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Abstract 
In this paper, we establish the existence of at least four distinct solutions to an elliptic problem 
with singular cylindrical potential, a concave term, and critical Caffarelli-Kohn-Nirenberg expo-
nent, by using the Nehari manifold and mountain pass theorem. 
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1. Introduction 
In this paper, we consider the multiplicity results of nontrivial nonnegative solutions of the following problem 
( ),λ µ  

2 2 2 2
,

1,2

2 , in , 0b c q N
a

a

L u y h u u y f u u y

u
µ λ− − − −∗ ∗

∗
 = + ≠


∈




 

where ( ) ( )2 2 1
, : a a
aL v div y v y vµ µ− − += − ∇ − , where each point x in N  is written as a pair ( ), k N ky z −∈ ×   

where k and N are integers such that 3N ≥  and k belongs to { }1, , N , ( )2 2,a k−∞ < < −  1,a b a≤ < +  

1 2,q< <  ( )( )2 2 2 2N N b a∗ = − + −  is the critical Caffarelli-Kohn-Nirenberg exponent,  
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( ) ( )0 1 1 2c q a N q< = + + − , ( )( )( )2

, : 2 1 2 ,a k k aµ µ−∞ < < = − +  λ  is a real parameter, ( )Nf Cµ′∈   , 

h is a bounded positive function on k . µ′  is the dual of µ , where µ  and 1,2
0  will be defined later. 

Some results are already available for ( ),λ µ  in the case k N= , see for example [1] [2] and the references  
therein. Wang and Zhou [1] proved that there exist at least two solutions for ( ),λ µ  with 0a = ,  

( )( )2
0,0 2 2N Nµ µ< ≤ = −  and 1h ≡ , under certain conditions on f. Bouchekif and Matallah [3] showed the  

existence of two solutions of ( ),λ µ  under certain conditions on functions f and h, when 0,0 Nµ µ< ≤ , 
( )0,λ ∗∈ Λ , ( )2 2a N−∞ < < −  and 1a b a≤ < + , with ∗Λ  a positive constant. 

Concerning existence results in the case k N< , we cite [4] [5] and the references therein. Musina [5] con- 
sidered ( ),λ µ  with 2a−  instead of a and 0λ = , also ( ),λ µ  with 0a = , 0b = , 0λ = , with 1h ≡  

and 2a k≠ − . She established the existence of a ground state solution when 2 k N< ≤  and  

( )( )2
,0 2 2a k k aµ µ< < = − +  for ( ),λ µ  with 2a−  instead of a and 0λ = . She also showed that ( ),λ µ  

with 0a = , 0b = , 0λ =  does not admit ground state solutions. Badiale et al. [6] studied ( ),λ µ  with 0a = , 

0b = , 0λ =  and 1h ≡ . They proved the existence of at least a nonzero nonnegative weak solution u, satis- 
fying ( ) ( ), ,u y z u y z=  when 2 k N≤ <  and 0µ < . Bouchekif and El Mokhtar [7] proved that ( ),λ µ  ad- 

mits two distinct solutions when 2 k N< ≤ , ( )2 2b N p N= − −  with (2,2p ∗ ∈  , 0,kµ µ< , and ( )0,λ ∗∈ Λ   

where ∗Λ  is a positive constant. Terracini [8] proved that there is no positive solutions of ( ),λ µ  with 0b = , 
0λ =  when 0a ≠ , 1h ≡  and 0µ < . The regular problem corresponding to 0a b µ= = =  and 1h ≡  has 

been considered on a regular bounded domain Ω  by Tarantello [9]. She proved that, for ( )1f H −∈ Ω , the 
dual of ( )1

0H Ω , not identically zero and satisfying a suitable condition, the problem considered admits two 
distinct solutions. 

Before formulating our results, we give some definitions and notation. 
We denote by { }( )1,2 1,2 \ 0k N k

a a
−= ×    and { }( )\ 0k N k

µ µ
−= ×   , the closure of  

{ }( )0 \ 0k N kC∞ −×   with respect to the norms 

( )1 22 2

,0 dN
a

au y u x−= ∇∫  

and 

( )( )( )1 2
2 2 2 1 2

, d ,N
a a

au y u y u x
µ

µ− − += ∇ −∫  

respectively, with ( )( )( )2

, 2 1 2a k k aµ µ< = − +  for ( )2 1k a≠ + . 

