their associa-
tion only with the classical formulation of the problem. 

Index: 
i    : Item type, 1, ,i I=   
t    : Planning period, 1, ,t T=   
Variables: 

itXP    : Number of items “i” to be produced during the period “t” 
itXINV   : Number of items “i” carried as inventory at the end of period “t” 

itXBO   : Number of items “i” that will be backordered from period “t” 
itYS    : Binary variable for setup of the resource for item “i” during the period “t” 

= 0 (if there is no setup required), 1 otherwise 
Parameters: 

itCP    : Unit cost of producing item “i” in period “t” 
itCS    : Unit cost of setup, for item “i” in period “t” 

_ itCINV PC  : Unit cost of holding inventory of item “i” in period “t”. 
_ itCBO PC  : Unit cost of backordering item “i”, that was demanded during the period “t” 

itCAP   : Capacity available to produce item “i” during the period “t” 
tCAPT   : Capacity available in time units, in a period “t” 

itD    : Demand of item “i” during the period “t” 
iTP    : Time required to process the item “i” 
iTS    : Time required to setup the production for item “i” 

PC : Minimize ( )Z PC  

( ) [ ]
1 1

_ _
I T

it it it it it it it it
i t

Z PC CP XP CS YS CINV PC XINV CBO PC XBO
= =

= + + +∑∑              (1) 

Subject to: 
, 1 , 1it i t it it it i tXP XINV XBO D XINV XBO− −+ + = + +  ,i t∀                            (2) 

( )
1

I

i it i it t
i

TP XP TS YS CAPT
=

+ ≤∑     t∀                             (3) 

it it itXP CAP YS≤        ,i t∀                            (4) 

, , 0it it itXINV XP XBO ≥       ,i t∀                            (5) 

0 , 0i iTXINV XINV =       i∀                             (6) 

0 ,, 0i i TXBO XBO =        i∀                             (7) 

[ ]0,1itYS ∈         ,i t∀                            (8) 
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(1) the objective of the problem, is to minimize the cost of production, setup, inventory and backlogging, 
summed over all items and time periods. (2) is the inventory balance constraint for each item and period. (3) is 
the time capacity limiting constraint, which ensures that the total time utilized in doing production and setups 
can atmost be equal to the maximum time available in any period. (4) is the production capacity constraint, en-
suring the production quantity to be always less than or equal to the maximum production capacity available for 
all items and periods. (5) restricts non negativity over the production quantity and the quantity of items carried 
as inventory and backorders. (6) and (7) forces the initial and final inventory and backorders to be zero. (8) 
forces the setup variable to be binary for all items and for all the periods. 

2.2. Transportation Formulation of CLSP_BS: “PT” 
CLSP_BS can be reshaped using variable redefinition technique, in the form of a transportation problem. Note 
the suffix “PT” with the cost parameters in this formulation. Two versions of CLSP_BS (PTa and PTb) are pre-
sented in the following sub-sections. 

Index: 
i    : Item type, 1, ,i I=   
t , r    : Planning period; 1, ,t T=  ; 1, ,i I=   
Variables: 

itrX    : Number of items “i” produced in period “t” to satisfy demand of period “r” 
itYS    : Binary variable for setup of the resource for item “i” during the period “t” 

= 0 (if there is no setup required), 1 otherwise 
Parameters: 

_ itrCINV PT  : Unit cost of holding inventory of item “i” from period “t” to period “r”; (r ≥ t). 
_ itrCBO PT  : Unit cost of backordering item “i”, which is produced in period “t”, but was required at pe-

riod “r”; (r ≤ t). 
irD    : Demand of item “i” during the period “r” 

2.2.1. Transportation Formulation 1 [PTa] 
PTa: Minimize ( )aPTZ  

( ) ( )a

1 1 1 1 1
PT _ _

I T T I T

it itr itr itr it it
i r t i t

Z CP CINV PT CBO PT X CS YS
= = = = =

= + + +∑∑∑ ∑∑               (1a′) 

Subject to: 

1

T

itr ir
t

X D
=

=∑      ,i r∀                               (2′) 

1 1

I T

i itr i it t
i r

TP X TS YS CAPT
= =

   + ≤  
  

∑ ∑  t∀                                (3′) 

1

T

itr it it
r

X CAP YS
=

≤∑     ,i t∀                               (4′) 

0itrX ≥       , ,i t r∀                             (5′) 
and (8). 

