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Abstract

In this paper, we establish the existence of at least four distinct solutions to an elliptic problem
with singular cylindrical potential, a concave term, and critical Caffarelli-Kohn-Nirenberg expo-
nent, by using the Nehari manifold and mountain pass theorem.
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1. Introduction

In this paper, we consider the multiplicity results of nontrivial nonnegative solutions of the following problem
(P.)

L,u=2,

ueDr?

where L, v:= —div(|y|_2a Vv) - ,u|y|_2(a+1) v, where each point x in R" is written as a pair (y,z)e R*xR"™*

-2,b 2,

“ur Ay Fuf U, inRY,y =20

hju

y

where k and N are integers such that N >3 and k belongs to {1,---,N}, —o0< a<(k—2)/2, a<b<a+l
1<q<2, 2,=2N/(N-2+2(b-a)) isthe critical Caffarelli-Kohn-Nirenberg exponent,
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O<c=q(a+1)+N(1-q/2), —o<u<p,, ::((k—Z(a+1))/2)2, A is a real parameter, feHLﬂC(RN>,

h is a bounded positive functionon R*. H; isthe dual of H,,where , and Dy will be defined later.
Some results are already available for ( » ) in the case k = N, see for example [1] [2] and the references

therein. Wang and Zhou [1] proved that there exist at least two solutions for (73“) with a=0,
O< <ty =( N -2 /2)2 and h=1, under certain conditions on f. Bouchekif and Matallah [3] showed the

existence of two solutions of (E ) under certain conditions on functions f and h, when O<u<p,, ,
2€(0,A,), —o<a<(N-2 /2 and a<b< a+1,with A, apositive constant.
Concerning existence results in the case k < N, we cite [4] [5] and the references therein. Musina [5] con-

sidered (7,,) with —a/2 instead of a and 2=0, also (7,,) with a=0, b=0, 2=0, with h=1
and a=2-Kk. She established the existence of a ground state solution when 2<k <N and

0<u<p,, :((k—2+a)/2)2 for (7,,) with —a/2 instead of aand 1 =0. She also showed that (7, )
with a=0, b=0, A=0 does not admit ground state solutions. Badiale et al. [6] studied (Pw) with a=0,
b=0, A=0 and h=1. They proved the existence of at least a nonzero nonnegative weak solution u, satis-
fying u(y,z)=u(]y|.z) when 2<k <N and x<0. Bouchekif and EI Mokhtar [7] proved that (7, ) ad-
mits two distinct solutions when 2<k <N, b=N-p(N-2)/2 with p e(2 2 J U<Hy, and 2e(0,A,)

where A, isa positive constant. Terracini [8] proved that there is no positive solutions of (73 ﬂ) with b=0,
A=0 when a=0, h=1 and u<0. The regular problem correspondingto a=b=x=0 and h=1 has
been considered on a regular bounded domain Q by Tarantello [9]. She proved that, for f e H™ ( ) the
dual of Hé(Q), not identically zero and satisfying a suitable condition, the problem considered admits two
distinct solutions.

Before formulating our results, we give some definitions and notation.

We denote by D =Dy (R \{0}xR"™) and H, =H, (R*\{0}xR"™*), the closure of
Co (Rk \{o} xRN’k) with respect to the norms

i o = (Joo 1 (70 )

and
2a a(as 12
Jul.., :(IRN (|Y| 2 ul -y ™ l)|u|2)dx) ,

respectively, with 4 < 7z, =((k-2(a+1 /2)2 for k=2(a+1).

From the Hardy-Sobolev-Maz’ya inequality, it is easy to see that the norm |uf, = is equivalent to ull, , -
More explicitly, we have

(1 (Y max (1,0))"” Jul,, <, . < (1~ (/2 )min (x0))" Jul,.

forall ue™H,.

We list here a few integral inequalities.

