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Abstract

We investigate Gaver’s parallel system attended by a cold standby unit and a repairman with mul-
tiple vacations. By analysing the spectral distribution of the system operator and taking into ac-
count the irreducibility of the semigroup generated by the system operator we prove that the dy-
namic solution converges strongly to the steady state solution. Thus we obtain asymptotic stability
of the dynamic solution of the system.
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1. Introduction

Repairable system is not only a kind of important system discussed in reliability theory but also one of the main
objects studied in reliability mathematics. ”Repairable” means that if a failure in the system occurs it can be re-
paired and then the system works normally again. The Gaver’s Parallel system, as one of the classical repairable
systems in reliability theory, has been given much attention in previous literatures, see [1]-[3]. In [4], the authors
studied Gaver’s parallel system attended by a cold standby unit and a repairman with multiple vacations and ob-
tained some reliability expressions such as the Laplace transform of the reliability, the mean time to the first
failure, the availability and the failure frequency of the system by using the supplementary variable method and
the generalized Markov progress method as well as the Laplace-transform technique. In [4], the authors used the
dynamic solution and its asymptotic stability in calculating the availability and the reliability. But they did not
discuss the existence of the dynamic solution and the asymptotic stability of the dynamic solution. In [5], we
proved the well-posedness and the existence of a unique positive dynamic solution of the system by using C,-
semigroup theory of linear operators from [6] and [7]. In this paper, we prove that the dynamic solution con-
verging to its static solution in the sense of the norm using the stochastic matrix and irreducibility of the corres-
ponding semigroup, thus we obtain the asymptotic stability of the dynamic solution of this system.
The system can be described by the following partial differential equations (see [4]).
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[L+ 2 mtn =2 ra()]m(tx).
(Lo 2 pn=22m (00 -[224 (0] p (1)
(Lo 2 e ) =2m (0 -[4+a()]pa 1)
® (%%]ps(ty——[zw (9)]ps(t.y),
[§+%Jp4(t,y):Zﬂpg(t,y)—[ﬂw(y)}p4(tly)’
(jt ;jpsa ) =4, (t.X)~a(x) s (1. %),
{§+%]pg(t,y)=ﬁp4(tvy)—#(y)Pe(tyy)

with the boundary condition

Po (1,0) = [ (X) Py (t.X)dx+ [ s(y) ps (. y) dy + (1),
P.(t,0)=p, (t,0) = ps (t.0) =0,

(BC) 0)= [ ar(x) py (tx)dx+ [ ae(y) P (t,y) dy,
0)=[; a(x)p, (t.x dx+j a(y)ps (t.y)dy,
ps (1,0) =] @ t,x)dx,

and the initial condition

(|C){PO(O.X) f ). where 5()():{1, x=0,

p,(0,x)=0,i=12,34,5,6, 0, x=#0

Here (t,x) € [0,oo)><[0,oo) v Po (t,x)dx gives the probability that at time t two units are operating, one unit
is under standby, the repairman is in vacation, the system is good and the elapsed repair time lies in [x, X+ dx) ;
P (t, x)dx represents the probability that at time t two units are operating, one unit is waiting for repair, the
repairman is in vacation, the system is good and the elapsed repair time lies in [x,x+dx); p,(t,x)dx
represents the probability that at time t two unit is operating, one unit is waiting for repair, the repairman is in
vacation, the system is good and the elapsed repair time lies in [x,x+dx); p,(t, y)dy represents the probabil-
ity that at time t two units are operating, one unit being repaired, the system is good and the hours that the
failed unit has been repaired lies in [y,y+dy); p, (t, y)dy represents the probability that at time t one unit
is operating, one unit being repaired, one unit is waiting for repair, the system is good and the hours that the
failed unit has been repaired lies in [y,y+dy); ps(t,x)dx represents the probability that at time t three
units are waiting for repair, the repairman is in vacation, the system is down and the elapsed repair time lies in
[x,x+dx); ps (t, y)dy represents the probability that at time t one unit being repaired, two unit is waiting
for repair, the system is down and the hours that the failed unit has been repaired lies in [y,y+dy); 1,4,,6
are positive constants; a(x) is the vacation rate function; u(x) is the repair rate function.

Throughout the paper we require the following assumption for the vacation rate function a(x) and the re-

pair rate function z(x) .
General Assumption 1.1: The functions «(x) and x(x):R, — R, are measurable and bounded such that

a= li_rlla(x),u: !i_r}];y(x),yw =min(a, u).
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2. The Abstract Cauchy Problem

To apply semigroup theory we use the same method in [5] to rewrite in this section the system (R), (BC),

(IC) as an abstract Cauchy problem ([6], Def.11.6.1) on the Banach space (X, |||, where

X =(L(R,)) *(L (R.)) x(L (R))x(L (R,))

and

2
Iol-351»

P=(Po (%), P1 (%), P2 (X),Ps(¥) P4 (¥),Ps (X), Ps(¥)) € X .