(1′) defines the objective seeking to minimize the cost of production, setup, inventory and backorders 
summed over all items and time periods. (2′) is the demand constraint ensuring production during the planning 
horizon to satisfythe demand of period “r”. (3′) limits the sum of production and the setup times to at most be 
equal to the maximum time available during the planning horizon. (4′) ensures that the maximum production is 
equal to the capacity available for all the items and periods. (5′) imposes a non-negativity on the variable. 

2.2.2. Transportation Formulation 2 [PTb]  
A new constraint is defined here, considering the fact that the production of any item “i” in any period “t” to sa-
tisfy its demand of period “r” can at most be equal to the demand. This can be written mathematically as: 

itr ir itX D YS≤      , ,i t r∀                             (6′) 
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This constraint also ensures a setup (and hence a probable production) in “t” to satisfy the demand of “r”. In 
formulation PTb, we simply add (6′) to the formulation PTa as follows: 

PTb: Minimize ( )bPTZ  

( ) ( )b

1 1 1 1 1
PT _ _

I T T I T

it itr itr itr it it
i r t i t

Z CP CINV PT CBO PT X CS YS
= = = = =

= + + +∑∑∑ ∑∑            (1b′) 

Subject to: (2′)-(6′) and (8).  
It is observed that constraint (6′) is mostly used in the literature where capacitated lot sizing problem is mod-

eled as a transportation problem. But in presence of (2′) and (4′), which takes care of the demand and setup re-
spectively, actually (6′) is not required. Soas brought in the later part of this paper (Section 4, Table 3), same 
objective value is obtained by solving PTa and PTb. (6′) being a strong constraint, its inclusion in the problem 
should be beneficial in terms of bounds. That is, relaxation of PTb is expected to produce better bounds than that 
of PTa. This behavior will be analyzed in the next sections. 

2.3. Equivalence of Costs 
Note that the costs defined in this work are general to also accommodate different setup cost for the same item 
in different periods; or different production cost for the same item in different periods, etc. Though such costs 
may not actually occur, but any such possibility is accounted for in the model. To generate inventory and the 
backorder costs for the transportation formulation, following relations are used: 

1
_ _

r

itr ip
p t

CINV PT CINV PC
−

=

= ∑  for r t> ; and _ 0itrCINV PT =  for .r t≤                (9) 

1
_ _

t

itr ip
p r

CBO PT CBO PC
−

=

= ∑  for r t< ; and _ 0itrCBO PT =  for .r t≥                 (10) 

3. Relaxations 
3.1. Relaxations of Classical Formulation PC 
In PC, when we relax the binary constraint itYS  to vary continuously between zero and one, we have its linear 
programming (LP) relaxation PCr. Mathematically: 

0 1itYS≤ ≤      ,i t∀                              (11) 

PCr: Minimize (1); subject to: (2)-(6), (7) and (11). 

3.2. Relaxations of Transportation Formulation 
Again in the transportation formulation of the CLSP_BS when we relax the binary constraint itYS  to vary con-
tinuously between zero and one, it is referred to as a linear programming (LP) relaxation. Mathematically this is 
denoted by (11). 

The LP relaxation a
rPT  may be referred to as: Minimize (1); subject to: (2′)-(5′) and (11). Also, the LP re-

laxation b
rPT  is referred to as: Minimize (1); subject to: (2′)-(6′) and (11). 

