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Abstract 
This paper proves the existence and uniqueness of a time-invariant measure for the 2D Navier- 
Stokes equations on the sphere under a random kick-force and a time-periodic deterministic force. 
Several examples of deterministic force satisfying the necessary conditions for a unique invariant 
measure to exist are given. The support of the measure is examined and given explicitly for sever-
al cases. 
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1. Introduction 
The existence and uniqueness of a time-invariant measure for the Navier-Stokes equations has been the subject 
of much recent research. A major advance was achieved in [1] where it was shown that, under a random bounded 
kick-type force, the Navier-Stokes system on the torus (bounded domains with smooth boundaries and periodic 
boundary conditions) has a unique time-invariant measure. Subsequently, the argument was refined to a more 
flexible coupling approach in [2], which paved the way for extending the argument to the case of a white-noise 
random force [3]-[5]. Unfortunately, these methods focused on the equations on the torus and, with the excep-
tion of the white-noise random force, the case of zero deterministic forcing on the system. Of course, for meteo-
rological purposes, it is desirable to consider the equations on the sphere and to require the deterministic force to 
be nonzero. This was done in [6], where a time-invariant measure for the Navier-Stokes equations on the sphere 
was shown to exist both under a random bounded kick-type force with a time-independent deterministic force 
and under a white-noise force. 

This paper extends the work in [6] to include time-periodic deterministic forces. A similar result was estab-
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lished in [7] for the torus and with a random perturbation activated by an indicator function. Even though the 
random force in [7] allowed more general time-dependence, stronger assumptions on the regularity of both the 
random force and the deterministic force are needed. We instead use a random perturbation activated by a Dirac 
function as in [2] [6] to allow a broader class of random and deterministic forces through weaker regularity as-
sumptions and to highlight the similarities between the time-independent and time-periodic cases. Furthermore, 
the more general case of a squeezing-type property of the deterministic equations is included, allowing for more 
general time-periodic deterministic forces. 

The first section uses a combination of the approaches in [8]-[11] to define each of the terms in the Navier- 
Stokes equations on the sphere. Of utmost importance are the eigenvalues of the Laplacian term which allow the 
analysis to proceed as in the case of flat domains. In addition, we consider the Navier-Stokes equations under 
time-periodic forcing, establishing conditions for there to be a limiting solution that is periodic. By extending 
results in [6], several cases are considered where the period of the unique solution is the same as the force. In 
particular, if a solution has only latitudinal dependence of a particular form or is very “close” to having this type 
of latitudinal dependence then the solution is unique with the same period as the force. 

The second section presents the main theorem, which establishes the existence and uniqueness of an invariant 
measure for the kicked equations with a time-periodic deterministic external force. The proof of the main theo-
rem is done by proving that necessary conditions hold for the applicability of Theorem 3.2.5 in [12]. As will be 
seen, the periodicity of the deterministic force allows the argument for stationary forces to be applied to the 
time-periodic case. The necessary conditions for the main theorem are shown for several cases including a con-
traction-type property and a squeezing-type property with “large” random kicks. The main idea behind the con-
traction-type property is the exponential stability of solutions, i.e., the contraction of the flow to a unique solu-
tion, while the squeezing-type property is related to the idea of determining modes ([13], p. 363) and generalizes 
the concept of a finitely stable point introduced by the author in [6]. More precisely, if the projection of the ini-
tial conditions onto the first M eigenfunctions is close enough then the solutions will converge. 

The third section recalls work done by the author in [6] describing the support of the measure. The support is 
described both in general and specifically for several examples. By combining results in [6] [14], the support of 
the measure is described in terms of a unique time-periodic solution in several cases, including some of potential 
meteorological interest. 

