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Abstract 

We investigate Gaver’s parallel system attended by a cold standby unit and a repairman with mul-
tiple vacations. By analysing the spectral distribution of the system operator and taking into ac-
count the irreducibility of the semigroup generated by the system operator we prove that the dy-
namic solution converges strongly to the steady state solution. Thus we obtain asymptotic stability 
of the dynamic solution of the system. 

 
Keywords 

Gaver’s Parallel Pystem, C0-Semigroup, Irreducibility, Asymptotic Stability 

 
 

1. Introduction 
Repairable system is not only a kind of important system discussed in reliability theory but also one of the main 
objects studied in reliability mathematics. ”Repairable” means that if a failure in the system occurs it can be re-
paired and then the system works normally again. The Gaver’s Parallel system, as one of the classical repairable 
systems in reliability theory, has been given much attention in previous literatures, see [1]-[3]. In [4], the authors 
studied Gaver’s parallel system attended by a cold standby unit and a repairman with multiple vacations and ob-
tained some reliability expressions such as the Laplace transform of the reliability, the mean time to the first 
failure, the availability and the failure frequency of the system by using the supplementary variable method and 
the generalized Markov progress method as well as the Laplace-transform technique. In [4], the authors used the 
dynamic solution and its asymptotic stability in calculating the availability and the reliability. But they did not 
discuss the existence of the dynamic solution and the asymptotic stability of the dynamic solution. In [5], we 
proved the well-posedness and the existence of a unique positive dynamic solution of the system by using 0C - 
semigroup theory of linear operators from [6] and [7]. In this paper, we prove that the dynamic solution con-
verging to its static solution in the sense of the norm using the stochastic matrix and irreducibility of the corres-
ponding semigroup, thus we obtain the asymptotic stability of the dynamic solution of this system. 

The system can be described by the following partial differential equations (see [4]). 
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Here ( ) [ ), 0, [0, )t x ∈ ∞ × ∞ ; ( )0 ,p t x dx  gives the probability that at time t two units are operating, one unit 
is under standby, the repairman is in vacation, the system is good and the elapsed repair time lies in [ , )x x dx+ ; 

( )1 ,p t x dx  represents the probability that at time t  two units are operating, one unit is waiting for repair, the 
repairman is in vacation, the system is good and the elapsed repair time lies in [ , )x x dx+ ; ( )2 ,p t x dx  
represents the probability that at time t  two unit is operating, one unit is waiting for repair, the repairman is in 
vacation, the system is good and the elapsed repair time lies in [ , )x x dx+ ; ( )3 ,p t y dy  represents the probabil-
ity that at time t  two units are operating, one unit being repaired, the system is good and the hours that the 
failed unit has been repaired lies in [ , )y y dy+ ; ( )4 ,p t y dy  represents the probability that at time t  one unit 
is operating, one unit being repaired, one unit is waiting for repair, the system is good and the hours that the 
failed unit has been repaired lies in [ , )y y dy+ ; ( )5 ,p t x dx  represents the probability that at time t  three 
units are waiting for repair, the repairman is in vacation, the system is down and the elapsed repair time lies in 
[ , )x x dx+ ; ( )6 ,p t y dy  represents the probability that at time t  one unit being repaired, two unit is waiting 
for repair, the system is down and the hours that the failed unit has been repaired lies in [ , )y y dy+ ; 1, ,λ λ θ  
are positive constants; ( )xα  is the vacation rate function; ( )xµ  is the repair rate function. 

Throughout the paper we require the following assumption for the vacation rate function ( )xα  and the re-
pair rate function ( )xµ . 

General Assumption 1.1: The functions ( )xα  and ( ) :x R Rµ + +→  are measurable and bounded such that 

( ) ( ) ( )lim , lim , min , .
x x

x xα α µ µ µ α µ∞→∞ →∞
= = =  
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2. The Abstract Cauchy Problem 
To apply semigroup theory we use the same method in [5] to rewrite in this section the system ( )R , ( )BC ,
( )IC  as an abstract Cauchy problem ([6], Def.II.6.1) on the Banach space ( ), .X , where  
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To define the system operator ( ), ( )A D A  we introduce a “maximal operator” ( )( ),m mA D A  on X given as 
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To model the boundary conditions (BC) we take the “boundary space” 2X C∂ =  and then define “boundary 
operators” L  and K  as follows. 
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where [ ) ( ) ( ) ( )1
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0, ,xL C f f x f x dxϕ ϕ α
∞
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If the system operator ( ), ( )A D A  on X  is then defined as 

