On Elliptic Problem with Singular Cylindrical Potential, a Concave Term, and Critical Caffarelli-Kohn-Nirenberg Exponent

Mohammed El Mokhtar Ould El Mokhtar

Department of Mathematics, College of Science, Qassim University, Buraidah, Kingdom of Saudi Arabia
Email: med.mokhtar66@yahoo.fr, M.labdi@qu.edu.sa

Received 5 September 2015; accepted 24 October 2015; published 27 October 2015

Copyright © 2015 by author and Scientific Research Publishing Inc.
This work is licensed under the Creative Commons Attribution International License (CC BY).
http://creativecommons.org/licenses/by/4.0/

Abstract

In this paper, we establish the existence of at least four distinct solutions to an elliptic problem with singular cylindrical potential, a concave term, and critical Caffarelli-Kohn-Nirenberg exponent, by using the Nehari manifold and mountain pass theorem.

Keywords

Singular Cylindrical Potential, Concave Term, Critical Caffarelli-Kohn-Nirenberg Exponent, Nehari Manifold, Mountain Pass Theorem

1. Introduction

In this paper, we consider the multiplicity results of nontrivial nonnegative solutions of the following problem $\left(\mathcal{P}_{\lambda, \mu}\right)$

$$
\left\{\begin{array}{l}
L_{\mu, a} u=2_{*}|y|^{-2 * b} h|u|^{2 *^{-2}} u+\lambda|y|^{-c} f|u|^{q-2} u, \text { in } \mathbb{R}^{N}, y \neq 0 \\
u \in \mathcal{D}_{a}^{1,2}
\end{array}\right.
$$

where $L_{\mu, a} v:=-\operatorname{div}\left(|y|^{-2 a} \nabla v\right)-\mu|y|^{-2(a+1)} v$, where each point x in \mathbb{R}^{N} is written as a pair $(y, z) \in \mathbb{R}^{k} \times \mathbb{R}^{N-k}$ where k and N are integers such that $N \geq 3$ and k belongs to $\{1, \cdots, N\},-\infty<a<(k-2) / 2, \quad a \leq b<a+1$, $1<q<2, \quad 2_{*}=2 N /(N-2+2(b-a))$ is the critical Caffarelli-Kohn-Nirenberg exponent,

[^0]$0<c=q(a+1)+N(1-q / 2), \quad-\infty<\mu<\bar{\mu}_{a, k}:=((k-2(a+1)) / 2)^{2}, \quad \lambda$ is a real parameter, $\quad f \in \mathcal{H}_{\mu}^{\prime} \cap C\left(\mathbb{R}^{N}\right)$, h is a bounded positive function on \mathbb{R}^{k}. $\mathcal{H}_{\mu}^{\prime}$ is the dual of \mathcal{H}_{μ}, where \mathcal{H}_{μ} and $\mathcal{D}_{0}^{1,2}$ will be defined later.

Some results are already available for $\left(\mathcal{P}_{\lambda, \mu}\right)$ in the case $k=N$, see for example [1] [2] and the references therein. Wang and Zhou [1] proved that there exist at least two solutions for $\left(\mathcal{P}_{\lambda, \mu}\right)$ with $a=0$,
$0<\mu \leq \bar{\mu}_{0, N}=((N-2) / 2)^{2}$ and $h \equiv 1$, under certain conditions on f. Bouchekif and Matallah [3] showed the existence of two solutions of $\left(\mathcal{P}_{\lambda, \mu}\right)$ under certain conditions on functions f and h, when $0<\mu \leq \bar{\mu}_{0, N}$, $\lambda \in\left(0, \Lambda_{*}\right),-\infty<a<(N-2) / 2$ and $a \leq b<a+1$, with Λ_{*} a positive constant.

Concerning existence results in the case $k<N$, we cite [4] [5] and the references therein. Musina [5] considered $\left(\mathcal{P}_{\lambda, \mu}\right)$ with $-a / 2$ instead of a and $\lambda=0$, also $\left(\mathcal{P}_{\lambda, \mu}\right)$ with $a=0, b=0, \lambda=0$, with $h \equiv 1$ and $a \neq 2-k$. She established the existence of a ground state solution when $2<k \leq N$ and $0<\mu<\bar{\mu}_{a, k}=((k-2+a) / 2)^{2}$ for $\left(\mathcal{P}_{\lambda, \mu}\right)$ with $-a / 2$ instead of a and $\lambda=0$. She also showed that $\left(\mathcal{P}_{\lambda, \mu}\right)$ with $a=0, \quad b=0, \lambda=0$ does not admit ground state solutions. Badiale et al. [6] studied $\left(\mathcal{P}_{\lambda, \mu}\right)$ with $a=0$, $b=0, \lambda=0$ and $h \equiv 1$. They proved the existence of at least a nonzero nonnegative weak solution u, satisfying $u(y, z)=u(|y|, z)$ when $2 \leq k<N$ and $\mu<0$. Bouchekif and El Mokhtar [7] proved that $\left(\mathcal{P}_{\lambda, \mu}\right)$ admits two distinct solutions when $2<k \leq N, b=N-p(N-2) / 2$ with $p \in\left(2,2^{*}\right], \mu<\bar{\mu}_{0, k}$, and $\lambda \in\left(0, \Lambda_{*}\right)$ where Λ_{*} is a positive constant. Terracini [8] proved that there is no positive solutions of $\left(\mathcal{P}_{\lambda, \mu}\right)$ with $b=0$, $\lambda=0$ when $a \neq 0, h \equiv 1$ and $\mu<0$. The regular problem corresponding to $a=b=\mu=0$ and $h \equiv 1$ has been considered on a regular bounded domain Ω by Tarantello [9]. She proved that, for $f \in H^{-1}(\Omega)$, the dual of $H_{0}^{1}(\Omega)$, not identically zero and satisfying a suitable condition, the problem considered admits two distinct solutions.