4
L(R,) +§" Pi "Lly(&) +|| Ps L (R,) +|| p6||L:E/(R+) !

To define the system operator (A, D(A)) we introduce a “maximal operator” (An, D(An )) on X given as

d
D, =D, :—&f ~[24+a(x)]f,

D, __dy ~[A+a(x)]f,

D,0 0 0 0 0 O ddx
2D, 0 0 0 0 0 D44=—d—yf—[21+u(y)}f,
020D, 0 0 0 0 |
A,=| 0 0 0D, 0 0 0 |, where D55=—@f—[i+#(y)]f'
0 0 021Dg 0 0 |
00420 0D O Dy =~ F~a(x)f,
0000 4 0D, d
DGB——&f—a(X)f,
d
|:)77 —d—yf—,u(y)f

To model the boundary conditions (BC) we take the “boundary space” 06X =C? and then define “boundary

operators” L and K as follows.

P (X) Po (X)) (Po(0)
P (x) P, () P, (0)
P, (X) P (X)| | p.(0)
L:D(A,) =X, | ps(y)|=L| ps(y)|=] ps(0)
P, (Y) P.(y)| | P(0)
Ps (X) ps(x) ps (0)
Ps (V) Ps(y)) (pe(0)
and
Po(X)) (200, 00 0) py(x)
P () 0000000 || p(x)
P, (X) 0000000 | p(x)
KI ps(¥)|=] 0, 000,00 || py(y) ]|,
p4(Y) 00¢ 00 0g, p4(Y)
Ps (X) 0000000 | ps(x)
Ps(y)) L0000 0g 0)(ps(y)




A. Haji

0

where ¢ L [0,0)—>C, f — ¢ ( f)=f;°a(x) f(x)dx, @: L,[0,0)—>C,f —>g02(f)=.[0
If the system operator (A,D(A)) on X isthen defined as
Ap=A,p,D(A)={peD(A,)|Lp=Kp},
Then the above equations (R),(BC) and (IC) are equivalent to the abstract Cauchy problem

u(y)f(y)dy.

d
%:Ap(t),te[o,oo),

p(0)=(5(x),0,0,0,0,0,0)" € X.

(ACP)

By a direct computation we obtain the explicit form of the elements in ker(y — A,) as follows.
Lemma 2.1: For yep(A,),we have

peker(y—A,) 1)
& p=(Po(X), Py (X), P, (%), Ps(¥). Pa(Y). Ps(X). Ps (¥)) € D(A,),

y+21)xfj'§(z(r)dz‘ y+22)xf'[gzz(r)dr 7(7+21)X7J‘ga(r)dr

po(x):cle’( ,pl(x):clxz/lxe’( +Cye :

P, (X)= cle’(y #Aplpale)ds (—4e""X —4ixe ™+ 4) +C, X 9 (rHAIlyalr)r (1— g M ) + c3e’(7 #Apfalr)er

D, (y) _ C4e—(7+21)y—jgy(r)dr D, (y) — ¢, x 2e—(y+/1)y7jgy(r)dr (l— ey ) n Cse’(”l)y’joyﬂ(f)df

2

ps (X) = cie 7ol (2xe* —3e " —4e™ +1) + c,e el (1-e)

—ox—(*a(z)d _ —yx—[Xa(r)d
+cye oot “(1-e?)+ce™ Joelr)or

P (Y) = c4e’”’f°y”(r)dr (1—e”‘y )2 +05e’”’J°y”(T)d’ (1—e”1y)+c7e’”’f°y”(’)dr.
We define the operator (A,,D(A))) as
D(A)={peD(A,)ILp=0}, Ap=A,p.
And then using ([8], Lemma 1.2), the domain D(An) of the maximal operator A, decomposes as
D(A,)=D(A)@ker(y-A,).
Moreover, sinceLis surjective,
L ey nny: (7 = An) = X
is invertible for each yep(A,), see ([8], Lemma 1.2]. We denote its inverse by
D, = (L lay-n)) " 10X > ker(y —A))

and call it “Dirichlet operator”.
We can give the formof D, as follows, see [5].
Lemma 2.2: For each yep(A,)), the operator D, has the form

D, 0 0 0 0 0 O
D, D, 0 0 0 0 O
D, D, D, 0 0 0 0
D=0 0 0 D, 0 0 0|
O 0 0 D, D, 0 O
D61 D62 D63 O 0 D66 0
o 0 0 D, D, 0 D,
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where

Dll —e —(y+22)x .[0 a(r)r Dlz -2 —(y+22)x joa(r)r Dzz _ e—(}/+2/1)x—jga(r)r

D,, = et ( e — 4 xe” 4), D,, = 26 Aol (1—e’“),

D33 —e (r+2)x=[g a( D44 — e—(7+2/1))’—joya( 54 — 2 (r+22)y-[3 (1—67“),
Dy, = e*(ﬂ/l))’*foya(r)r' D,, = e*}/X*_..ga(r)r (ZZXE_MX 3 _ge i +1)