4. Computational Experiences and Analysis 
4.1. Experimental Setup 
Here we perform empirical investigations on the randomized data sets, for the three formulations—PC, PTa and 
PTb. The experimental set up and the procedure, along with results and analysis is detailed in this section. A va-
riety of small and large problem sizes—10 × 10 [(number of items) × (number of time periods)], 20 × 10, 10 × 
20, 20 × 20 is considered. Number of binary variables for these problems is of the order O (I × T), I and T being 
the number of items and number of time periods in the planning horizon respectively. For each of these sizes, we 
solved 50 problem sets, each set containing a binary formulation and an LP relaxation of the classical and two 
types of transportation formulations. Experiments are performed using CPLEX 10.0 solver of GAMS 22.3 on a 
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standalone 2.79 GHz core 2 Duo CPU with 1.96 GB RAM. 

4.2. Creating Test Instances 
The cost parameters used in the two formulations (PC and PT) are generated randomly, taking general guidance 
on generating random problems from the standard literatures viz. [18]-[20] and [5] the details of which is pro-
vided in this sub-section. We choose uniform distribution to generate parameters as this is traditionally used in 
the literature indicated above. Table 1 states the range of values of different parameters that are taken to form 
the random problems. 

Inventory and backorder costs for the transportation formulation are calculated using Equations (9) and (10) 
respectively. As evident from the table that backorder costs is assumed to be higher than inventory carrying 
costs, as backorder cost also account for the loss of goodwill for the customer who could not be instantly served. 
It also implies that our model is comparatively more open to carry inventory, compared to incur backorders, as 
prompt satisfaction of the demand is primarily important in today’s competitive environment. The relation be-
tween demand and production capacity can also be stated in terms of tightness factor, which can be defined as 
the ratio of average periodic demand and production capacity. For an uncapacitated problem the value of tight-
ness factor will be 0; while for the case when required capacity (demand) is exactly equal to the available capac-
ity, the tightness factor is 1. For the data considered here, the tightness factor is about 0.8, which is rigid enough 
to produce some infeasible problems; such infeasible problems are eliminated from the problem sets. 

4.3. Order of Problem 
In four sizes of problems considered the number of binary variables is of the order (IT), the order of continuous 
variables in classical formulation PC is (3IT) and that of continuous variables in the transportation formulations 
is (IT2). Similarly, while the number of constraints in classical and PTa transportation formulation is (2IT + T), 
the number of constraints in the PTb swells to (IT2 + 2IT + T). Hence as the problem size grows, number of va-
riables and constraints increase accordingly. 

4.4. Analysis of Results 
Table 2 shows the average time taken by the different formulations and their LP relaxations. One may note that 
as the problem size increases computational time increases for all formulations and their relaxations. This table 
is provided here just to give a general idea to the reader about the computational time taken to solve a particular 
formulation or its relaxation. In order to actually compare the formulations and their relaxations on different  
 
Table 1. Range of parameters. 

Parameter Range Parameter Range 

Inventory cost _ itCINV CL  U (10, 20) Processing time iTP  U (50, 80) 

Backorder cost _ itCBO CL  U (20, 30) Setup time iTS  U (250, 300) 

Setup cost itCS  U (500, 600) Demand itD  U (20, 50) 

Production cost itCP  U (80, 100) Production capacity itCAP  U (30, 60) 

 
Table 2. Average time (in seconds) to solve formulations PC and PT. 

Problem size 
PC PTa PTb 

PC PC8 PTa a
rPT  PTb a

rPT  

10 × 10 0.09 0.07 0.13 0.08 0.15 0.09 

20 × 10 0.15 0.07 0.36 0.11 0.32 0.13 

10 × 20 0.17 0.09 1.60 0.15 0.87 0.19 

20 × 20 0.60 0.11 145.4 0.27 21.3 0.35 
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aspects, we perform a t-test the result of which is shown in the next tables. 
In Table 3, for all the problem sizes we compare (using t test) different characteristics of PC with PTa, and 

also those of PTa with PTb formulation. Parameters on which formulations are compared are the optimal values 
obtained by each of these formulations, the CPU time taken to obtain these optimal values, number of nodes 
traversed in the branch-and-bound (B&B) tree to reach this optimal value, the objective values of LP relaxation 
of the formulations, and CPU time taken to calculate the LP relaxation. Note that in Table 3, against the row 
comparing PTa-PC, “Optimal” or “LP bounds” is the “t” calculated for difference between objective values of 
(PTa/PC) and 1; and “CPU time” is the “t” calculated for difference between (CPU time for PTa/CPU time for 
PC) and 1. Similarly for the parameter “B&B nodes”. 