The starting point for studying (qu) is the Hardy-Sobolev-Maz’ya inequality that is particular to the
cylindrical case k <N and that was proved by Maz’ya in [4]. It states that there exists positive constant C, ,
such that

Cas ([T )™ < L (172 [V = ey 75 2 i, (LD

forany veC” ((Rk \{0})XRN"‘) .
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The second one that we need is the Hardy inequality with cylindrical weights [5]. It states that
T [ |y|’2(a”) vix< |, |y [vv|" dx, forallveH,, (1.2)
It is easy to see that (1.1) hold for any u e ™, inthe sense
([ Wl o) < (o o1 0 o) (1.3)
where C, , positive constant, 1< p<2N/(N-2), c<p(a+1)+N(1-p/2), and in [10], if p<2N/(N-2)

the embedding H, — L, (RN ,|y|7°) is compact, where L, (RN ,|y|7°) is the weighted L= space with norm

o = (Jon ¥ )
Since our approach is variational, we define the functional Jon 7, by
I(u)=W2)ufl,, ~P(u)-Q(u),
with
P(u)=2.], |y|_2*b hlu™ dx, Q(u):= (]/q).[]RN ly[ Af [u[* dx.
Apoint ueH, isaweak solution of the equation (7, ,) if it satisfies
(3'(u),@):=R(u)p—S(u)p-T(u)p=0, forallpeH,
with
R(U)0:= [ (Y (VT )= ey (ug)
S(u)g:= Z*IRN |y|’2*b h|u|2* @
T(u)p= ]RN|y|7C (Af|u|qfl¢)).

Here (..) denotes the product in the duality *,,, ™, (%, dual of 7,).
Let

R
/1'_ ue =
P ol o)

2/2,

From [11], S, isachieved.
Throughout this work, we consider the following assumptions:
(F) there exist v, >0 and &, >0 suchthat f(x)>v,,forallxin B(0,25,).

(H) ‘Iyi‘moh(y)z 5im (y)=hy>0,h(y)=hy, yeR"

Y|

Here, B(a,r) denotes the ball centered at a with radius r.
In our work, we research the critical points as the minimizers of the energy functional associated to the

problem (qu) on the constraint defined by the Nehari manifold, which are solutions of our system.
Let A, be positive number such that

Aa=(Cag) " (0 "7 ()7 L),
2

(2-q) 1/(2.-2)
L2 2—
wee v 250
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Now we can state our main results.

Theorem 1. Assume that —wo<a<(k-2)/2, 0<c=q(a+1)+N(1-q/2), —oo < u < i, (F) satisfied
and A verifying 0< A <A,, then the system (PM has at least one positive solution.

Theorem 2. In addition to the assumptions of the Theorem 1, if (H) hold and A satisfying 0< A< (]/Z)A
then (PM has at least two positive solutions.

Theorem 3. In addition to the assumptions of the Theorem 2, assuming N > max(3,6(a—b+1)), there
exists a positive real A, such that, if 4 satisfy 0<A<min ((J/Z)AO,AI) , then (PM) has at least two
positive solution and two opposite solutions.

This paper is organized as follows. In Section 2, we give some preliminaries. Sections 3 and 4 are devoted to
the proofs of Theorems 1 and 2. In the last Section, we prove the Theorem 3.

2. Preliminaries

Definition 1. Let ceR, E aBanachspaceand | eC'(E,R).
i) (un )n is a Palais-Smale sequence at level ¢ ('in short ( S)C inE for I if

)i
I(u,)=c+0,(1) and 1'(u,)=0,(1),

where o, (1) tends to 0 as n goes at infinity.

ii) We say that | satisfies the (PS)_ condition if any (PS)_ sequence in E for I has a convergent sub-
sequence.

Lemma 1. Let X Banach space, and J eCl(X,R) verifying the Palais-Smale condition. Suppose that
J(0)=0 and that:

i) there exist R>0, r>0 suchthatif u||=R,then J(u)>r;

ii) there exist (u,)e X suchthat |u,||>R and J(u,)<0;
let c=infmax(J(y(t))) where

yel te[O,l]
= {;/ eC([0,1]; X ) such that y (0) =0 et y(1) = uo},
then c is critical value of Jsuchthat c>r.

