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Abstract 

In this paper, we introduce Farey triangle graph ( )  NF GΔ , Farey triangle matrix ( ) 
 

k
NFΔ , com-

plementary Farey triangle graph ( ) ′  NF GΔ  and complementary Farey triangle matrix ( ) ′ 
 

k
NFΔ , 

and we derive some properties of the following matrices. 
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1. Introduction 
A Farey sequence of order N is a set of irreducible fractions between 0 and 1 arranged in an increasing order, the 
denominators of which do not exceed N. NF  could be obtained from 1NF −  by calculating the mediant be-
tween two successive values from which it was derived. In [1]-[3] Farey graph and Farey matrix have been con-
structed from Farey sequence of order N. In [4] Farey partition is derived and discussed some matrix property 
from Farey sequence. In [5] Farey graph is introduced in iterative process. In this paper we construct Farey tri- 
angle graph ( )Δ NF G   , in iterative process, and it is constructed from the method of mediant property as fol-

lows in the Farey sequence. From the co-ordinates of this graph we form a Farey triangle matrix ( )Δ
k
NF 

  . Si-

milarly we construct complementary Farey triangle graph ( )NF G ′ ∆   and complementary Farey triangle ma-

trix ( )k
NF∆
′ 

  . 
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2. Farey Triangle Graph 
2.1. Definition: Farey Triangle Graph: ( )  NF GΔ  
Farey triangle graph of order N is constructed from Farey Sequence. Consider X and Y axes with vertices as Fa-
rey Sequnence in [ ]0,1 . The Farey triangle graph of order N is formed from Farey triangle graph of order 

1N − , iteratively as Farey sequence. In this graph, vertices from X to Y axis is joined only if the vertices (or Fa-
rey fractions) are same to obtain a Farey triangle.  

2.2. Construction of Farey Triangle Graph 

The Farey triangle graph of order 1 begin with vertices 
0
1

 and 
1
1

 in both axes. The vertex 0 0,
1 1

 
 
 

 is the ori- 

gin of the Farey triangle graph of order 1. In this graph join the vertices when X and Y axes have the same frac-
tions to obtain a Farey triangle. ( )2ΔF G    is constructed from ( )1ΔF G   . In this graph the vertices are in-
serted by the method of the mediant between each pair of consecutive fractions in both axes of ( )1ΔF G   . Si- 
milarly, we follow the same method to obtain ( )Δ NF G    from ( ) 1Δ NF G

−
   . The Farey triangle graph 

( )Δ NF G    of order N can be constructed from Farey triangle graph ( ) 1Δ NF G
−

    by using the Farey sum op-

eration denoted as ⊕ . In ( ) 1Δ NF G
−

    the vertices in X and Y axes are irreducible fractions in Farey sequence 

of order 1N − . For each edge in ( ) 1Δ NF G
−

    introduced in iteration 1N − , ( )Δ NF G    could be obtained  

from ( ) 1Δ NF G
−

    by calculating the mediant between each pair of consecutive fractions in both axes of 

( ) 1Δ NF G
−

   . Some illustrations are presented below: Figures 1-4 denote the Farey triangle graph of different 
order, from this graph we define Farey triangle matrix. 

In the above illustrations, the like coloured lines denote the edges inserted in successive iterations.  
 

 
Figure 1. Farey triangle graph of order 1.                      

 

 
Figure 2. Farey triangle graph of order 2.                    
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Figure 3. Farey triangle graph of order 3.                   

 

 
Figure 4. Farey triangle graph of order 4.                       

2.3. Farey Triangle Matrix 

Let ( ), ,a b N  be a Farey triangle. The vertices of the triangle are clearly Farey fractions. Let the abscissa be 

ax
N

=  and ordinate 
by
N

= , we obtain 

2 2 2 2
2 2

2 2

21 .a b a b abx y
N N N N

+   + = + = = −   
   

 

The Farey triangle graph forms a matrix [6],  

( )Δ

0 0
0 0k

N

a
F b

N N N

 
   =   
  

  

where a and b are the numerator of Farey fractions and c denote the order of the Farey sequence. k denote the 
number of vertices inserted to move from 1NF −  to NF . 

Illustrations 
1) Farey triangle matrix of order 2. 

( )1Δ 2

0 1 0
0 0 1
2 2 2

F
 
   =   
  

 

2) Farey triangle matrix of order 3 
Farey triangle graph of order 3 is derived from Farey triangle graph of order 2. Here two vertices are inserted, 

so two Farey triangle matrices are constructed. 



A. Gnanam, C. Dinesh 
 

 
741 

( ) ( )1 2
Δ Δ3 3

0 1 0 0 2 0
0 0 1 , 0 0 2
3 3 3 3 3 3

F F
   
      = =      
      

 

2.4. Theorem 
The sum of the determinants of the Farey triangle matrices of prime order is given by 

( )
4 3 21

Δ
1

2 3 .
6

p
k
p

k

p p pF
−

=

− +
=∑  

Proof: 
In Farey triangle graph of prime order ( )Δ pF G 

  , 1p −  vertices are introduced. 

The ordinates ax
p

= ; by
p

=  are connected only if a b=  and it forms a matrix  

( )Δ

0 0
0 0k

p

k
F k

p p p

 
   =   
  

 where 1, 2,3, , 1.a b k p= = = −  

The sum of the determinant of these matrices is 

( ) ( )
1

22 2
Δ

1

0 1 0 0 2 0 0 1 0
0 0 1 0 0 2 0 0 1 1 2 1

p
k
p

k

p
F p p p

p p p p p p p p p

−

=

−
 = + + ⋅⋅⋅ + − = + + ⋅⋅⋅ + − ∑  

( )
4 3 21

Δ
1

2 3 .
6

p
k
p

k

p p pF
−

=

− +
=∑  

2.5. Theorem 

The sum of Farey triangle matrices of prime order is 
( )33

3

1
4

p p
I

−
. 