Note from Table 3 that for all the problem sizes considered, the optimal values obtained from the three for-
mulations PC, PTa and PTb are all the same. Hence these formulations are actually the three ways to formulate 
the same problem. For all problem sizes, PTa take more computational time, compared to PC. 

Before moving on to compare the CPU times taken to calculate optimal values for PTa and PTb, note the sig-
nificance of their LP bounds. Note that the objective value obtained by the LP relaxation of PC and PTa are ex-
actly the same, but there is a significant difference between LP bounds of PTa and PTb. For all problem sizes, 
PTb invariably produces better (larger) LP bounds as compared to the PTa. This is the reason of earmarking PTb 
as the strong formulation and PTa as the weak formulation of CLSP_BS.  

As PTb is a strong formulation rendering better LP bounds, it is able to calculate the optimal values in signifi-
cantly less number of B&B nodes, invariably for all problem sizes. The significance level for the better LP 
bounds and lesser B&B nodes, both increases as the problem size increases, implying that the strength of a for-
mulation is realized more for the larger problem sizes, hence useful for the practical lot sizing problems. t values 
indicate that LP relaxation of PC is solved faster than that of PTa. This is the reason why computation of optimal 
solution takes significantly large time for PTa and lesser time for PC, because quality of LP bounds is the same 
in both cases. However LP relaxation of PTb takes more time to solve as compared to PTa, but still PTb is solva-
ble optimally in significantly better CPU times than PTa, because of the better quality bounds of PTb than PTa. 

5. Hybrid Formulations 
5.1. Large Sized Problems 
We observed in the previous section that strong formulation PTb produce better bounds than the weak formula-
tion PTa and hence CLSP_BS is optimally solvable in lesser number of B&B nodes and lesser CPU time by the 
formulation PTb, compared to PTa. In previous section, medium sized problems where the largest one of size 20 
× 20 (with 400 binary variables) were solved. In order to perform a test on yet large sized problems, 50 sets for 
each of the four sizes—50 × 10, 50 × 20, 100 × 10 and 100 × 20 are solved. These problem instances are again 
solved using CPLEX 10.0 solver of GAMS 22.3 on a standalone 2.79 GHz Core 2 Duo CPU with 1.96 GB 
RAM.  
 
Table 3. t values comparing optimal, LP bounds and CPU times of 3 different formulations. 

Problem size Compare Optimal CPU time  
(optimal) B&B nodes LP bounds CPU time  

(LP bound) 

10 × 10 
PTa-PC 1 16.788 6.584 1 6.781 

PTb-PTa 1 10.875 −3.984 54.398 8.750 

10 × 20 
PTa-PC 1 7.398 4.875 1 17.985 

PTb-PTa 1 −11.147 −59.371 79.708 14.709 

20 × 10 
PTa-PC 1 18.121 7.203 1 25.177 

PTb-PTa 1 −7.090 −28.848 79.448 16.771 

20 × 20 
PTa-PC 1 5.007 5.277 1 7.674 

PTb-PTa 1 −23.687 −81.024 88.889 7.071 
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5.2. Initial Analysis and Motivation for Hybrid Formulation 
In Table 4 we note the average time taken by the different formulations and their LP relaxations. Note that the 
problem size 50 × 10 was solvable in a few seconds. However for the other 3 sizes, the number of variables in-
creases 2 and 4 times respectively and hence CLSP_BS being an NP-hard problem the solver got out of memory 
after running for a few hours, while attempting to reach optimality. A small duality gap of 0.1% as the stopping 
criteria is introduced for the three large sizes—100 × 10, 50 × 20, and 100 × 20. These sizes were then solvable 
in a few seconds after the introduction of duality gap. One may note that as the problem size increases computa-
tional time increases for all formulations and their relaxations. This table is provided here just to give a general 
idea to the reader about the computational time taken to solve a particular formulation or its relaxation. In order 
to actually compare the formulations and their relaxations on different aspects, we perform a t-test the result of 
which is shown in the next tables. 