2. The Navier-Stokes Equations on the Sphere 

Let 2M S=  be the 2-dimensional sphere with the Riemannian metric induced from R3. Let ( ),φ λ  be the 

spherical coordinate system on M, where π π,
2 2

φ  ∈ − 
 

 is the co-latitude (the geographical latitude) and 

( )0,2πλ ∈  is the longitude, and, thus, ( )cos cos ,cos sin ,sinφ λ φ λ φ=n  is the outward normal to M in R3. Let 

Hφ φ
∂

=
∂

n
 and Hλ λ

∂
=
∂

n , then the unit vectors 

1 1,
HH λφ φ λ

∂ ∂
= =

∂ ∂
n nφ λ  

form a basis for the tangent space of M, denoted TM, and induce on M the Reimannian metric 

( ) 1 0
.

0 cosijg
φ

 
=  
 

 

The Navier-Stokes equations on the rotating sphere are 

00

,
div 0, ,

t

t

l pν

=

∂ +∇ − ∆ + × +∇ =

= =
uu u u n u f

u u u
                             (1) 

where n is the normal vector to the sphere, 2 sinl φ= Ω  is the Coriolis coefficient, Ω  is the angular velocity 
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of the Earth, and “×” is the standard cross product in 3 . 
The operators div  and ∇  in (1) have their conventional meanings on the sphere, i.e. for functions ψ  and 

vectors u 

( )1 1, div cos ,
cos cos

u uλ φ
ψ ψψ φ
φ φ λ φ λ φ

   ∂ ∂ ∂ ∂
∇ = + = +   ∂ ∂ ∂ ∂   

uφ λ  

where u uλ φ= +u λ φ . 
To define the covariant derivative ∇u  and the vector Laplacian ∆ we first define the curl of a vector in terms 

of extensions. For any covering { }iO  of M by open sets, there is a corresponding set of “cylindrical domains” 
iO  that cover a tubular neighborhood of M, M . In each iO  introduce the orthogonal coordinate system 

1 2 3, ,x x x   , where 3x− < <   is along the normal to M and for 3 0x =  the coordinates 1 2,x x  agree with the 
spherical coordinates. 

For a vector TM∈u  there is a vector u  defined in M  such that the restriction to M satisfies  
M TM= ∈u u . For a vector field w on the sphere, not necessarily tangent to it, the curl of w is a vector field 

along the sphere defined as ([9], p. 562) 

: .MCurl Curl=w w  

For a vector field normal to M, the curl is well-defined and is tangent to M. However, for a vector field in TM 
the curl is not well-defined but the third component of the curl, denoted curln, is well-defined. Due to this, define 
the following operators ([11], p. 344). 

Definition 1. Let u be a smooth vector field on M with values in TM and let ψ  be a smooth vector field on 
M with values in TM ⊥ , i.e. ψ= nψ  for ψ  a smooth scalar function (thus we identify ψ  with the function 
ψ ). Denote the extensions u  and ψ . Then for x M∈ , 3y∈  define 

( ) ( ) ( )curl : curl :
y x

x x Curl yψ
=

= = ψ ψ  

( ) ( ) ( )( ) ( )curl : ,n y x
x Curl y y y

=
= ⋅u u n n  

where on the right side Curl denotes the standard curl operator in 3  and these definitions are independent of 
the extensions ([9], p. 562). 

The covariant derivative and vector Laplacian are now defined in terms of the curl and curln operators ([9], p. 
562-563). 

Definition 2. The covariant derivative on the sphere is given by 
2

: curl .
2 n∇ = ∇ − ×u

u
u u u                                 (2) 

Remark 3. As with the curl and curln operators, it is possible to define the gradient, divergence, and covariant 
derivative in terms of extensions (see [8] [9]). However ([11], p. 344), 

( )curl , curl div .nψ= − ×∇ = − ×n v n n vψ  

Thus both curl and curln, and thus the gradient, divergence, and covariant derivative, can be defined without re-
sorting to extensions. 