Nehari Manifold

It is well known that J is of class C* in H, and the solutions of (73“1) are the critical points of J which is
not bounded below on H, . Consider the following Nehari manifold

/\/:{ueHy\{O}:<J’(u),u>:0},
Thus, ue N ifand only if
Jul},. —2.P(u)-Q(u)=0. (2.1)

Note that A contains every nontrivial solution of the problem (P

Au

). Moreover, we have the following

results.
Lemma 2. J is coercive and bounded from below on AN .
Proof. If ue A, then by (2.1) and the Holder inequality, we deduce that

3(0)=((2.~2)/2.2) , (2. ~0)/2.0)Q(0)
2((z.- 222 2l ) e

Thus, J is coercive and bounded from below on N .
Define

2.2)
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Then, for ue N/
(¢ (u),u) =2Ju[},, ~(2.) P(u)~aQ(u)
=(2-0)Juf;,, -2.(2.~a)P(u) (2.3)
=(2.-9)Q(u)~(2. - 2)u[; ,.-
Now, we split A in three parts:
Nt :{u e/\/’:<¢’(u),u>>0}
{ue N:(¢'(u),u)=0}
{UG/\/:<¢’(U),U><O}.

NO

N

We have the following results.
Lemma 3. Suppose that u, is a local minimizer for Jon A . Then, if u, ¢ N°, u, is a critical point of

J.
Proof. If u, isa local minimizer for Jon A, then u, isa solution of the optimization problem
min _J(u).
{ulg(u)=0} (1)

Hence, there exists a Lagrange multipliers 8 € R such that
J'(up)=6¢"(uy)in H'
Thus,
<J’(uo),u0> = 9<¢'(u0),u0>.
But (¢'(u,),U,)#0, since u, ¢ V. Hence 6 =0. This completes the proof.
Lemma 4. There exists a positive number A, such that for all 4, verifying
0<A <Ay,

we have N° =0 .
Proof. Let us reason by contradiction.
Suppose N° =@ suchthat 0<A<A,.Then, by (2.3) and for ue N°, we have

Jul},.. =2. (2. ~a)/(2-)P(u) = ((2. ~0)/(2. ~2))Q(u) (24)
Moreover, by the Holder inequality and the Sobolev embedding theorem, we obtain
Jol, =(s,)"* “[(2-a)/2. (2. ~a) ] "7 @9)

and

220" ey
Jull,. < 2 2 (/1 )(Ca,q) : (2.6)

5

From (2.5) and (2.6), we obtain A > A, which contradicts an hypothesis.
Thus N =N"UN . Define
¢:=inf J (u),c” = ulerJJc J(u) and ¢ = umj J(u).

For the sequel, we need the following Lemma.
Lemma 5.
i) Forall 4 suchthat 0<A<A,,onehas c<c’<0.
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ii) Forall A suchthat 0<A<(1/2)A,, one has
¢ >Co=Cy(2 28, ],

:((22—22)}[2 (22 —Z))h r/z . (s,

ST (G o

Proof. i) Let ue N*. By (2.3), we have

[(2-a)/2. (2. =D)]|ul}, > P(v)

and so

R e L

2,22, —q

We conclude that c<c* <0.
ii) Let ue N ™. By (2.3), we get

[(2-a)/2.(2.~a)]ul},, <P(u).
Moreover, by (H) and Sobolev embedding theorem, we have

-2,/2 3
P(u)<(S,) " hofulf;, -

This implies

" pe|  (2-q) M7 .
uf,., >(s,) PRV , forallue V™. (2.7)

By (2.2), we get

o)z (2. 22200 - B2 (a1l e

Thus, forall 2 suchthat 0< 24 <(1/2)A,, wehave J(u)>C,.
Foreach ue™ with |, |y h|u[* dx >0, we write

(2-09)/2.(2.~q)
2_ 2
ty =t (U) = ( q)"u_";"ba - > 0.
2.(2, —q)_[]RN Y[ h{u[™ dx

Lemma 6. Let A real parameters such that 0<A<A,. For each ue’™ with IRN |y|_2‘b h|u|2‘ dx>0,
one has the following:

i) If Q(u)<0, then there exists a unique t” >t suchthat tue N~ and
J(tu)=sup(tu).

t>0

i) If Q(u)>0, thenthere existunique t* and t~ suchthat 0<t" <t <t~, (t*u)eN*, tueN,
J(t'u)=inf J(tu) and J(t'u)=supJ(tu).
t>0

0<t<ty,

Proof. With minor modifications, we refer to [12].
Proposition 1 (see [12])
i) Forall 2 suchthat 0<A<A,,thereexistsa (PS). sequencein N™.