Before formulating our results, we give some definitions and notation.
We denote by $\mathcal{D}_{a}^{1,2}=\mathcal{D}_{a}^{1,2}\left(\mathbb{R}^{k} \backslash\{0\} \times \mathbb{R}^{N-k}\right)$ and $\mathcal{H}_{\mu}=\mathcal{H}_{\mu}\left(\mathbb{R}^{k} \backslash\{0\} \times \mathbb{R}^{N-k}\right)$, the closure of $C_{0}^{\infty}\left(\mathbb{R}^{k} \backslash\{0\} \times \mathbb{R}^{N-k}\right)$ with respect to the norms

$$
\|u\|_{a, 0}=\left(\int_{\mathbb{R}^{N}}|y|^{-2 a}|\nabla u|^{2} \mathrm{~d} x\right)^{1 / 2}
$$

and

$$
\|u\|_{a, \mu}=\left(\int_{\mathbb{R}^{N}}\left(|y|^{-2 a}|\nabla u|^{2}-\mu|y|^{-2(a+1)}|u|^{2}\right) \mathrm{d} x\right)^{1 / 2}
$$

respectively, with $\mu<\bar{\mu}_{a, k}=((k-2(a+1)) / 2)^{2}$ for $k \neq 2(a+1)$.
From the Hardy-Sobolev-Maz'ya inequality, it is easy to see that the norm $\|u\|_{a, \mu}$ is equivalent to $\|u\|_{a, 0}$. More explicitly, we have

$$
\left(1-\left(1 / \bar{\mu}_{a, k}\right) \max (\mu, 0)\right)^{1 / 2}\|u\|_{0, a} \leq\|u\|_{\mu, a} \leq\left(1-\left(1 / \bar{\mu}_{a, k}\right) \min (\mu, 0)\right)^{1 / 2}\|u\|_{0, a},
$$

for all $u \in \mathcal{H}_{\mu}$.
We list here a few integral inequalities.
The starting point for studying $\left(\mathcal{P}_{\lambda, \mu}\right)$, is the Hardy-Sobolev-Maz'ya inequality that is particular to the cylindrical case $k<N$ and that was proved by Maz'ya in [4]. It states that there exists positive constant $C_{a, 2 *}$ such that

$$
\begin{equation*}
C_{a, 2_{*}}\left(\int_{\mathbb{R}^{N}}|y|^{-2_{*} b}|v|^{2_{*}} \mathrm{~d} x\right)^{2 / 2_{*}} \leq \int_{\mathbb{R}^{N}}\left(|y|^{-2 a}|\nabla v|^{2}-\mu|y|^{-2(a+1)} v^{2}\right) \mathrm{d} x \tag{1.1}
\end{equation*}
$$

for any $v \in C_{c}^{\infty}\left(\left(\mathbb{R}^{k} \backslash\{0\}\right) \times \mathbb{R}^{N-k}\right)$.

The second one that we need is the Hardy inequality with cylindrical weights [5]. It states that

$$
\begin{equation*}
\bar{\mu}_{a, k} \int_{\mathbb{R}^{N}}|y|^{-2(a+1)} v^{2} \mathrm{~d} x \leq \int_{\mathbb{R}^{N}}|y|^{-2 a}|\nabla v|^{2} \mathrm{~d} x \text {, for all } v \in \mathcal{H}_{\mu}, \tag{1.2}
\end{equation*}
$$

It is easy to see that (1.1) hold for any $u \in \mathcal{H}_{\mu}$ in the sense

$$
\begin{equation*}
\left(\int_{\mathbb{R}^{N}}|y|^{-c}|u|^{p} \mathrm{~d} x\right)^{1 / p} \leq C_{a, p}\left(\int_{\mathbb{R}^{N}}|y|^{-2 a}|\nabla v|^{2} \mathrm{~d} x\right)^{1 / p} \tag{1.3}
\end{equation*}
$$

where $C_{a, p}$ positive constant, $1 \leq p \leq 2 N /(N-2), c \leq p(a+1)+N(1-p / 2)$, and in [10], if $p<2 N /(N-2)$ the embedding $\mathcal{H}_{\mu} \rightarrow L_{p}\left(\mathbb{R}^{N},|y|^{-c}\right)$ is compact, where $L_{p}\left(\mathbb{R}^{N},|y|^{-c}\right)$ is the weighted L_{p} space with norm

$$
|u|_{p, c}=\left(\int_{\mathbb{R}^{N}}|y|^{-c}|u|^{p} \mathrm{~d} x\right)^{1 / p} .
$$

Since our approach is variational, we define the functional J on \mathcal{H}_{μ} by

$$
J(u):=(1 / 2)\|u\|_{\mu, a}^{2}-P(u)-Q(u)
$$

with

$$
P(u):=2_{*} \int_{\mathbb{R}^{N}}|y|^{-2_{*} b} h|u|^{2_{*}} \mathrm{~d} x, \quad Q(u):=(1 / q) \int_{\mathbb{R}^{N}}|y|^{-c} \lambda f|u|^{q} \mathrm{~d} x .
$$

A point $u \in \mathcal{H}_{\mu}$ is a weak solution of the equation $\left(\mathcal{P}_{\lambda, \mu}\right)$ if it satisfies

$$
\left\langle J^{\prime}(u), \varphi\right\rangle:=R(u) \varphi-S(u) \varphi-T(u) \varphi=0, \quad \text { for all } \varphi \in \mathcal{H}_{\mu}
$$

with

$$
\begin{gathered}
R(u) \varphi:=\int_{\mathbb{R}^{N}}\left(|y|^{-2 a}(\nabla u \nabla \varphi)-\mu|y|^{-2(a+1)}(u \varphi)\right) \\
S(u) \varphi:=2_{*} \int_{\mathbb{R}^{N}}|y|^{-2 * b} h|u|^{2_{*}} \varphi \\
T(u) \varphi:=\int_{\mathbb{R}^{N}}|y|^{-c}\left(\lambda f|u|^{q-1} \varphi\right) .
\end{gathered}
$$

Here $\langle.,$.$\rangle denotes the product in the duality \mathcal{H}_{\mu}^{\prime}, \mathcal{H}_{\mu}\left(\mathcal{H}_{\mu}^{\prime}\right.$ dual of $\left.\mathcal{H}_{\mu}\right)$.
Let

$$
S_{\mu}:=\inf _{u \in \mathcal{H}_{\mu}\{0\}} \frac{\|u\|_{\mu, a}^{2}}{\left(\int_{\mathbb{R}^{N}}|y|^{-2_{*} b}|u|^{2_{*}} \mathrm{~d} x\right)^{2 / 2_{*}}}
$$

From [11], S_{μ} is achieved.
Throughout this work, we consider the following assumptions:
(F) there exist $v_{0}>0$ and $\delta_{0}>0$ such that $f(x) \geq v_{0}$, for all x in $B\left(0,2 \delta_{0}\right)$.
(H) $\lim _{|y| \rightarrow 0} h(y)=\lim _{|y| \rightarrow \infty} h(y)=h_{0}>0, h(y) \geq h_{0}, y \in \mathbb{R}^{k}$.