Definition 4. The vector Laplacian on the sphere is given by ([9], p. 563) 

: div curl curl .n∆ = ∇ −u u u                                 (3) 

Thus, the Navier-Stokes equations on the two-dimensional sphere, i.e., for vector fields on M, are: 
2

00

curl curlcurl ,
2

div 0, .

t n n

t

l pν

=

∂ +∇ − × + + × +∇ =

= =

u
u u u u n u f

u u u
                    (4) 
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2.1. Existence and Uniqueness for the Deterministic Equations 
Let ( )pL M  and ( )pL TM  be the standard pL -spaces of the square integrable scalar functions and tangent 
vector fields on M, respectively. The inner products for ( )2L M  and ( )2L TM  are given by: 

( ) ( ) ( )2
2, : d , , ,L M M

u v uv M u v L M= ∈∫  

( ) ( ) ( )2
2, : d , , ,L TM M

M L TM= ⋅ ∈∫u v u v u v  

with the induced norm on 2L  denoted 2L⋅ . Note that these are integrals over oriented manifolds and thus are 
defined intrinsically using a partition of unity. Locally, however, d cos d dM φ φ λ= . 

Let ψ  be a scalar function and v be a vector field on M. For 0s ≥ , the standard Sobolev spaces Hs have 
norm 

( ) ( ) ( )2 2

2 2: ,s
s

H M L M L M
ψ ψ ψ ψ= + −∆  

and 

( ) ( ) ( )2 2

2 2: , .s
s

H TM L TM L TM
= + −∆u u u u  

By the Hodge Decomposition Theorem, the space of smooth vector fields on M can be decomposed as ([9], p. 
564): 

( ) ( ){ } ( ){ }
( ){ } 0

: grad , : curl ,

: grad , .

C TM C M C M

C M V

φ φ φ φ

φ φ

∞ ∞ ∞

∞

= = ∈ ⊕ = ∈

= = ∈ ⊕

u u u u

u u
 

Define the following closed subspaces of ( )2L TM  and ( )1H TM  respectively: 

Definition 5. 

( )( )1: curl ,H H M=  

with norm 

( )2 .H L TM=u u                                     (5) 

Note, H is the L2 closure of V0 and thus div 0=u  for H∈u . 

Definition 6. 

( )( )2: curlV H M=  

with norm 

( )2curl .nV L TM=u u                                   (6) 

Note, V is the H1 closure of V0 and thus div 0=u  for V∈u . Furthermore, V is compactly embedded into H, 
and by the Poincare Inequality (Equation (41)) the V norm is equivalent to the H1 norm for divergence-free vec-
tor fields. 

Definition 7. For a vector field u, define the Laplacian on divergence-free vector fields as 

: curlcurl .nA =u u                                    (7) 

Furthermore, if div 0=u  then A = −∆u u . 
The following theorem implies that the analysis used for the stochastic Navier-Stokes system on flat domains 

can be used for the system on the sphere. Its proof is identical to the case of flat domains with smooth boundary 
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conditions, see [13], pp. 162-163 or [9], p. 565. 

Theorem 8. The operator curlcurlnA =  is a self-adjoint positive-definite operator in H with eigenvalues 
1 20 < λ λ≤ ≤  with the only accumulation point ∞ . Moreover, the eigenvalues correspond to an orthonor-

mal basis in H (orthogonal in V). 

Let HP  be the projection onto H. Since the projection commutes with t∂  and A, the projection of the 
Navier-Stokes equations onto H is 

( ) ( ) 00, , ,t tA B Cν
=

∂ + + + = =u u u u u f u u                          (8) 

where ( ) ( ) ( ), HB C P l+ = ∇ + ×uu u u u n u . Furthermore, for all V∈v  

( ) ( ) ( ), , , , , ,HH
B C b l+ = + ×u u u v u u v n u v                         (9) 

where ( ), ,b u v w  is the standard trilinear form associated with the Navier-Stokes equations, i.e. 

( )
3

, 1
, , d ,j i j jM

i j
b u D v w xπ

=

= ∑ ∫u v w                              (10) 

where π  is the orthogonal projection onto TM ([9], p. 561), and the trilinear terms satisfies estimates analog-
ous to those in the case of flat domains, see Lemma 12. 

We now state the existence and uniqueness of solutions to the deterministic Navier-Stokes equations in terms 
of the projected equations, as is standard. 