From the Hardy-Sobolev-Maz’ya inequality, it is easy to see that the norm 
,au
µ

 is equivalent to ,0au . 
More explicitly, we have 

( ) ( )( ) ( ) ( )( )1 2 1 2

, ,0, , 0,1 1 max ,0 1 1 min ,0 ,a k a ka a au u u
µ

µ µ µ µ− ≤ ≤ −  

for all u µ∈ . 
We list here a few integral inequalities. 
The starting point for studying ( ),λ µ , is the Hardy-Sobolev-Maz’ya inequality that is particular to the 

cylindrical case k N<  and that was proved by Maz’ya in [4]. It states that there exists positive constant ,2aC
∗

 
such that 

( ) ( )( )2 22 2 2 2 2 1 2
,2 d d ,N N

b a a
aC y v x y v y v xµ

∗∗ ∗

∗

− − − +≤ ∇ −∫ ∫ 
                (1.1) 

for any { }( )( )\ 0k N k
cv C∞ −∈ ×  . 
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The second one that we need is the Hardy inequality with cylindrical weights [5]. It states that 
( )2 1 2 22

, d d , for all ,N N
a a

a k y v x y v x v µµ − + −≤ ∇ ∈∫ ∫ 
                (1.2) 

It is easy to see that (1.1) hold for any u µ∈  in the sense 

( ) ( )1 12 2
,d dN N

p pc p a
a py u x C y v x− −≤ ∇∫ ∫ 

                   (1.3) 

where ,a pC  positive constant, ( )1 2 2p N N≤ ≤ − , ( ) ( )1 1 2c p a N p≤ + + − , and in [10], if ( )2 2p N N< −  

the embedding ( ), cN
pL yµ

−→   is compact, where ( ), cN
pL y −  is the weighted pL  space with norm  

( )1, d .N

pc p
p cu y u x−= ∫  

Since our approach is variational, we define the functional J on µ  by 

( ) ( ) ( ) ( )2

,: 1 2 ,aJ u u P u Q u
µ

= − −  

with  

( ) ( ) ( )2 2: 2 d , : 1 d .N N
b c qP u y h u x Q u q y f u xλ∗ ∗− −

∗= =∫ ∫
 

 

A point u µ∈  is a weak solution of the equation ( ),λ µ  if it satisfies 

( ) ( ) ( ) ( ), : 0, for allJ u R u S u T u µϕ ϕ ϕ ϕ ϕ′ = − − = ∈  

with 

( ) ( ) ( ) ( )( )2 2 1: N
a aR u y u y uϕ ϕ µ ϕ− − += ∇ ∇ −∫  

( ) 2 2: 2 N
bS u y h uϕ ϕ∗ ∗−

∗= ∫  

( ) ( )1: .N
c qT u y f uϕ λ ϕ− −= ∫



 

Here .,.  denotes the product in the duality µ′ , ( )dual ofµ µ µ′   . 

Let  

{ } ( )
2

,
2 2\ 0 2 2

: inf
dN

a

u b

u
S

y u xµ

µ
µ ∗∗ ∗∈ −
=

∫


 

From [11], Sµ  is achieved. 
Throughout this work, we consider the following assumptions: 
(F) there exist 0 0ν >  and 0 0δ >  such that ( ) 0f x ν≥ , for all x in ( )00, 2B δ .  
(H) ( ) ( ) ( )0 00

lim lim 0, , .k

y y
h y h y h h y h y

→ →∞
= = > ≥ ∈  

Here, ( ),B a r  denotes the ball centered at a with radius r. 
In our work, we research the critical points as the minimizers of the energy functional associated to the 

problem ( ),λ µ  on the constraint defined by the Nehari manifold, which are solutions of our system. 