1896
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i) Forall 2 suchthat 0<A<(1/2)A,, thereexistsaa (PS)_ sequencein N.

3. Proof of Theorems 1

Now, taking as a starting point the work of Tarantello [13], we establish the existence of a local minimum for J
on N*.
Proposition 2. Forall 4 suchthat 0< A< A,, the functional J has a minimizer u; e N'* and it satisfies:
i) J(ug):c:c+
if) (ug) isanontrivial solution of (7, ).
Proof. If 0<A<A,, then by Proposition 1 (i) there exists a (un )n (PS )C+ sequence in N, thus it

bounded by Lemma 2. Then, there exists u; € H and we can extract a subsequence which will denoted by
(u,), such that
u, — Uy weakly in H
u, — ug weakly in L* (RN ,|y|_z*b)
(3.2)
u, — u; strongly in L° (RN ,|y|’c)
u, > uj aeinR"
Thus, by (3.1), u; is a weak nontrivial solution of (731;) Now, we show that u, converges to ug

< liminf ||u ||

n—owo

and we obtain
c<J(ug)=((2.-2)/2.2)|u; ((2*—q)/2*q)Q(ug)<Ii[\nqigf\](un):c.

We get a contradiction. Therefore, u, converge to u, strongly in . Moreover, we have u, e N . If
not, then by Lemma 6, there are two numbers t; and t;, uniquely defined so that (tgug)e/\f+ and
(t'us)e A . In particular, we have t; <t; =1. Since

2

(tuo) =0 and (tu0 )J >0,
there exists t; <t™ <t; such that J( toug )< (tug)- By Lemma 6, we get

(*u )< (t u0)<J(t uo) J(ug),

which contradicts the fact that J(uj)=c". Since J(ug):J< *) and |ui|e N*, then by Lemma 3, we

may assume that u, is a nontrivial nonnegative solution of (Pw) By the Harnack inequality, we conclude

that u; >0 and v; >0, see for exanmple [14].

4. Proof of Theorem 2

Next, we establish the existence of a local minimum for J on A/ ~. For this, we require the following Lemma.
Lemma 7. For all A such that 0<A<(1/2)A,, the functional J has a minimizer u; in A~ and it
satisfies:

i) J(ug)=c’>0,
i) u, isanontrivial solution of (7, ,) in H.

Proof. If 0<A< (]/Z)Ao, then by Proposition 1 ii) there exists a (un)n, (PS)C, sequence in A/, thus it
bounded by Lemma 2. Then, there exists u;, € H and we can extract a subsequence which will denoted by

(u,), such that



M. E. M. O. El Mokhtar

u, — u, weakly in H
u, — u, weakly in L** (RN ,|y|’2*b)
u, — U strongly in L (RN ,|y|’°)
u, > u; aeinR"
This implies
P(u,)— P(ug),as N goes to .
Moreover, by (H) and (2.3) we obtain
P(uy)> A(Q)u, .. (4.1)
where, A(q):=(2-q)/2.(2,-q).By (2.5) and (4.1) there exists a positive number
. 2./(2.-2) 2./(2.-2)
Cl = [A(q)] (Su) !

such that
P(u,)>C,. 4.2
This implies that
P(u;)=C,.
Now, we prove that (un )n convergesto u, strongly in . Suppose otherwise. Then, either
||ug <liminf u,| .. By Lemma 6 there is a unique t; such that (tous ) e N~ Since
u,a n—owo
U, € N7, J(u,)=J(tu,), forallt >0,
we have

J(t u0)<I|mJ(t0un)<I|mJ( ,)=¢",

n—oo

and this is a contradiction. Hence,
(u,), = ug strongly in H.
Thus,

J(u,) converges to J (u, ) =c¢™ as n tends to + o,

Since J (uO (|u0 |) and u, € N7, then by (4.2) and Lemma 3, we may assume that u, is a nontrivial

nonnegative solution of (P“) . By the maximum principle, we conclude that u, >0.