Theorem 9. Suppose ( )2 0, ;L T H∈f  and 0 H∈u  then a solution of Equation (8) exists uniquely and 
( ) [ ]( )2 0, ; 0, ;L T V C T H∈u  . If 0 V∈u  then the solution is strong, i.e. ( )( ) [ ]( )2 0, ; 0, ;L T D A C T V∈u    

and ( )2d 0, ;
d

L T H
t
∈

u . 

The proof is the same as the case of bounded domains with smooth boundaries and periodic boundary condi-
tions (see [13], pp. 245-254 and [9], Theorem 2.2). 

2.2. Time-Periodic Navier-Stokes Equations on the Sphere 
Let the deterministic force ( )0, ;L H∞∈ ∞f  (thus ( )2 0, ;L T H  for any T < ∞ ) be periodic with period T > 0. 
While Theorem 9 gives the existence of a strong solution to the Navier-Stokes equations on the sphere, it will be 
necessary to know the behavior of the system under a periodic force. Toward that end, we recall a theorem from 
[14], p. 19. 

Definition 10. Let = −w u v  be a perturbation of the solution u of the Navier-Stokes equations. u is expo-
nentially stable if there exist numbers , , 0Aδ α >  such that every perturbation at time 0t , with ( )0 0t=w w  
and 0 H δ<w  satisfies 

( ) ( ) ( ) ( )0
0 0e , for all .t t

HH H
t t t A t tα− −− = ≤ ≥u v w w                    (11) 

δ  is called the stability radius. 

Theorem 11. Suppose there exists a globally defined solution to the Navier-Stokes equation with initial con-
dition in H, has 10t HS u  bounded, and is exponentially stable. If f is time-periodic with period T then there 
exists a time-periodic solution ∞u  with period kT for some integer k, such that 

( )10 e , some 0, as .t
t t HS S O tα α−

∞− = > →∞u u                      (12) 

If the stability radius δ is large enough or the period is small enough then T T∞ = . In all cases, ∞u  is expo-
nentially stable. 

While the theorem in [14] assumes that the initial condition is in H1, this is for 10t HS u  to be bounded. By 
Theorem 9 (or Equation (55)) this norm is bounded for 0 H∈u  and any t > 0. Furthermore, Theorem 11 im-
plies convergence in H and the proof in [14] is easily adapted to show exponential convergence in H instead. 
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It is well-known that if the force is small enough (see Remark 33) then the stability radius is infinite and thus 
there is a unique exponentially stable solution with the same period as the force that all other solutions converge 
to. We conclude this section by examining two more cases where the stability radius is infinite. The proofs of 
the following lemmas are found in the Appendix. The main idea behind both of the lemmas is that the (spherical) 
scalar Laplacian commutes with longitudinal derivatives, allowing for terms in the calculations only dependent 
on latitude to vanish. 

Definition 12. A solution to the Navier-Stokes equations, u, is called zonal if for each fixed t, ( )tu  is only a 
function of latitude, i.e. the function has no longitudinal dependence. 

Lemma 1. Suppose that the time-periodic force ( )0, ;L H∞∈ ∞f  is such that there is a zonal solution of the 
form g(t)curl sin(ϕ). Then the solution is unique with the same period as f. 

Remark 13. For a stationary force, it is sufficient that the force is zonal to have a stationary zonal solution 
([10], p. 988) which follows since A forms an isomorphism between the spaces ( )D A  and H and for u zonal 

( ) ( ) ( ) ( ), , 0.
H V

B C C B C+ ≤ + =u u u u u u  

Analogously, the Stoke’s equation t Aν∂ +u u  forms an isomorphism between the spaces 

( )( ) ( ) ( ) ( ){ } ( )2 2 2, 0, ; , 0, ; , 0 and 0, ; .L T D A L T H T L T H′∈ ∈ =u u u u u  

Thus, to have a zonal solution it is sufficient that force is zonal. (The proof that the equations form an iso-
morphism is analogous to the result in [15], Lemma 3.1, p. 27 or [16], Chapter 4, Section 15.) 