Let 0Λ  be positive number such that 

( ) ( ) ( ) ( ) ( ) ( )2 2 2 21 2 2
0 , 0: ,

q
a qC h S L qµ

∗ ∗∗− −− −Λ =  

where ( )
( )

( )

( )1 2 21 2
2 2 2:
2 2 2

q
qL q

q q

∗ −−

∗

∗ ∗ ∗

   − −
=      − −     

. 
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Now we can state our main results. 
Theorem 1. Assume that ( )2 2a k−∞ < < − , ( ) ( )0 1 1 2c q a N q< = + + − , ka,<< µµ∞− , (F) satisfied 

and λ  verifying 00 λ< < Λ , then the system ( ),λ µ  has at least one positive solution.  
Theorem 2. In addition to the assumptions of the Theorem 1, if (H) hold and λ  satisfying ( ) 00 1 2λ< < Λ , 

then ( ),λ µ  has at least two positive solutions.  
Theorem 3. In addition to the assumptions of the Theorem 2, assuming ( )( )max 3,6 1N a b≥ − + , there 

exists a positive real 1Λ  such that, if λ  satisfy ( )( )0 10 min 1 2 ,λ< < Λ Λ , then ( ),λ µ  has at least two 
positive solution and two opposite solutions.  

This paper is organized as follows. In Section 2, we give some preliminaries. Sections 3 and 4 are devoted to 
the proofs of Theorems 1 and 2. In the last Section, we prove the Theorem 3. 

2. Preliminaries 
Definition 1. Let c∈ , E a Banach space and ( )1 ,I C E∈  . 
i) ( )n n

u  is a Palais-Smale sequence at level c ( in short ( )cPS ) in E for I if 

( ) ( ) ( ) ( )1 and 1 ,n n n nI u c o I u o′= + =  

where ( )1no  tends to 0 as n goes at infinity. 
ii) We say that I satisfies the ( )cPS  condition if any ( )cPS  sequence in E for I has a convergent sub- 

sequence.  
Lemma 1. Let X Banach space, and ( )1 ,J C X∈   verifying the Palais-Smale condition. Suppose that 
( )0 0J =  and that: 
i) there exist 0R > , 0r >  such that if u R= , then ( )J u r≥ ; 
ii) there exist ( )0u X∈  such that 0u R>  and ( )0 0J u ≤ ; 
let 

[ ]
( )( )( )

0,1
inf max

t
c J t

γ
γ

∈Γ ∈
=  where 

[ ]( ) ( ) ( ){ }00,1 ; 0 0 et 1 ,C X such that uγ γ γΓ = ∈ = =  

then c is critical value of J such that c r≥ .  

Nehari Manifold 
It is well known that J is of class 1C  in µ  and the solutions of ( ),λ µ  are the critical points of J which is 
not bounded below on µ . Consider the following Nehari manifold 

{ } ( ){ }\ 0 : , 0 ,u J u uµ ′= ∈ =   

Thus, u∈  if and only if 

( ) ( )2

, 2 0.au P u Q u
µ ∗− − =                                (2.1) 

Note that   contains every nontrivial solution of the problem ( ),λ µ . Moreover, we have the following 
results. 

Lemma 2. J is coercive and bounded from below on  .  
Proof. If u∈ , then by (2.1) and the Hölder inequality, we deduce that 

( ) ( )( ) ( )( ) ( )

( )( ) ( ) ( ) ( )
( )

2

,

1 22
,, ,

2 2 2 2 2 2

2
2 2 2 2 .

2

a

q q q
a pa a

J u u q q Q u

q
u f C u

q µ

µ

µ µ
λ

∗ ∗ ∗ ∗

−
∗

∗ ∗ ′
∗

= − − −

− 
≥ − −  

 


           (2.2) 

Thus, J is coercive and bounded from below on  .  
Define 

( ) ( ) , .u J u uφ ′=  
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Then, for u∈  

( ) ( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

2 2
,

2

,

2

,

, 2 2

2 2 2

2 2 2 .

a

a

a

u u u P u qQ u

q u q P u

q Q u u

µ

µ

µ

φ ∗

∗ ∗

∗ ∗

′ = − −

= − − −

= − − −

                       (2.3) 

Now, we split   in three parts: 

( ){ }: , 0u u uφ+ ′= ∈ >   

( ){ }0 : , 0u u uφ′= ∈ =   

( ){ }: , 0 .u u uφ− ′= ∈ <   

We have the following results. 
Lemma 3. Suppose that 0u  is a local minimizer for J on  . Then, if 0

0u ∉ , 0u  is a critical point of 
J.  