Here, $B(a, r)$ denotes the ball centered at a with radius r.
In our work, we research the critical points as the minimizers of the energy functional associated to the problem $\left(\mathcal{P}_{\lambda, \mu}\right)$ on the constraint defined by the Nehari manifold, which are solutions of our system.

Let Λ_{0} be positive number such that

$$
\Lambda_{0}:=\left(C_{a, q}\right)^{-q}\left(h_{0}\right)^{-1 /\left(2_{*}-2\right)}\left(S_{\mu}\right)^{2_{*} / 2\left(2_{*}-2\right)} L(q)
$$

where $L(q):=\left(\frac{2_{*}-2}{2_{*}-q}\right)^{1 /(2-q)}\left[\left(\frac{2-q}{2_{*}\left(2_{*}-q\right)}\right)\right]^{1 /\left(2_{*}-2\right)}$.

Now we can state our main results.
Theorem 1. Assume that $-\infty<a<(k-2) / 2, \quad 0<c=q(a+1)+N(1-q / 2), \quad-\infty<\mu<\bar{\mu}_{a, k}$, (F) satisfied and λ verifying $0<\lambda<\Lambda_{0}$, then the system $\left(\mathcal{P}_{\lambda, \mu}\right)$ has at least one positive solution.

Theorem 2. In addition to the assumptions of the Theorem 1, if (H) hold and λ satisfying $0<\lambda<(1 / 2) \Lambda_{0}$, then $\left(\mathcal{P}_{\lambda, \mu}\right)$ has at least two positive solutions.

Theorem 3. In addition to the assumptions of the Theorem 2, assuming $N \geq \max (3,6(a-b+1))$, there exists a positive real Λ_{1} such that, if λ satisfy $0<\lambda<\min \left((1 / 2) \Lambda_{0}, \Lambda_{1}\right)$, then $\left(\mathcal{P}_{\lambda, \mu}\right)$ has at least two positive solution and two opposite solutions.

This paper is organized as follows. In Section 2, we give some preliminaries. Sections 3 and 4 are devoted to the proofs of Theorems 1 and 2. In the last Section, we prove the Theorem 3.

2. Preliminaries

Definition 1. Let $c \in \mathbb{R}, E$ Banach space and $I \in C^{1}(E, \mathbb{R})$.
i) $\left(u_{n}\right)_{n}$ is a Palais-Smale sequence at level c (in short $(P S)_{c}$) in E for I if

$$
I\left(u_{n}\right)=c+o_{n}(1) \text { and } I^{\prime}\left(u_{n}\right)=o_{n}(1),
$$

where $o_{n}(1)$ tends to 0 as n goes at infinity.
ii) We say that I satisfies the $(P S)_{c}$ condition if any $(P S)_{c}$ sequence in E for I has a convergent subsequence.

Lemma 1. Let X Banach space, and $J \in C^{1}(X, \mathbb{R})$ verifying the Palais-Smale condition. Suppose that $J(0)=0$ and that:
i) there exist $R>0, r>0$ such that if $\|u\|=R$, then $J(u) \geq r$;
ii) there exist $\left(u_{0}\right) \in X$ such that $\left\|u_{0}\right\|>R$ and $J\left(u_{0}\right) \leq 0$;
let $c=\inf _{\gamma \in \Gamma} \max _{t \in[0,1]}(J(\gamma(t)))$ where

$$
\Gamma=\left\{\gamma \in C([0,1] ; X) \text { such that } \gamma(0)=0 \text { et } \gamma(1)=u_{0}\right\} \text {, }
$$

then c is critical value of J such that $c \geq r$.

Nehari Manifold

It is well known that J is of class C^{1} in \mathcal{H}_{μ} and the solutions of $\left(\mathcal{P}_{\lambda, \mu}\right)$ are the critical points of J which is not bounded below on \mathcal{H}_{μ}. Consider the following Nehari manifold

$$
\mathcal{N}=\left\{u \in \mathcal{H}_{\mu} \backslash\{0\}:\left\langle J^{\prime}(u), u\right\rangle=0\right\},
$$

Thus, $u \in \mathcal{N}$ if and only if

$$
\begin{equation*}
\|u\|_{\mu, a}^{2}-2_{*} P(u)-Q(u)=0 \tag{2.1}
\end{equation*}
$$

Note that \mathcal{N} contains every nontrivial solution of the problem $\left(\mathcal{P}_{\lambda, \mu}\right)$. Moreover, we have the following results.

Lemma 2. J is coercive and bounded from below on \mathcal{N}.
Proof. If $u \in \mathcal{N}$, then by (2.1) and the Hölder inequality, we deduce that

$$
\begin{align*}
J(u) & =\left(\left(2_{*}-2\right) / 2_{*} 2\right)\|u\|_{\mu, a}^{2}-\left(\left(2_{*}-q\right) / 2_{*} q\right) Q(u) \\
& \geq\left(\left(2_{*}-2\right) / 2_{*} 2\right)\|u\|_{\mu, a}^{2}-\left(\frac{\left(2_{*}-q\right)}{2_{*} q}\right)\left(\lambda\|f\|_{\mathcal{H}_{\mu}^{\prime}}\right)^{1 /(2-q)}\left(C_{a, p}\right)^{q}\|u\|_{\mu, a}^{q} . \tag{2.2}
\end{align*}
$$

Thus, J is coercive and bounded from below on \mathcal{N}.
Define

$$
\phi(u)=\left\langle J^{\prime}(u), u\right\rangle .
$$

Then, for $u \in \mathcal{N}$

$$
\begin{align*}
\left\langle\phi^{\prime}(u), u\right\rangle & =2\|u\|_{\mu, a}^{2}-\left(2_{*}\right)^{2} P(u)-q Q(u) \\
& =(2-q)\|u\|_{\mu, a}^{2}-2_{*}\left(2_{*}-q\right) P(u) \tag{2.3}\\
& =\left(2_{*}-q\right) Q(u)-\left(2_{*}-2\right)\|u\|_{\mu, a}^{2} .
\end{align*}
$$