Lemma 2. Suppose that ( )0, ;L H∞∈ ∞f  is a force that generates a zonal solution of the form g(t)curl 
sin(ϕ). Then there exists 0δ >  such that for any force ( )0, ;L H∞∈ ∞g  such that ( )0, ;L H δ∞ ∞

− <f g  there is 
a unique globally exponentially stable solution to the Navier-Stokes equations. 

Definition 14. We define an almost zonal solution to be a solution guaranteed by Lemma 2. 

It is worth noting that while Lemma 2 allows for nonzonal solutions, they are only a “small” perturbation 
from being zonal. 

3. The Main Theorem 
This section presents the main theorem on the existence and uniqueness of a (time-)invariant measure for the 
Navier-Stokes system with random kicks and a time-periodic deterministic force, where time-invariance is un-
derstood to mean that the random variables generated by restricting the solutions to instants of time proportional 
to the period of the deterministic forcing term have a unique stationary probability distribution which all other 
distributions converge to exponentially (i.e. it is exponentially mixing). A similar result in [7] established that 
the Navier-Stokes equations on the torus have a unique invariant measure under a deterministic time-periodic 
forcing. While the random force considered in [7] allows for more generality in the sense of time-dependence, 
the random force and the deterministic force require more regularity than will be assumed in this paper. Instead 
we use a bounded random kick-force as in [2] [6] to allow for a larger class of deterministic forces through 
weaker regularity assumptions and to highlight similarities to the time-independent case which are not as evident 
in [7]. In particular, we use a modified version of Theorem 3.2.5 in [12] which focuses on the properties of the 
solution operator and the perturbed flow, which are used more implicitly [7]. In addition, we consider cases of 
potential meteorological interest and more general deterministic forces than allowed in [7]. 

3.1. The Perturbed Navier-Stokes Equations 
Consider the Navier-Stokes system with forcing ( )0, ,L H∞∈ ∞f  time-periodic with period T, and a random 
kick-force g bounded in H: 

( ) ( )

( ) ( )
1

, ,

, , .

t

k kT k k H
k

A B C

x t H k

ν

η δ
∞

=

∂ + + + = +

= ∈ < ∞ ∀∑

u u u u u f g

g η η
                         (13) 
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The notation from now on will be: 
• 0tS v  is the solution of the deterministic equation with initial condition 0 H∈v  at time 0t ≥ . 
• For simplicity of notation take the period as 1T =  and denote 1S S= . 
• ( )0

tu v  is the solution of (13) with initial condition 0v  at time 0t ≥ . 
Then 

( )
( ) ( ) ( )
( ) ( )

0
0 0

1
0 0 1

0 0

, 0,1, 2,

, 0 1, 0,1,2,

k k
k

k k

S x k

S kτ
τ τ

+
+

+

=

= + =

= ≤ < =

u v v

u v u v

u v u v





η                          (14) 

In other words, the solution between kicks is given by the flow of the deterministic system with time-periodic 
forcing. Notice that due to the periodicity of the force, if all the kicks were zero then for any positive integer n, 

( )0 0 .n
nS =v u v  
Following [2], pp. 356-357, assume the kicks satisfy: 

Condition 15. Let { }je  be the orthonormal basis for the Hilbert space H, then 

2
0

1 1
, 0, ,k j jk j j j

j j
b b B bζ

∞ ∞

= =

= ≥ = < ∞∑ ∑eη                           (15) 

for { }jkζ  a family of independent, identically distributed real-valued variables, with 1jkζ ≤  for all ,j k . 
Their common law has density jp  with respect to Lebesgue measure where jp  is of bounded variation with  
support in the interval [ ]1,1− . Furthermore, for any 0> , ( )d 0.jr

p r r
<

>∫ 
 

For a given positive integer k and 0v , the Markov transition measure ( )0, ,.kβ v  is defined as 