Proof: 
The Farey triangle matrices of prime order  

( )Δ

0 0
0 0k

p

a
F a

p p p

 
   =   
  

  

where 1, 2, , 1a k p= = − . 

( ) ( ) ( ) ( )

( )

( )

( ) ( ) ( )

( )

1
1 2 1

Δ Δ Δ Δ
1

33

0 1 0 0 2 0 0 1 0
0 0 1 0 0 2 0 0 1

1
0 0

2 0 1 0
1 1

0 0 0 0 1
2 4

1 1 11 1 1

p
k p
p p p p

k

p
F F F F p

p p p p p p p p p

p p

p p p p

p p p p p p

−
−

=

−     
            = + + ⋅⋅⋅ + = + + ⋅⋅⋅ + −            
          

− 
 
   
 − −  = =   
    − − − 
 
 

∑
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1 3

2 3

2 3

0 1 0 1 1 1
0 0 1 ~ 0 0 1
1 1 1 0 1 0

1 1 1
~ 0 1 0

0 0 1

1 1 1
~ 0 1 0

0 0 1

0 1 0 1 0 0
0 0 1 ~ 0 1 0
1 1 1 0 0 1

R R

R R

R R

    
     ↔    
        
  
   ↔  
    
  
   ↔  
    

    
    
    

        



 

( ) ( )3 33 3

3

1 0 0
1 1

0 1 0
4 4

0 0 1

p p p p
I

 
− − = = 

  

 

( ) ( )331

Δ 3
1

1
.

4

p
k
p

k

p p
F I

−

=

−  = ∑  

3. Complementary Farey Triangle Graph 
3.1. Definition 

The complementary Farey triangle graph ( )Δ NF G ′    of order N is a Farey triangle with edges as the line join-
ing vertices whose numerators are complementary with respect to the order of the graph and it forms comple-
mentary Farey triangle.  

3.2. Construction of Complementary Farey Triangle Graph 

The complementary Farey triangle graph ( )Δ NF G ′    of order 2N ≥  can be constructed from complemen-

tary Farey triangle graph ( ) 1Δ NF G
−

′   . The vertices are inserted as in Farey triangle graph. In this graph the  

vertices are connected if the sum of the numerators of the fractions in each vertices of X and Y axis is equal to 
the order of the complementary Farey triangle graph. In complementary Farey triangle graph of order 2, we be- 

gin with vertices 
0 1,
1 2

 and 
1
1

 in both axes. The vertex 0 0,
1 1

 
 
 

 is the origin of the complementary Farey  

triangle graph. In this graph the vertices are inserted by the method of the mediant between each pair of consec- 

utive fractions in both axes of ( )2ΔF G ′   . We follow the same method to obtain ( )NF G ′ ∆   from ( ) 1Δ NF G
−

′   .  

Figures 5-7 denotes the complementary Farey Triangle Graph of different orders, from this graph we define 
Complementary Farey Triangle Matrix. Some illustrations are presented below: 

3.3. Complementary Farey Triangle Matrix 
The vertices of the complementary Farey triangle namely Farey fractions are used to construct this matrix. Let 

the abscissa be 
ax
N

=  and ordinate 
N ay

N
−

= . Join these vertices to form a complementary Farey triangle 

graph and correspondingly complementary Farey triangle matrix as given below. 
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Figure 5. Complementary Farey triangle graph of order 2.                

 

 
Figure 6. Complementary Farey triangle graph of order 3.                  

 

 
Figure 7. Complementary Farey triangle graph of order 4.               

 

( )Δ

0 0
0 0k

N

a
F N a

N N N

 
′    = −  

  

 

where a and b are the numerator of Farey fractions and c denote the order of the Farey sequence. k denote the 
number of vertices inserted to move from 1NF −  to NF . 

3.3.1. Illustrations 
1) Complementary Farey triangle matrix of order 2. 

( )1Δ 2

0 1 0
0 0 1
2 2 2

F
 

′    =   
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2) Complementary Farey triangle matrix of order 3 

( ) ( )1 2
Δ Δ3 3

0 1 0 0 2 0
0 0 2 , 0 0 1
3 3 3 3 3 3

F F
   

′ ′      = =      
      

 

3.3.2. Remark 

( ) ( )Δ Δ
k N k
N NF F −′ ′   =    . 

3.4. Theorem 
The sum of determinants of the complementary Farey triangle matrices of prime order p is  

( ) ( )
1

1 2

Δ
1 1

2

p
p

k
p

k k
F p k p k

− 
 −  

= =

′  = − ∑ ∑  

Proof: 
Consider the complementary Farey triangle matrices of prime order. 

( )Δ

0 0
0 0k

p

a
F p a

p p p

 
′    = −  

  

; ( )Δ

0 0
0 0p k

p

p a
F a

p p p

−
− 

′    =   
  

 

where 11,2, ,
2

pa k − = =  
 

  

( ) ( ) ( ) ( )

( )

1 1 1
1 2 2 2

Δ Δ Δ Δ
1 1 1 1

1
2

1

2

10 0
20 1 0 0 2 0

12 0 0 1 0 0 2 0 0 2 .
2

p p p
p

k k p k k
p p p p

k k k k

p

k

F F F F

p

pp p p k p k
p p p p p p p p p

− − −     
     −      

−

′= = = =

− 
 
 

=

 
′ ′ ′ ′        = + =        

  
 − 
 
 

+ = − + − + + = − 
 
 
  

∑ ∑ ∑ ∑

∑
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