Now, we split \mathcal{N} in three parts:

$$
\begin{aligned}
& \mathcal{N}^{+}=\left\{u \in \mathcal{N}:\left\langle\phi^{\prime}(u), u\right\rangle>0\right\} \\
& \mathcal{N}^{0}=\left\{u \in \mathcal{N}:\left\langle\phi^{\prime}(u), u\right\rangle=0\right\} \\
& \mathcal{N}^{-}=\left\{u \in \mathcal{N}:\left\langle\phi^{\prime}(u), u\right\rangle<0\right\} .
\end{aligned}
$$

We have the following results.
Lemma 3. Suppose that u_{0} is a local minimizer for J on \mathcal{N}. Then, if $u_{0} \notin \mathcal{N}^{0}, u_{0}$ is a critical point of J.

Proof. If u_{0} is a local minimizer for J on \mathcal{N}, then u_{0} is a solution of the optimization problem

$$
\min _{\{u \phi \phi(u)=0\}} J(u) .
$$

Hence, there exists a Lagrange multipliers $\theta \in \mathbb{R}$ such that

$$
J^{\prime}\left(u_{0}\right)=\theta \phi^{\prime}\left(u_{0}\right) \text { in } \mathcal{H}^{\prime}
$$

Thus,

$$
\left\langle J^{\prime}\left(u_{0}\right), u_{0}\right\rangle=\theta\left\langle\phi^{\prime}\left(u_{0}\right), u_{0}\right\rangle .
$$

But $\left\langle\phi^{\prime}\left(u_{0}\right), u_{0}\right\rangle \neq 0$, since $u_{0} \notin \mathcal{N}^{0}$. Hence $\theta=0$. This completes the proof.
Lemma 4. There exists a positive number Λ_{0} such that for all λ, verifying

$$
0<\lambda<\Lambda_{0},
$$

we have $\mathcal{N}^{0}=\varnothing$.
Proof. Let us reason by contradiction.
Suppose $\mathcal{N}^{0} \neq \varnothing$ such that $0<\lambda<\Lambda_{0}$. Then, by (2.3) and for $u \in \mathcal{N}^{0}$, we have

$$
\begin{equation*}
\|u\|_{\mu, a}^{2}=2_{*}\left(2_{*}-q\right) /(2-q) P(u)=\left(\left(2_{*}-q\right) /\left(2_{*}-2\right)\right) Q(u) \tag{2.4}
\end{equation*}
$$

Moreover, by the Hölder inequality and the Sobolev embedding theorem, we obtain

$$
\begin{equation*}
\|u\|_{\mu, a} \geq\left(S_{\mu}\right)^{2_{*} / 2\left(2_{*}-2\right)}\left[(2-q) / 2_{*}\left(2_{*}-q\right) h_{0}\right]^{-1 /\left(2_{*}-2\right)} \tag{2.5}
\end{equation*}
$$

and

$$
\begin{equation*}
\|u\|_{\mu, a} \leq\left[\left(\frac{2_{*}-q}{2_{*}-2}\right)^{-1 /(2-q)}\left(\lambda^{1 /(2-q)}\right)\left(C_{a, q}\right)^{q}\right] . \tag{2.6}
\end{equation*}
$$

From (2.5) and (2.6), we obtain $\lambda \geq \Lambda_{0}$, which contradicts an hypothesis.
Thus $\mathcal{N}=\mathcal{N}^{+} \cup \mathcal{N}^{-}$. Define

$$
c:=\inf _{u \in \mathcal{N}} J(u), c^{+}:=\inf _{u \in \mathcal{N}^{+}} J(u) \text { and } c^{-}:=\inf _{u \in \mathcal{N}^{-}} J(u) .
$$

For the sequel, we need the following Lemma.

Lemma 5.

i) For all λ such that $0<\lambda<\Lambda_{0}$, one has $c \leq c^{+}<0$.
ii) For all λ such that $0<\lambda<(1 / 2) \Lambda_{0}$, one has

$$
\begin{aligned}
c^{-} & >C_{0}=C_{0}\left(\lambda_{1}, \lambda_{2}, S_{\mu},\|f\|_{\mathcal{H}_{\mu}^{\prime}}\right) \\
& =\left(\frac{\left(2_{*}-2\right)}{2_{*} 2}\right)\left[\frac{(2-q)}{2_{*}\left(2_{*}-q\right) h_{0}}\right]^{-2 /(2 *-2)}\left(S_{\mu}\right)^{2_{*} /\left(2_{*}-2\right)} \\
& -\left(\frac{\left(2_{*}-q\right)}{2_{*} q}\right)\left(\left(\lambda\|f\|_{\mathcal{H}_{\mu}^{\prime}}\right)^{1 /(2-q)}\right)\left(C_{a, q}\right)^{q} .
\end{aligned}
$$

Proof. i) Let $u \in \mathcal{N}^{+}$. By (2.3), we have

$$
\left[(2-q) / 2_{*}\left(2_{*}-1\right)\right]\|u\|_{\mu, a}^{2}>P(u)
$$

and so

$$
J(u)=(-1 / 2)\|u\|_{\mu, a}^{2}+\left(2_{*}-1\right) P(u)<-\left[\frac{2_{*}\left(2_{*}-q\right)-2\left(2_{*}-1\right)(2-q)}{2_{*} 2\left(2_{*}-q\right)}\right]\|u\|_{\mu, a}^{2} .
$$

We conclude that $c \leq c^{+}<0$.
ii) Let $u \in \mathcal{N}^{-}$. By (2.3), we get

$$
\left[(2-q) / 2_{*}\left(2_{*}-q\right)\right]\|u\|_{\mu, a}^{2}<P(u)
$$

Moreover, by (H) and Sobolev embedding theorem, we have

$$
P(u) \leq\left(S_{\mu}\right)^{-2_{z} / 2} h_{0}\|u\|_{\mu, a}^{2 *} .
$$

This implies

$$
\begin{equation*}
\|u\|_{\mu, a}>\left(S_{\mu}\right)^{2_{*} / 2\left(22_{*}-2\right)}\left[\frac{(2-q)}{2_{*}\left(2_{*}-q\right) h_{0}}\right]^{-1 /\left(2_{*}-2\right)}, \text { for all } u \in \mathcal{N}^{-} \tag{2.7}
\end{equation*}
$$