Proof. If 0u  is a local minimizer for J on  , then 0u  is a solution of the optimization problem  

( ){ }
( )

/ 0
min .

u u
J u

φ =
 

Hence, there exists a Lagrange multipliers θ ∈  such that 

( ) ( )0 0 inJ u uθφ′ ′ ′=   

Thus, 

( ) ( )0 0 0 0, , .J u u u uθ φ′ ′=  

But ( )0 0, 0u uφ′ ≠ , since 0
0u ∉ . Hence 0θ = . This completes the proof.  

Lemma 4. There exists a positive number 0Λ  such that for all λ , verifying 

00 ,λ< < Λ  

we have 0 = ∅ .  
Proof. Let us reason by contradiction. 
Suppose 0 ≠ ∅  such that 00 λ< < Λ . Then, by (2.3) and for 0u∈ , we have 

( ) ( ) ( ) ( ) ( )( ) ( )2

, 2 2 2 2 2 2au q q P u q Q u
µ ∗ ∗ ∗ ∗= − − = − −                     (2.4) 

Moreover, by the Hölder inequality and the Sobolev embedding theorem, we obtain 

( ) ( ) ( ) ( ) ( )2 2 2 2 1 2 2
0, 2 2 2au S q q hµµ

∗ ∗ ∗− − −

∗ ∗≥ − −                        (2.5) 

and 
( )

( )( )( )
1 2

1 2
,,

2
.

2 2

q
qq

a qa

qu C
µ

λ
− −

−∗

∗

  − ≤  −   
                        (2.6) 

From (2.5) and (2.6), we obtain 0λ ≥ Λ , which contradicts an hypothesis.  
Thus + −=    . Define 

( ) ( ) ( ): inf , : inf and : inf .
u u u

c J u c J u c J u
+ −

+ −

∈ ∈ ∈
= = =

  
 

For the sequel, we need the following Lemma. 
Lemma 5. 
i) For all λ  such that 00 λ< < Λ , one has 0c c+≤ < . 
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ii) For all λ  such that ( ) 00 1 2λ< < Λ , one has  

( )
( ) ( )

( )

( )

( ) ( )

( ) ( ) ( )
( )

0 0 1 2

2 2 2
2 2 2

0

1 2

,

> , , ,

2 2 2
2 2 2 2

2
.

2

q q
a q

c C C S f

q
S

q h

q
f C

q

µ

µ

µ

µ

λ λ

λ

∗
∗ ∗

−
′

− −
−∗

∗ ∗ ∗

−
∗

′
∗

=

 − − 
=    

−    
−  

−   
  





 

Proof. i) Let u +∈ . By (2.3), we have 

( ) ( ) ( )2

,2 2 2 1 aq u P u
µ∗ ∗− − >    

and so 

( ) ( ) ( ) ( ) ( ) ( )( )
( )

2 2

, ,

2 2 2 2 1 2
1 2 2 1 .

2 2 2a a

q q
J u u P u u

qµ µ
∗ ∗ ∗

∗
∗ ∗

 − − − −
= − + − < −  

−  
 

We conclude that 0c c+≤ < . 
ii) Let u −∈ . By (2.3), we get 

( ) ( ) ( )2

,2 2 2 .aq q u P u
µ∗ ∗− − <    

Moreover, by (H) and Sobolev embedding theorem, we have 

( ) ( ) 2 2 2
0 , .aP u S h uµ µ

∗ ∗−
≤  

This implies 

( ) ( ) ( )
( )

( )1 2 2
2 2 2 2

,
0

2
, for all .

2 2a

q
u S u

q hµµ

∗
∗ ∗

− −
− −

∗ ∗

 −
> ∈ 

−  
              (2.7) 

By (2.2), we get 

( ) ( )( ) ( ) ( ) ( )
( )

1 22
,, ,

2
2 2 2 2 .

2

q q q
a pa a

q
J u u f C u

q µµ µ
λ

−
∗

∗ ∗ ′
∗

− 
≥ − −  

 


 

Thus, for all λ  such that ( ) 00 1 2λ< < Λ , we have ( ) 0J u C≥ .  
For each u∈  with 2 2 d 0N

by h u x∗ ∗− >∫ , we write 

( )
( )

( )

( ) ( )2 2 22

,
max 2 2

2
: 0.