De, = g el _gixy2, Dy, = g 7 loalo)r (1—e"X ) Dy = o 7o)

D74 _ e*?)’*foya(r)r (1_efyy)2, D75 _ e*ﬂ’*jga(r)r (1—97“), D77 _ efyyfjga(z)rl
For ye p(AO) , the operator KD, can be represented by the 7x7 -matrix
a, 0 0 &, 0 0 O
0O 0 0 0 0 O
0 0 0 0 0 O
KD,=la, a, 0 a, a 0 O
aSl a'52 a54 0 a'55 0
0O 0 0 0 0 O
a; a, a; 0 0 a; 0

where

;/+2A.)X Xo (r)dr

&y :J;OCO{(X)G dx, a, = .[0 ,U(y)e (r+22)y-[Ja(z )drdyl

a, = [ a(x)2ae NGy g = [ g (x)e e
= J‘Oﬂoﬂ(y)xze (r+22)x-[§a(z deX,a45 _ J‘;oolu(y)ef(ym)yfjoygz(r)dr7

a, = J'OM a(x)e Ve (ga-ix 45 ve X | 4)dx, a, = _|'0+w a(x)x pg (r+AIx-lalr)dr (1— g )dx,

(y+2)x=[ya(r)dr

00 - —yar T —
ag = [ (e’ dx,ag, = [ u(y)e” U @-e ) dy,

Ay = J';mﬂ(y)e-w-fé’a(r)dz (]_—e-Ay)dy'a57 _ J‘;”ﬂ(y)e—ry—ﬁa(r)drdy’

a, = J.(:ooa(x)efyx—jga(r)dr (2/1X672M 432 _ e +1)dx, a, = J;oca(x)efrxflga(r)dr 1- e7/1><)2 dx,

a, = “a(x)e B e ydx ay, = [, “ a(x)e e gy

To prove the asymptotic stability of the dynamic solution of the system we apply the following result, which
can be found in [9].

Lemma 2.3 (The characteristic equation): Let yep(A,), then
(i) veo, (A)<:>1€ o, (KDy).

(ii) If yep(A) and thereexists y, €C suchthat 1¢ o, (KD,), then
yea(A)@lea(KDy}.

We obtained the following results in [5].
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Theorem 3.4: The operator (A, D(A)) generates a positive contraction C,-semigroup (T (t)).,-
Theorem 3.5: The associated abstract Cauchy problem (ACP) is well-posed.
Theorem 3.6: The system (R),(BC) and (IC) has a unique positive dynamic solution

p(t) = (po (t- X), P (t- X), P, (t, X)! Ps (t, y)v Py (L Y), Ps (t, X)1 Ps (t, Y) .

3. The Asymptotic Stability of the Dynamic Solution

In this section, we will investigate the asymptotic stability of the dynamic solution of the system. We show first
the following lemmas:

Lemma 3.1: For the operator (A,D(A)) wehave Oco,(A).

Proof: By a straightforward calculation we see that the matrix KD, is column stochastic and thus
leo,(KD,) . Applying Lemma 2.3 (i), we immediately obtain Oe o, (A).

Using Lemma 2.3 (ii) we can show that 0 is the only spectral value of A on the imaginary axis.

Lemma 3.2: The spectrum o(A) of A satisfies o(A)NiR ={0} .

Proof: If beR,b=0,then it is not difficult to derive that |KD, <1, thus the spectral radius fulfills

r(KD,) <|KD,| <1. This implies 1ep(KD,). By Lemma 2.3 (ii) we obtain that ai ¢ o(A) forall aeR,
a#0,ie, o(A)NIR={0}

We can express the resolvent of A in terms of the resolvent of A, the Dirichlet operator D, and the
boundary operator in the following way.

Lemma3.3:If yep(A)Np(A)then R(y,A)=R(r,A)+(ld-D,)"R(7.A).

Lemma 3.4: The semigroup O’(t))tZO generated by (A,D(A)) isirreducible.

Proof: We can see as in ([9], Lemma 3.9) that R(y, A) transforms any positive vector pe X into a strict-
ly positive vector. Using ([7], Def. C-111 3.1) this implies that the semigroup (T (t))tZO generated by (A, D(A))
is irreducible.

With this at hand one can then show the convergence of the semigroup to a one dimensional equilibrium point,
see ([9], Th. 3.11).

Theorem 3.5: The space X can be decomposed into the direct sum

X=X ®X,
where X, = fix(T (t)),., = kerA is one-dimensional and spanned by a strictly positive eigenvector p e kerA
of A. Inaddition, the restriction (T (t)ly,)., is strongly stable.
Corollary 3.6: Forall pe X, there exists a >0, such that
fmT(t)p=ap,

where kerA=p, p>0.
Applying the above corollary, we now obtain our main result as follows.
Corollary 3.7: The dynamic solution of the system (R),(BC) and (IC) converges strongly to the
steady-state solution as time tends to infinity, that is,
limp(t,.)=ap,

t—>o

where o>0 and p asin Corollary 3.6.
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