By (2.2), we get

$$
J(u) \geq\left(\left(2_{*}-2\right) / 2_{*} 2\right)\|u\|_{\mu, a}^{2}-\left(\frac{\left(2_{*}-q\right)}{2_{*} q}\right)\left(\lambda\|f\|_{\mathcal{H}_{\mu}^{\prime}}\right)^{1 /(2-q)}\left(C_{a, p}\right)^{q}\|u\|_{\mu, a}^{q}
$$

Thus, for all λ such that $0<\lambda<(1 / 2) \Lambda_{0}$, we have $J(u) \geq C_{0}$.
For each $u \in \mathcal{H}$ with $\int_{\mathbb{R}^{N}}|y|^{-2 * b} h|u|^{2_{*}} \mathrm{~d} x>0$, we write

$$
t_{m}:=t_{\max }(u)=\left[\frac{(2-q)\|u\|_{\mu, a}^{2}}{2_{*}\left(2_{*}-q\right) \int_{\mathbb{R}^{N}}|y|^{-2_{*} b} h|u|^{2_{*}} \mathrm{~d} x}\right]^{(2-q) / 2_{*}\left(2_{*}-q\right)}>0
$$

Lemma 6. Let λ real parameters such that $0<\lambda<\Lambda_{0}$. For each $u \in \mathcal{H}$ with $\int_{\mathbb{R}^{N}}|y|^{-2_{*} b} h|u|^{2_{*}} \mathrm{~d} x>0$, one has the following:
i) If $Q(u) \leq 0$, then there exists a unique $t^{-}>t_{m}$ such that $t^{-} u \in \mathcal{N}^{-}$and

$$
J\left(t^{-} u\right)=\sup _{t \geq 0}(t u)
$$

ii) If $Q(u)>0$, then there exist unique t^{+}and t^{-}such that $0<t^{+}<t_{m}<t^{-},\left(t^{+} u\right) \in \mathcal{N}^{+}, t^{-} u \in \mathcal{N}^{-}$,

$$
J\left(t^{+} u\right)=\inf _{0 \leq t \leq t_{m}} J(t u) \text { and } J\left(t^{-} u\right)=\sup _{t \geq 0} J(t u)
$$

Proof. With minor modifications, we refer to [12].
Proposition 1 (see [12])
i) For all λ such that $0<\lambda<\Lambda_{0}$, there exists a $(P S)_{c^{+}}$sequence in \mathcal{N}^{+}.
ii) For all λ such that $0<\lambda<(1 / 2) \Lambda_{0}$, there exists a a $(P S)_{c^{-}}$sequence in \mathcal{N}^{-}.

3. Proof of Theorems 1

Now, taking as a starting point the work of Tarantello [13], we establish the existence of a local minimum for J on \mathcal{N}^{+}.

Proposition 2. For all λ such that $0<\lambda<\Lambda_{0}$, the functional J has a minimizer $u_{0}^{+} \in \mathcal{N}^{+}$and it satisfies:
i) $J\left(u_{0}^{+}\right)=c=c^{+}$,
ii) $\left(u_{0}^{+}\right)$is a nontrivial solution of $\left(\mathcal{P}_{\lambda, \mu}\right)$.

Proof. If $0<\lambda<\Lambda_{0}$, then by Proposition 1 (i) there exists a $\left(u_{n}\right)_{n}(P S)_{c^{+}}$sequence in \mathcal{N}^{+}, thus it bounded by Lemma 2. Then, there exists $u_{0}^{+} \in \mathcal{H}$ and we can extract a subsequence which will denoted by $\left(u_{n}\right)_{n}$ such that

$$
\begin{align*}
& u_{n} \rightharpoonup u_{0}^{+} \text {weakly in } \mathcal{H} \\
& u_{n} \rightharpoonup u_{0}^{+} \text {weakly in } L^{2_{*}}\left(\mathbb{R}^{N},|y|^{-2_{*} b}\right) \\
& u_{n} \rightarrow u_{0}^{+} \text {strongly in } L^{q}\left(\mathbb{R}^{N},|y|^{-c}\right) \tag{3.1}\\
& u_{n} \rightarrow u_{0}^{+} \text {a.e in } \mathbb{R}^{N}
\end{align*}
$$

Thus, by (3.1), u_{0}^{+}is a weak nontrivial solution of $\left(\mathcal{P}_{\lambda, \mu}\right)$. Now, we show that u_{n} converges to u_{0}^{+} strongly in \mathcal{H}. Suppose otherwise. By the lower semi-continuity of the norm, then either $\left\|u_{0}^{+}\right\|_{\mu, a}<\liminf _{n \rightarrow \infty}\left\|u_{n}\right\|_{\mu, a}$ and we obtain

$$
c \leq J\left(u_{0}^{+}\right)=\left(\left(2_{*}-2\right) / 2_{*} 2\right)\left\|u_{0}^{+}\right\|_{\mu, a}^{2}-\left(\left(2_{*}-q\right) / 2_{*} q\right) Q\left(u_{0}^{+}\right)<\liminf _{n \rightarrow \infty} J\left(u_{n}\right)=c .
$$