2 2 dN

q q

a
m b

q u
t t u

q y h u x
µ

∗ ∗

∗ ∗

− −

−
∗ ∗

 −
 = = >
 − ∫

 

Lemma 6. Let λ  real parameters such that 00 λ< < Λ . For each u∈  with 2 2 d 0N
by h u x∗ ∗− >∫



, 
one has the following: 

i) If ( ) 0Q u ≤ , then there exists a unique mt t− >  such that t u− −∈  and 

( ) ( )
0

.sup
t

J t u tu−

≥
=  

ii) If ( ) 0Q u > , then there exist unique t+  and t−  such that 0 mt t t+ −< < < , ( )t u+ +∈ , t u− −∈ , 

( ) ( ) ( ) ( )
0 0
inf and sup .

mt t t
J t u J tu J t u J tu+ −

≤ ≤ ≥
= =  

Proof. With minor modifications, we refer to [12].  
Proposition 1 (see [12]) 
i) For all λ  such that 00 λ< < Λ , there exists a ( )cPS +  sequence in + . 
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ii) For all λ  such that ( ) 00 1 2λ< < Λ , there exists a a ( )cPS −  sequence in − .  

3. Proof of Theorems 1 
Now, taking as a starting point the work of Tarantello [13], we establish the existence of a local minimum for J 
on + . 

Proposition 2. For all λ  such that 00 λ< < Λ , the functional J has a minimizer 0u+ +∈  and it satisfies: 
i) ( )0 ,J u c c+ += =  

ii) ( )0u+  is a nontrivial solution of ( ),λ µ .  
Proof. If 00 λ< < Λ , then by Proposition 1 (i) there exists a ( )n n

u  ( )cPS +  sequence in + , thus it 

bounded by Lemma 2. Then, there exists 0u+ ∈  and we can extract a subsequence which will denoted by 

( )n n
u  such that 

( )
( )

0

22
0

0

0

weakly in

weakly in ,

strongly in ,

a.e in

n

bN
n

cq N
n

N
n

u u

u u L y

u u L y

u u

∗∗

+

−+

−+

+

→

→







 


                         (3.1) 

Thus, by (3.1), 0u+  is a weak nontrivial solution of ( ),λ µ . Now, we show that nu  converges to 0u+  

strongly in  . Suppose otherwise. By the lower semi-continuity of the norm, then either 0 ,,
liminf n aa n

u u
µµ

+

→∞
<  

and we obtain  

( ) ( )( ) ( )( ) ( ) ( )
2

0 0 0,
2 2 2 2 2 2 liminf .na n

c J u u q q Q u J u c
µ

+ + +
∗ ∗ ∗ ∗ →∞

≤ = − − − < =  

We get a contradiction. Therefore, nu  converge to 0u+  strongly in  . Moreover, we have 0u+ +∈ . If 
not, then by Lemma 6, there are two numbers 0t

+  and 0t
− , uniquely defined so that ( )0 0t u+ + +∈  and 

( )0t u− + −∈ . In particular, we have 0 0 1t t+ −< = . Since 

( ) ( )
0 0

2

0 02

d d0 and 0,
d dt t t t

J tu J tu
t t+ +

+ +

= =
= >

 
 

there exists 0 0t t t+ − −< ≤  such that ( ) ( )0 0 0J t u J t u+ + − +< . By Lemma 6, we get 

( ) ( ) ( ) ( )0 0 0 0 0 0 ,J t u J t u J t u J u+ + − + − + +< < =  

which contradicts the fact that ( )0J u c+ += . Since ( ) ( )0 0J u J u+ +=  and 0u+ +∈ , then by Lemma 3, we 

may assume that 0u+  is a nontrivial nonnegative solution of ( ),λ µ . By the Harnack inequality, we conclude 

that 0 0u+ >  and 0 0v+ > , see for exanmple [14].  

4. Proof of Theorem 2 
Next, we establish the existence of a local minimum for J on − . For this, we require the following Lemma. 

Lemma 7. For all λ  such that ( ) 00 1 2λ< < Λ , the functional J has a minimizer 0u−  in −  and it 
satisfies: 

i) ( )0 0,J u c− −= >  

ii) 0u−  is a nontrivial solution of ( ),λ µ  in  .  