Now, we complete the proof of Theorem 2. By Propositions 2 and Lemma 7, we obtain that (PM) has two
positive solutions u; e N* and u; e N™.Since N"N~ =, thisimpliesthat u; and u, are distinct.

5. Proof of Theorem 3
In this section, we consider the following Nehari submanifold of N
N, :{u e H\{0}:(J’(u),u)=0and ul, . >0> 0}.
Thus, ue N, ifandonly if
||u|| ~2,P(u)-Q(u)=0 and |u] , =0>0.

1898
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Firsly, we need the following Lemmas

Lemma 8. Under the hypothesis of theorem 3, there exist g,, A, >0 such that N/, is nonempty for any
ﬂe(O,AZ) and ge(O,go).

Proof. Fix u, e H\{0} and let

g(t)=(J'(tup)tuy) =t* ||u0||;a ~2,t%P(uy)—tQ(u, )
Clearly g(0)=0 and g(t)—> - as n— +w. Moreover, we have

o)l 2. (1)-Q(u)
~2./2 X Y(2-a)
[l =25, mlelf J-{ (400, ol

If Ju],, 20>0 for 0<o<g=(h2 (2.-1)"* (s, )" h c(0.a) for

"

a, = (S# )2*/2/(2* (2, —1))(2*_1)/2* , then there exists

_2,/27Y(2:-2)
) ] -OxP,

e D)6,

where

and

D= [(ho 2.(2.-1))(s,) " ]W*z)

and there exists t, >0 suchthat g(t,)=0.Thus, (t,u,)eN, and N, isnonempty forany ie(0,A,).
Lemma 9. There exist M, A, positive reals such that

(¢'(u),u)<-M <0, forueN,,

and any A verifying
0<A<min((1/2)A,, A, ).

Proof. Let ue N, , then by (2.1), (2.3) and the Holder inequality, allows us to write

o)<l (410, )" eea-z.-2)
where B(o,q)=(2, —l)(Cayp)q 0%2. Thus, if

0<A<A;=[(2.-2)/B(0,0)],
and choosing A, :=min(A,,A;) with A, defined in Lemma 8, then we obtain that
(¢/(u),u)<0, foranyueN,. (5.1)

Lemma 10. Suppose N >max(3,6(a—b+1)) and '[Q|y|’2"b h|u|2* dx > 0. Then, there exist r and 7 posi-

tive constants such that
i) we have

J(u)zn>0 for ||U|L,,a =r.

1899
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ii) there exists o € N, when ||o-||%a >r,with r= ||u||ﬂ_a ,suchthat J(c)<0.

+

Proof. We can suppose that the minima of J are realized by (uo ) and u, . The geometric conditions of the
mountain pass theorem are satisfied. Indeed, we have
i) By (2.3), (5.1) and the fact that P(u)<(S, ) "* b |u

ia we get
2(0)2[@/2)-(2.~2)/(2. ~a)a]lull, (s, e[l
Exploiting the function I(x)=x(2,-x) andif N >max(3,6(a—b+1)), we obtain that
[(],/2)—(2* -2)/(2, —q)q] >0 for 1<q<2.Thus, there exist 7, r>0 such that
J(u)=n>0whenr = "U”;,,a small.
i) Let t>0, then we have forall ge N,
3(t9) = (€/2) ol - (1) P(9)-(t*/a) ().
Letting o =tg fortlarge enough. Since
P(#)=[ly
we obtain J(c)<0. For t large enough we can ensure ||‘7||y,a >r.
Let T and c defined by

" hgl* dx >0,

C={y:[01]> N, :7(0)=u, and 7 (1) =u; |
and

¢ :=inf maxinf (J (7(t)))

yell te[0,1] yern
Proof of Theorem 3.
If
A<min((1/2)A,, A, ),

then, by the Lemmas 2 and Proposition 1 ii), J verifying the Palais-Smale condition in  /, . Moreover, from the
Lemmas 3, 9 and 10, there exists u_ such that

J(u)=c and u eN,.

Thus u, is the third solution of our system such that u, #u,; and u, #u, . Since (P

At

,) is odd with res-

pect u, we obtain that —u, is also a solution of (7, ,).
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