We get a contradiction. Therefore, u_{n} converge to u_{0}^{+}strongly in \mathcal{H}. Moreover, we have $u_{0}^{+} \in \mathcal{N}^{+}$. If not, then by Lemma 6, there are two numbers t_{0}^{+}and t_{0}^{-}, uniquely defined so that $\left(t_{0}^{+} u_{0}^{+}\right) \in \mathcal{N}^{+}$and $\left(t^{-} u_{0}^{+}\right) \in \mathcal{N}^{-}$. In particular, we have $t_{0}^{+}<t_{0}^{-}=1$. Since

$$
\frac{\mathrm{d}}{\mathrm{~d} t} J\left(t u_{0}^{+}\right)_{J t=t_{0}^{+}}=0 \text { and } \frac{\mathrm{d}^{2}}{\mathrm{~d} t^{2}} J\left(t u_{0}^{+}\right)_{J t t t_{0}^{+}}>0
$$

there exists $t_{0}^{+}<t^{-} \leq t_{0}^{-}$such that $J\left(t_{0}^{+} u_{0}^{+}\right)<J\left(t^{-} u_{0}^{+}\right)$. By Lemma 6 , we get

$$
J\left(t_{0}^{+} u_{0}^{+}\right)<J\left(t^{-} u_{0}^{+}\right)<J\left(t_{0}^{-} u_{0}^{+}\right)=J\left(u_{0}^{+}\right)
$$

which contradicts the fact that $J\left(u_{0}^{+}\right)=c^{+}$. Since $J\left(u_{0}^{+}\right)=J\left(\left|u_{0}^{+}\right|\right)$and $\left|u_{0}^{+}\right| \in \mathcal{N}^{+}$, then by Lemma 3, we may assume that u_{0}^{+}is a nontrivial nonnegative solution of $\left(\mathcal{P}_{\lambda, \mu}\right)$. By the Harnack inequality, we conclude that $u_{0}^{+}>0$ and $v_{0}^{+}>0$, see for exanmple [14].

4. Proof of Theorem 2

Next, we establish the existence of a local minimum for J on \mathcal{N}^{-}. For this, we require the following Lemma.
Lemma 7. For all λ such that $0<\lambda<(1 / 2) \Lambda_{0}$, the functional J has a minimizer u_{0}^{-}in \mathcal{N}^{-}and it satisfies:
i) $J\left(u_{0}^{-}\right)=c^{-}>0$,
ii) u_{0}^{-}is a nontrivial solution of $\left(\mathcal{P}_{\lambda, \mu}\right)$ in \mathcal{H}.

Proof. If $0<\lambda<(1 / 2) \Lambda_{0}$, then by Proposition 1 ii) there exists a $\left(u_{n}\right)_{n},(P S)_{c^{-}}$sequence in \mathcal{N}^{-}, thus it bounded by Lemma 2. Then, there exists $u_{0}^{-} \in \mathcal{H}$ and we can extract a subsequence which will denoted by $\left(u_{n}\right)_{n}$ such that

$$
\begin{gathered}
u_{n} \rightharpoonup u_{0}^{-} \text {weakly in } \mathcal{H} \\
u_{n} \rightharpoonup u_{0}^{-} \text {weakly in } L^{2 *}\left(\mathbb{R}^{N},|y|^{-2_{*} b}\right) \\
u_{n} \rightarrow u_{0}^{-} \text {strongly in } L^{q}\left(\mathbb{R}^{N},|y|^{-c}\right) \\
u_{n} \rightarrow u_{0}^{-} \text {a.e in } \mathbb{R}^{N}
\end{gathered}
$$

This implies

$$
P\left(u_{n}\right) \rightarrow P\left(u_{0}^{-}\right), \text {as } n \text { goes to } \infty .
$$

Moreover, by (H) and (2.3) we obtain

$$
\begin{equation*}
P\left(u_{n}\right)>A(q)\left\|u_{n}\right\|_{\mu, a}^{2}, \tag{4.1}
\end{equation*}
$$

where, $A(q):=(2-q) / 2_{*}\left(2_{*}-q\right)$. By (2.5) and (4.1) there exists a positive number

$$
C_{1}:=[A(q)]^{2_{*} /\left(2_{*}-2\right)}\left(S_{\mu}\right)^{2_{*} /\left(2_{*}-2\right)},
$$

such that

$$
\begin{equation*}
P\left(u_{n}\right)>C_{1} . \tag{4.2}
\end{equation*}
$$

This implies that

$$
P\left(u_{0}^{-}\right) \geq C_{1} .
$$

Now, we prove that $\left(u_{n}\right)_{n}$ converges to u_{0}^{-}strongly in \mathcal{H}. Suppose otherwise. Then, either $\left\|u_{0}^{-}\right\|_{\mu, a}<\liminf _{n \rightarrow \infty}\left\|u_{n}\right\|_{\mu, a}$. By Lemma 6 there is a unique t_{0}^{-}such that $\left(t_{0}^{-} u_{0}^{-}\right) \in \mathcal{N}^{-}$. Since

$$
u_{n} \in \mathcal{N}^{-}, J\left(u_{n}\right) \geq J\left(t u_{n}\right), \text { for all } t \geq 0
$$

we have

$$
J\left(t_{0}^{-} u_{0}^{-}\right)<\lim _{n \rightarrow \infty} J\left(t_{0}^{-} u_{n}\right) \leq \lim _{n \rightarrow \infty} J\left(u_{n}\right)=c^{-}
$$

and this is a contradiction. Hence,

$$
\left(u_{n}\right)_{n} \rightarrow u_{0}^{-} \text {strongly in } \mathcal{H}
$$

Thus,

$$
J\left(u_{n}\right) \text { converges to } J\left(u_{0}^{-}\right)=c^{-} \text {as } n \text { tends to }+\infty .
$$

Since $J\left(u_{0}^{-}\right)=J\left(\left|u_{0}^{-}\right|\right)$and $u_{0}^{-} \in \mathcal{N}^{-}$, then by (4.2) and Lemma 3, we may assume that u_{0}^{-}is a nontrivial nonnegative solution of $\left(\mathcal{P}_{\lambda, \mu}\right)$. By the maximum principle, we conclude that $u_{0}^{-}>0$.

Now, we complete the proof of Theorem 2. By Propositions 2 and Lemma 7, we obtain that ($\mathcal{P}_{\lambda, \mu}$) has two positive solutions $u_{0}^{+} \in \mathcal{N}^{+}$and $u_{0}^{-} \in \mathcal{N}^{-}$. Since $\mathcal{N}^{+} \cap \mathcal{N}^{-}=\varnothing$, this implies that u_{0}^{+}and u_{0}^{-}are distinct.