Proof. If ( ) 00 1 2λ< < Λ , then by Proposition 1 ii) there exists a ( )n n
u , ( )cPS −  sequence in − , thus it 

bounded by Lemma 2. Then, there exists 0u− ∈  and we can extract a subsequence which will denoted by 
( )n n
u  such that  
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0 weakly innu u−   

( )22
0 weakly in , bN

nu u L y ∗∗ −−   

( )0 strongly in , cq N
nu u L y −−→   

0 a.e in N
nu u−→   

This implies 

( ) ( )0 , as goes to .nP u P u n−→ ∞  

Moreover, by (H) and (2.3) we obtain 

( ) ( ) 2

,
,n n aP u A q u

µ
>                                   (4.1) 

where, ( ) ( ) ( ): 2 2 2A q q q∗ ∗= − − . By (2.5) and (4.1) there exists a positive number 

( ) ( ) ( ) ( )2 2 22 2 2
1 : ,C A q Sµ

∗ ∗∗ ∗ −−
=     

such that 

( ) 1.nP u C>                                      (4.2) 

This implies that  

( )0 1.P u C− ≥  

Now, we prove that ( )n n
u  converges to 0u−  strongly in  . Suppose otherwise. Then, either  

0 ,,
liminf n aa n

u u
µµ

−

→∞
< . By Lemma 6 there is a unique 0t

−  such that ( )0 0t u− − −∈ . Since  

( ) ( ), , for all 0,n n nu J u J tu t−∈ ≥ ≥  

we have 

( ) ( ) ( )0 0 0lim lim ,n nn n
J t u J t u J u c− − − −

→∞ →∞
< ≤ =  

and this is a contradiction. Hence, 
( ) 0 strongly in .n n
u u−→   

Thus,  

( ) ( )0converges to as tends to .nJ u J u c n− −= +∞  

Since ( ) ( )0 0J u J u− −=  and 0u− −∈ , then by (4.2) and Lemma 3, we may assume that 0u−  is a nontrivial 

nonnegative solution of ( ),λ µ . By the maximum principle, we conclude that 0 0u− > .  

Now, we complete the proof of Theorem 2. By Propositions 2 and Lemma 7, we obtain that ( ),λ µ  has two 
positive solutions 0u+ +∈  and 0u− −∈ . Since + − = ∅  , this implies that 0u+  and 0u−  are distinct. 

5. Proof of Theorem 3 
In this section, we consider the following Nehari submanifold of   

{ } ( ){ },\ 0 : , 0 and 0 .au J u u u
µ

′= ∈ = ≥ >    

Thus, u∈   if and only if 

( ) ( )2

, ,2 0 and 0.a au P u Q u u
µ µ∗− − = ≥ >  
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Firsly, we need the following Lemmas 
Lemma 8. Under the hypothesis of theorem 3, there exist 0 , 2 0Λ >  such that   is nonempty for any 
( )20,λ ∈ Λ  and ( )00,∈  .  

Proof. Fix { }0 \ 0u ∈  and let  

( ) ( ) ( ) ( )2 22
0 0 0 0 0,

, 2 .ag t J tu tu t u t P u tQ u
µ

∗
∗′= = − −  

Clearly ( )0 0g =  and ( )g t → −∞  as n → +∞ . Moreover, we have 

( ) ( ) ( )

( ) ( ) ( )

2
0 0 0,

1 22 22 2
0 0 0 0, , ,

1 2

2 .

a

q

a a a

g u P u Q u

u S h u f u
µ

µ

µµ µ µ
λ∗ ∗

∗

−−

∗ ′

= − −

  ≥ − −      

 