( ) ( ){ }, |m mAp A p D A p D A Lp Kp= = ∈ = , 

Then the above equations ( ) , ( )R BC  and ( )IC  are equivalent to the abstract Cauchy problem 
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By a direct computation we obtain the explicit form of the elements in ker( )mAγ −  as follows. 
Lemma 2.1: For ( )0γ ρ A∈ , we have 
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We define the operator 0 0( , ( ))A D A  as 
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We can give the form of Dγ  as follows, see [5]. 
Lemma 2.2: For each ( )0γ ρ A∈ , the operator Dγ  has the form 
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For ( )0γ ρ A∈ , the operator KDγ  can be represented by the 7 7× -matrix 
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To prove the asymptotic stability of the dynamic solution of the system we apply the following result, which 
can be found in [9]. 

Lemma 2.3 (The characteristic equation): Let ( )0γ ρ A∈ , then 
(i) ( ) ( )γ A 1 Kp p Dγσ σ∈ ⇔ ∈ . 

(ii) If ( )0γ ρ A∈  and there exists 0 Cγ ∈  such that ( )01 Kp Dσ∉ , then 

( ) ( )1A KDγγ σ σ∈ ⇔ ∈ . 

We obtained the following results in [5]. 
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Theorem 3.4: The operator ( ), ( )A D A  generates a positive contraction 0C -semigroup ( ) 0( )tT t ≥ . 
Theorem 3.5: The associated abstract Cauchy problem ( )ACP  is well-posed. 
Theorem 3.6: The system ( ) , ( )R BC  and ( )IC  has a unique positive dynamic solution 

( ) ( ) ( ) ( ) ( ) ( )0 1 2 3 4 5 6( ) ( , , , , , , , , , , , , ( , )p t p t x p t x p t x p t y p t y p t x p t y= . 

3. The Asymptotic Stability of the Dynamic Solution 
In this section, we will investigate the asymptotic stability of the dynamic solution of the system. We show first 
the following lemmas: 

Lemma 3.1: For the operator ( ), ( )A D A  we have ( )0 p Aσ∈ . 
Proof: By a straightforward calculation we see that the matrix 0KD  is column stochastic and thus 

( )01 Kp Dσ∈ . Applying Lemma 2.3 (i), we immediately obtain ( )0 p Aσ∈ . 
Using Lemma 2.3 (ii) we can show that 0 is the only spectral value of A on the imaginary axis. 
Lemma 3.2: The spectrum ( )σ A  of A satisfies ( ) { }σ A iR 0= . 
Proof: If , 0b b∈ ≠ ,then it is not difficult to derive that KD 1ai < , thus the spectral radius fulfills

r(KD ) KD 1ai ai≤ < . This implies 1 ρ(KD )ai∈ . By Lemma 2.3 (ii) we obtain that ( )ai Aσ∉  for all a R∈ ，

0a ≠ , i.e., ( ) { }0A iRσ =  
We can express the resolvent of A  in terms of the resolvent of 0A , the Dirichlet operator Dγ  and the 

boundary operator in the following way. 
Lemma 3.3: If ( ) ( )0A Aγ ρ ρ∈  ,then ( ) ( ) ( )1

0 0, , ( ) ,R A R A Id D R Aγγ γ γ−= + − . 
Lemma 3.4: The semigroup ( ) 0( )tT t ≥  generated by ( , ( ))A D A  is irreducible. 
Proof: We can see as in ([9], Lemma 3.9) that ( ),R Aγ  transforms any positive vector p X∈  into a strict-

ly positive vector. Using ([7], Def. C-III 3.1) this implies that the semigroup ( ) 0( )tT t ≥  generated by ( , ( ))A D A  
is irreducible.  

With this at hand one can then show the convergence of the semigroup to a one dimensional equilibrium point, 
see ([9], Th. 3.11). 

Theorem 3.5: The space X  can be decomposed into the direct sum 

1 2X X X= ⊕  

where ( )1 0( )tX fix T t kerA≥= =  is one-dimensional and spanned by a strictly positive eigenvector p̂ kerA∈  

of A . In addition, the restriction ( )
2 0( | )X tT t ≥  is strongly stable. 

Corollary 3.6: For all p X∈ , there exists α 0> , such that 

( ) ˆlim ,
t

T t p pα
→∞

=  

where ˆ ˆ, 0.kerA p p=   
Applying the above corollary, we now obtain our main result as follows. 
Corollary 3.7: The dynamic solution of the system ( ) , ( )R BC  and ( )IC  converges strongly to the 

steady-state solution as time tends to infinity, that is,  

( ) ˆlim ,. ,
t

p t pα
→∞

=  

where α 0>  and p̂  as in Corollary 3.6. 
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