5. Proof of Theorem 3

In this section, we consider the following Nehari submanifold of \mathcal{N}

$$
\mathcal{N}_{\varrho}=\left\{u \in \mathcal{H} \backslash\{0\}:\left\langle J^{\prime}(u), u\right\rangle=0 \text { and }\|u\|_{\mu, a} \geq \varrho>0\right\}
$$

Thus, $u \in \mathcal{N}_{\varrho}$ if and only if

$$
\|u\|_{\mu, a}^{2}-2_{*} P(u)-Q(u)=0 \text { and }\|u\|_{\mu, a} \geq \varrho>0
$$

Firsly, we need the following Lemmas
Lemma 8. Under the hypothesis of theorem 3, there exist $\varrho_{0}, \Lambda_{2}>0$ such that \mathcal{N}_{ϱ} is nonempty for any $\lambda \in\left(0, \Lambda_{2}\right)$ and $\varrho \in\left(0, \varrho_{0}\right)$.

Proof. Fix $u_{0} \in \mathcal{H} \backslash\{0\}$ and let

$$
g(t)=\left\langle J^{\prime}\left(t u_{0}\right), t u_{0}\right\rangle=t^{2}\left\|u_{0}\right\|_{\mu, a}^{2}-2_{*} t^{2 *} P\left(u_{0}\right)-t Q\left(u_{0}\right) .
$$

Clearly $g(0)=0$ and $g(t) \rightarrow-\infty$ as $n \rightarrow+\infty$. Moreover, we have

$$
\begin{aligned}
g(1) & =\left\|u_{0}\right\|_{\mu, a}^{2}-2_{*} P\left(u_{0}\right)-Q\left(u_{0}\right) \\
& \geq\left[\left\|u_{0}\right\|_{\mu, a}^{2}-2_{*}\left(S_{\mu}\right)^{-2_{*} / 2} h_{0}\left\|u_{0}\right\|_{\mu, a}^{2_{*}^{*}}\right]-\left(\left(\lambda\|f\|_{\mathcal{H}_{\mu}^{\prime}}\right)^{1 /(2-q)}\right)\left\|u_{0}\right\|_{\mu, a}
\end{aligned}
$$

If $\left\|u_{0}\right\|_{\mu, a} \geq \varrho>0$ for $0<\varrho<\varrho_{0}=\left(h_{0} 2_{*}\left(2_{*}-1\right)\right)^{-1 /\left(2_{*}-2\right)}\left(S_{\mu}\right)^{2_{*} / 2\left(22_{*}-2\right)}, h_{0} \in\left(0, \alpha_{0}\right)$ for $\alpha_{0}=\left(S_{\mu}\right)^{2_{*} / 2} /\left(2_{*}\left(2_{*}-1\right)\right)^{\left(2_{*}-1\right) / 2_{*}}$, then there exists

$$
\Lambda_{2}:=\left[\left(h_{0} 2_{*}\left(2_{*}-1\right)\right)\left(S_{\mu}\right)^{-2_{*} / 2}\right]^{-1 /(2 *-2)}-\Theta \times \Phi
$$

where

$$
\Theta:=\left(2_{*}\left(2_{*}-1\right)\right)^{2_{*}-1}\left(\left(h_{0}\right)^{2_{*} / 2} S_{\mu}\right)^{-\left(2_{*}\right)^{2} / 2}
$$

and

$$
\Phi:=\left[\left(h_{0} 2_{*}\left(2_{*}-1\right)\right)\left(S_{\mu}\right)^{-2_{*} / 2}\right]^{-1 /\left(2_{*}-2\right)}
$$

and there exists $t_{0}>0$ such that $g\left(t_{0}\right)=0$. Thus, $\left(t_{0} u_{0}\right) \in \mathcal{N}_{\varrho}$ and \mathcal{N}_{ϱ} is nonempty for any $\lambda \in\left(0, \Lambda_{2}\right)$.
Lemma 9. There exist M, Λ_{1} positive reals such that

$$
\left\langle\phi^{\prime}(u), u\right\rangle<-M<0, \text { for } u \in \mathcal{N}_{\varrho},
$$

and any λ verifying

$$
0<\lambda<\min \left((1 / 2) \Lambda_{0}, \Lambda_{1}\right) .
$$

Proof. Let $u \in \mathcal{N}_{\varrho}$, then by (2.1), (2.3) and the Holder inequality, allows us to write

$$
\left\langle\phi^{\prime}(u), u\right\rangle \leq\left\|u_{n}\right\|_{\mu, a}^{2}\left[\left(\left(\lambda\|f\|_{\mathcal{H}_{\mu}^{\prime}}\right)^{1 /(2-q)}\right) B(\varrho, q)-\left(2_{*}-2\right)\right],
$$

where $B(\varrho, q):=\left(2_{*}-1\right)\left(C_{a, p}\right)^{q} \varrho^{q-2}$. Thus, if

$$
0<\lambda<\Lambda_{3}=\left[\left(2_{*}-2\right) / B(\varrho, q)\right],
$$

and choosing $\Lambda_{1}:=\min \left(\Lambda_{2}, \Lambda_{3}\right)$ with Λ_{2} defined in Lemma 8, then we obtain that

$$
\begin{equation*}
\left\langle\phi^{\prime}(u), u\right\rangle<0, \text { for any } u \in \mathcal{N}_{\varrho} . \tag{5.1}
\end{equation*}
$$

Lemma 10. Suppose $N \geq \max (3,6(a-b+1))$ and $\int_{\Omega}|y|^{-2_{*} b} h|u|^{2^{*}} \mathrm{~d} x>0$. Then, there exist r and η positive constants such that
i) we have

$$
J(u) \geq \eta>0 \text { for }\|u\|_{\mu, a}=r .
$$

ii) there exists $\sigma \in \mathcal{N}_{\varrho}$ when $\|\sigma\|_{\mu, a}>r$, with $r=\|u\|_{\mu, a}$, such that $J(\sigma) \leq 0$.