If 0 ,
0au

µ
≥ >  for ( )( ) ( ) ( ) ( )2 2 2 21 2 2

0 00 2 2 1h Sµ
∗ ∗∗ −− −

∗ ∗< < = −  , ( )0 00,h α∈  for  

( ) ( )( )( )2 2 2 1 2
0 2 2 1Sµα ∗ ∗ ∗−

∗ ∗= − , then there exists  

( )( )( )
( )1 2 22 2

2 0: 2 2 1 ,h Sµ

∗∗
− −−

∗ ∗
 Λ = − −Θ×Φ  

 

where 

( )( ) ( )( ) ( )22 22 1 2 2
0: 2 2 1 h Sµ

∗∗ ∗
−−

∗ ∗Θ = −  

and 

( )( )( )
( )1 2 22 2

0: 2 2 1h Sµ

∗∗
− −−

∗ ∗
 Φ = −  

 

and there exists 0 0t >  such that ( )0 0g t = . Thus, ( )0 0t u ∈   and   is nonempty for any ( )20,λ ∈ Λ .  
Lemma 9. There exist M, 1Λ  positive reals such that 

( ) , 0, for ,u u M uφ′ < − < ∈   

and any λ  verifying 

( )( )0 10 min 1 2 , .λ< < Λ Λ  

Proof. Let u∈  , then by (2.1), (2.3) and the Holder inequality, allows us to write 

( ) ( ) ( )
( ) ( )

1 22

,
, , 2 2 ,

q

n au u u f B q
µµ

φ λ
−

∗′

  ′ ≤ − −  
  


  

where ( ) ( )( ) 2
,, : 2 1

q q
a pB q C −

∗= −  . Thus, if  

( ) ( )30 2 2 , ,B qλ ∗< < Λ = −    

and choosing ( )1 2 3: min ,Λ = Λ Λ  with 2Λ  defined in Lemma 8, then we obtain that 

( ) , 0, for any .u u uφ′ < ∈                              (5.1) 

Lemma 10. Suppose ( )( )max 3,6 1N a b≥ − +  and 2 2 d 0by h u x∗ ∗−

Ω
>∫ . Then, there exist r and η  posi- 

tive constants such that 
i) we have 

( ) ,0 for .aJ u u r
µ

η≥ > =  



M. E. M. O. El Mokhtar 
 

 
1900 

ii) there exists σ ∈   when 
,a r

µ
σ > , with 

,ar u
µ

= , such that ( ) 0J σ ≤ .  

Proof. We can suppose that the minima of J are realized by ( )0u+  and 0u− . The geometric conditions of the 
mountain pass theorem are satisfied. Indeed, we have 

i) By (2.3), (5.1) and the fact that ( ) ( ) 2 2 2
0 ,aP u S h uµ µ

∗ ∗−
≤ , we get 

( ) ( ) ( ) ( ) ( ) 2 22 2
0, ,1 2 2 2 2 ,a aJ u q q u S h uµµ µ

∗ ∗−

∗ ∗≥ − − − −    

Exploiting the function ( ) ( )2l x x x∗= −  and if ( )( )max 3,6 1N a b≥ − + , we obtain that  

( ) ( ) ( )1 2 2 2 2 0q q∗ ∗− − − >    for 1 2q< < . Thus, there exist η , 0r >  such that 

( ) ,0 when small.aJ u r u
µ

η≥ > =  

ii) Let 0t > , then we have for all φ ∈   

( ) ( ) ( ) ( ) ( ) ( )2 22: 2 .qJ t t t P t q Q
µ

φ φ φ φ∗= − −  

Letting tσ φ=  for t large enough. Since  

( ) 2 2: d 0,bP y h xφ φ∗ ∗−

Ω
= >∫  

we obtain ( ) 0J σ ≤ . For t large enough we can ensure 
,a r

µ
σ > .  

Let Γ  and c defined by 

[ ] ( ) ( ){ }0 0: : 0,1 : 0 and 1u uγ γ γ− +Γ = → = =  

and 

[ ]
( )( )( )

0,1
: inf max .inf

t
c J t

γ γ
γ

∈Π ∈ ∈Π
=  

Proof of Theorem 3. 
If 

( )( )0 1min 1 2 , ,λ < Λ Λ  

then, by the Lemmas 2 and Proposition 1 ii), J verifying the Palais-Smale condition in  . Moreover, from the 
Lemmas 3, 9 and 10, there exists cu  such that 

( ) and .c cJ u c u= ∈   

Thus cu  is the third solution of our system such that 0cu u+≠  and 0cu u−≠ . Since ( ),λ µ  is odd with res- 

pect u, we obtain that cu−  is also a solution of ( ),λ µ . 
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