In Table 5, for all problem sizes we compare different characteristics of PC with PTa and also PTa with PTb. 
PTH is the hybrid formulation, which will be discussed in Section 5.4. For problem size 50 × 10, the quality of 
LP bounds of PTb are so good that despite its LP relaxation taking longer time to get solved, PTb is optimally 
solved in lesser number of nodes and lesser CPU time as compared to the formulation PTa. 
 
Table 4. Average time (in seconds) to solve formulations PC and PT. 

Problem  
size 

PC PTa PTb Duality  
gap (%) PC PC8 PTa a

rPT  PTb b
rPT  

50 × 10 0.5 0.13 9.06 0.18 4.1 0.24 0 

100 × 10 0.5 0.15 1.79 0.31 2.3 0.44 0.1 

50 × 20 0.44 0.15 4.07 0.5 5.05 0.76 0.1 

100 × 20 1.05 0.26 11.4 1 18.8 1.6 0.1 

 
Table 5. t values comparing optimal, LP bounds and CPU times of 3 different formulations. 

Problem size Compare CPU time (optimal) B&B nodes LP bounds CPU time (LP bound) 

50 × 10 
PTa-PC 7.531 7.675 1 27.648 

PTb-PTa −14.830 −35.520 109.499 32.325 

50 × 20 

PTa-PC 30.504 6.657 1 156.346 

PTb-PTa 11.371 −50.763 155.975 121.182 

PTa-PTH 9.009 9.816 −68.922 −9.692 

PTb-PTH 13.335 −7.027 158.385 126.453 

PTH-PC 26.835 6.406 68.772 136.843 

100 × 10 

PTa-PC 16.066 5.028 1 57.267 

PTb-PTa 12.282 −15.482 197.802 59.158 

PTa-PTH 9.773 6.944 −93.715 −3.765 

PTb-PTH 14.607 −2.072 178.070 40.876 

PTH-PC 15.963 5.037 93.493 45.822 

100 × 20 

PTa-PC 21.269 6.111 1 60.954 

PTb-PTa 12.841 −30.449 256.225 49.772 

PTa-PTH 6.859 5.403 −122.891 −3.834 

PTb-PTH 19.776 −27.953 241.0896 56.672 

PTH-PC 30.568 8.602 122.604 77.767 
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However the same does not remain true for the larger sizes 50 × 20, 100 × 10 and 100 × 20. Now the CPU 
time taken to solve LP relaxation of PTb takes much more time as compared to that of PTa (apperent from the 
increased t-values). The quality of bounds remain to be good for PTb as against PTa. Due to this, while PTb is 
optimally solvable in lesser number of nodes, it takes larger CPU time as compared to the problem PTa. So the 
advantage of using a strong formulation, which was apparent for the medium sized problems, seems to have lost. 

5.3. Most Promising Strong Constraints (MPS_Constr) 
We develop a new set of strong demand constraints to tackle the problem of huge computational times taken by 
the LP relaxations of the strong constraints. New sets of modified demand constraint were built using the fol-
lowing procedure. To make a hybrid formulation, we add some percentage of most promising strong constraints 
to the weak formulation. But to decide the appropriate percentage of the total strong constraints, we varied it 
from 20% to 10% to 5% etc. In each such step, the bounds obtained by LP relaxation were observed to deteri-
orate; but there was a significant improvement in computational time for solving the LP relaxations of the hybrid 
formulation. After some iterations of trial and error, 5% of the strongest constraints were selected to be added to 
the weak formulation of CLSP_BS for making hybrid formulations. At this level, the bounds were only a little 
inferior, but LP relaxations took substantially less computational time, which significantly improves the overall 
computational times for solving the problem.  