Proof. We can suppose that the minima of J are realized by $\left(u_{0}^{+}\right)$and u_{0}^{-}. The geometric conditions of the mountain pass theorem are satisfied. Indeed, we have
i) By (2.3), (5.1) and the fact that $P(u) \leq\left(S_{\mu}\right)^{-2_{*} / 2} h_{0}\|u\|_{\mu, a}^{2 *}$, we get

$$
J(u) \geq\left[(1 / 2)-\left(2_{*}-2\right) /\left(2_{*}-q\right) q\right]\|u\|_{\mu, a}^{2}-\left(S_{\mu}\right)^{-2_{z} / 2} h_{0}\|u\|_{\mu, a}^{2},
$$

Exploiting the function $l(x)=x\left(2_{*}-x\right)$ and if $N \geq \max (3,6(a-b+1))$, we obtain that $\left[(1 / 2)-\left(2_{*}-2\right) /\left(2_{*}-q\right) q\right]>0$ for $1<q<2$. Thus, there exist $\eta, r>0$ such that

$$
J(u) \geq \eta>0 \text { when } r=\|u\|_{\mu, a} \text { small. }
$$

ii) Let $t>0$, then we have for all $\phi \in \mathcal{N}_{\varrho}$

$$
J(t \phi):=\left(t^{2} / 2\right)\|\phi\|_{\mu}^{2}-\left(t^{2 *}\right) P(\phi)-\left(t^{q} / q\right) Q(\phi)
$$

Letting $\sigma=t \phi$ for t large enough. Since

$$
P(\phi):=\int_{\Omega}|y|^{-2, b} h|\phi|^{2_{*}} \mathrm{~d} x>0,
$$

we obtain $J(\sigma) \leq 0$. For t large enough we can ensure $\|\sigma\|_{\mu, a}>r$.
Let Γ and c defined by

$$
\Gamma:=\left\{\gamma:[0,1] \rightarrow \mathcal{N}_{\varrho}: \gamma(0)=u_{0}^{-} \text {and } \gamma(1)=u_{0}^{+}\right\}
$$

and

$$
c:=\inf _{\gamma \in \Pi} \max _{t \in[0,1]} \inf _{\gamma \in \Pi}(J(\gamma(t))) .
$$

Proof of Theorem 3.

If

$$
\lambda<\min \left((1 / 2) \Lambda_{0}, \Lambda_{1}\right),
$$

then, by the Lemmas 2 and Proposition 1 ii), J verifying the Palais-Smale condition in \mathcal{N}_{ϱ}. Moreover, from the Lemmas 3, 9 and 10, there exists u_{c} such that

$$
J\left(u_{c}\right)=c \text { and } u_{c} \in \mathcal{N}_{\varrho} .
$$

Thus u_{c} is the third solution of our system such that $u_{c} \neq u_{0}^{+}$and $u_{c} \neq u_{0}^{-}$. Since $\left(\mathcal{P}_{\lambda, \mu}\right)$ is odd with respect u, we obtain that $-u_{c}$ is also a solution of $\left(\mathcal{P}_{\lambda, \mu}\right)$.

References

[1] Wang, Z. and Zhou, H. (2006) Solutions for a Nonhomogeneous Elliptic Problem Involving Critical Sobolev-Hardy Exponent in \mathbb{R}^{N}. Acta Mathematica Scientia, 26, 525-536. http://dx.doi.org/10.1016/S0252-9602(06)60078-7
[2] Xuan, B.J. (2005) The Solvability of Quasilinear Brézis-Nirenberg-Type Problems with Singular Weights. Nonlinear Analysis, 62, 703-725. http://dx.doi.org/10.1016/j.na.2005.03.095
[3] Bouchekif, M. and Matallah, A. (2009) On Singular Nonhomogeneous Elliptic Equations Involving Critical Caffarel-li-Kohn-Nirenberg Exponent. Ricerche di Matematica, 58, 207-218. http://dx.doi.org/10.1007/s11587-009-0056-y
[4] Gazzini, M. and Musina, R. (2009) On the Hardy-Sobolev-Maz'ja Inequalities: Symmetry and Breaking Symmetry of Extremal Functions. Communications in Contemporary Mathematics, 11, 993-1007. http://dx.doi.org/10.1142/S0219199709003636
[5] Musina, R. (2008) Ground State Solutions of a Critical Problem Involving Cylindrical Weights. Nonlinear Analysis, 68,
[6] Badiale, M., Guida, M. and Rolando, S. (2007) Elliptic Equations with Decaying Cylindrical Potentials and Pow-er-Type Nonlinearities. Advances in Differential Equations, 12, 1321-1362.
[7] Bouchekif, M. and El Mokhtar, M.E.O. (2012) On Nonhomogeneous Singular Elliptic Equations with Cylindrical Weight. Ricerche di Matematica, 61, 147-156. http://dx.doi.org/10.1007/s11587-011-0121-1
[8] Terracini, S. (1996) On Positive Entire Solutions to a Class of Equations with Singular Coefficient and Critical Exponent. Advances in Differential Equations, 1, 241-264.
[9] Tarantello, G. (1992) On Nonhomogeneous Elliptic Equations Involving Critical Sobolev Exponent. Ann. Inst. H. Poincaré Anal. Non. Linéaire, 9, 281-304.
[10] Wu, T.-F. (2008) The Nehari Manifold for a Semilinear System Involving Sign-Changing Weight Functions. Nonlinear Analysis, 68, 1733-1745. http://dx.doi.org/10.1016/j.na.2007.01.004
[11] Kang, D. and Peng, S. (2004) Positive Solutions for Singular Elliptic Problems. Applied Mathematics Letters, 17, 411-416. http://dx.doi.org/10.1016/S0893-9659(04)90082-1
[12] Brown, K.J. and Zhang, Y. (2003) The Nehari Manifold for a Semilinear Elliptic Equation with a Sign Changing Weight Function. Journal of Differential Equations, 2, 481-499. http://dx.doi.org/10.1016/S0022-0396(03)00121-9
[13] Liu, Z. and Han, P. (2008) Existence of Solutions for Singular Elliptic Systems with Critical Exponents. Nonlinear Analysis, 69, 2968-2983. http://dx.doi.org/10.1016/j.na.2007.08.073
[14] Drabek, P., Kufner, A. and Nicolosi, F. (1997) Quasilinear Elliptic Equations with Degenerations and Singularities. Walter de Gruyter Series in Nonlinear Analysis and Applications, Vol. 5, New York. http://dx.doi.org/10.1515/9783110804775

[^0]: How to cite this paper: El Mokhtar, M.E.M.O. (2015) On Elliptic Problem with Singular Cylindrical Potential, a Concave Term, and Critical Caffarelli-Kohn-Nirenberg Exponent. Applied Mathematics, 6, 1891-1901.
 http://dx.doi.org/10.4236/am.2015.611166