Building MPS_Constr 
Sort the strong constraints in increasing order of demand ( )irD . Set cut off number N = INT (0.05∗K), where K 
is number of demand points (=ixr). Let the demand associated with this number N be ( )_ _ _ 5%kcut off D . 
Prepare a set of most promising demands (MPD) = ( ){ }: _ _ _ 5%k kk D cut off D≤ . Now, MPS_constr =
{ }, , ; where MPDit k itrYS D X i t r k≥ ∀ ∈ . 

5.4. Hybrid Formulation and Relaxation 
Hybrid formulation of CLSP_BS, referred here as PTH is described as follows: 

PTH: Minimize (1a′); Subject to (2′)-(5′), (8) and MPS_constr. 
The constraint (8) can be replaced with (11) in the above formulation to get the LP relaxation as follows:  

H
rPT : Minimize (1a′); Subject to (2′)-(5′), (11) and MPS_constr. 

5.5. Empirical Investigation for Hybrid Formulations 
Here we provide results to verify the efficacy of hybrid formulation against strong and weak formulations. On 
the same experimental setup and problem-sets that were attempted in Section 5.2, for the sizes—50 × 20, 100 × 
10 and 100 × 20, we solve hybrid formulation and its LP relaxation. Comparison of bounds, nodes and computa-
tional time given by hybrid formulation is compared with that of the strong and weak formulations using t-test. 

Table 5 provides the comparison of hybrid formulation with PTa and PTb for the three larger sizes 50 × 20, 
100 × 10 and 100 × 20. While strong formulation PTb is optimally solvable in lesser number of B&B nodes than 
PTa, it takes longer time to get solved because LP relaxation of PTb takes longer CPU time than that of PTa. is 
shown in Table 5. Note from the significant t values that hybrid formulation is the best performer in terms of 
computational time, when compared with strong and weak formulations.  

As compared to PTa, hybrid PTH gives better LP bounds and optimally solves the problem in lesser B&B 
nodes and lesser CPU times. When compared to PTb, PTH generates inferior LP bounds but solves the problem 
optimally in lesser CPU time. The reason of this behavior is that although LP bounds of hybrid formulation are 
inferior (due to which PTH has to traverses more number of B&B nodes), but its bounds at each node are ob-
tained significantly quicker than the bounds of the strong formulation. This all is evident from the t values given 
below. 

The primary reason because of which LP relaxation of strong formulation takes large computational time is 
heavy increase in the number of constraints, as its size grows beyond a level. While number of constraints in PTa 
remains 2010, 2020 and 4020, it hugely swells to 12,010, 22,020 and 44,020 respectively in case of PTb. More 
are the number of constraints, larger the time taken to solve the problem. Through the concept of hybrid formu-
lations we try to limit the increase in number of constraints, while at the same time take the benefit of strongest 
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constraints. Hence there is a modest increase in number of constraints for PTH compared to PTa, but sweeping 
decrease in number of constraints as against PTb. 

6. Conclusions 
This work has attempted to cater to a variant of multi-item multi-period CLSP, which considers dynamic de-
mand, backorders and setup times (CLSP_BS). Apart from considering a practically important variation of 
CLSP, the generality of the cost structure increases the applicability of this model into a variety of real life situa-
tions. A classical formulation and two transportation (strong and weak) formulations of this problem are com-
pared.  

The main emphasis of this work is the introduction of hybrid formulation of CLSP_BS, which is proved to be 
the best performer. It was observed that for large sized instances of CLSP_BS, strong formulation took lesser 
number of branch-and-bound nodes but more CPU time to optimally solve the problem, compared to the weak 
formulations. The reason of this behavior is an extreme increase in number of constraints for the strong formula-
tion, due to which solving LP relaxation at each B&B node becomes time intensive. Hence despite obtaining 
better bounds and the problem getting solved in lesser number of B&B nodes, the problem actually takes longer 
time to get solved optimally. In hybrid formulation, we add few strongest constraints to the weak formulation, so 
that the quality of bounds of the strong formulation is retained while maintaining lesser number of constraints to 
obtain optimal solution faster. In this way, better characteristics of both strong and weak formulations are re-
tained in the hybrid formulation. This concept of hybrid formulations can prove to be very efficient in solving 
the real life large sized problem instances in a variety of applications. 
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