( ) ( ){ } ( )0 0 0, , , 0, , ,kk k H Hβ Γ = ∈Γ ≥ ∈ Γ∈v u v v   

where ( )H  is the Borel σ -algebra of H. The Markov transition measure is the probability that the stochas-
tic flow with initial condition 0v  is in the set Γ  at time k, i.e. ( )0 #

k u v . 
The Markov semigroup kβ  on bounded continuous functions is defined by 

( ) ( )( ) ( ) ( ), ,d ,k
k H
h h h kβ β= = ∫v u v z v z  

where :h H →   is a bounded continuous function. 
Definition 16. A measure ( )P Hµ∈  is called invariant if kβ µ µ∗ =  where ( )P H  is the space of proba-

bility measures on H and 

( ) ( ){ } ( ) ( )d , .k
k H

Hβ µ µ∗ Γ = ∈Γ Γ∈∫  u v v  

The next two definitions deal with behavior of the deterministic flow and are necessary for the statement of 
the main theorem. 

Definition 17. We say that there is an asymptotically stable solution if for some 1q < , for all 0R > , and 
for all 0t ≥  

( ) ( )0 0 0 0 0 0,t
t t HH HS S C R q B R− ≤ − ∀ ∈u v u v u v                     (16) 

where ( )C R  can depend on the norm of the force and ( )HB R  is the ball of radius R centered at 0 in H. 

Notice that an asymptotically stable solution is exponentially stable for any radius 0δ > . 
At minimum the following satisfy condition (16): 

• =f 0  and “small” forces, see Remark 33. 
• Time-periodic forces that give zonal flow of the form g(t)curl sin(ϕ), see Lemma 1. 
• Time-periodic forces that give almost zonal flow, see Lemma 2. 

While both zonal and almost zonal flow are of potential meteorological interest, Condition (16) is actually re-
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strictive since it guarantees that the exponentially stable solution is unique and that all other solutions converge 
to it exponentially. Thus it is of interest to consider more general deterministic forces than just the ones that sa-
tisfy Condition (16). 

Note that since the Navier-Stokes equations have an absorbing set ([9], p. 572) any asymptotically stable so-
lution is in a ball of finite radius in H, call it ( )D f  (see Equation (19)). In addition, an asymptotically stable 
solution guarantees that two deterministic solutions with different initial conditions will become arbitrarily close 
together as t →∞ . In the same way, any point that locally acts like an asymptotically stable solution will be a 
(local) contraction of the flow and should be considered. However, since it will be sufficient for the random 
perturbations to be finite-dimensional (see Theorem 20), it will be sufficient for the solution to be locally stable 
in a finite number of dimensions. 

Definition 18. Let ( )D f  be the radius of the deterministic absorbing set (i.e. as in Equation (19)) and MP  
be the projection onto the first M eigenfunctions. A point ( )( )HB D f∈u  is called finitely stable if for some 

1M ≥ , for some 0δ > , for any 0>  and for all ( )( )HB D f∈ +v   satisfying M M HP P δ− ≤u v , 

( ) 0.t t H
S S− →u v                                   (17) 

In other words, if the finite-dimensional projections are “close enough”, then the solutions converge. 

A finitely stable point captures the same concept as determining modes ([13], page 363) and satisfies the con-
ditions of Theorem 11 (the stability radius and δ from Definition 18 can be taken the same). Furthermore, if δ is 
large enough relative to T then the periodic solution converged to has period T. 

While the assumption of a finitely stable point allows for the possibility of multiple solutions, the assumption 
also has the disadvantage that we will need additional assumptions on the structure of the kicks. 

Definition 19. The following is called the big kick assumption. Let M be as in Definition 18. For some 
N M≥  let the ib  from Condition 15 satisfy 

( )1

1 2

2 ,
2 for 2 ,

0 for .

j
j

j

b D f
Db j M

b M j N

λ

≥

≥ ≤ ≤

> < ≤

                               (18) 

where ( )D D f=  is the same as in (19) and jλ  is the eigenvalue corresponding to ( )j xe . 

By Equations (54) and (41) the jb  are assumed to be twice as large as ( )1j H
Q t− u  if the initial condition is 

zero (where n nQ I P= − ). Thus, if the stochastic flow is within δ of the ball of radius ( )D f  then the kicks are 
large enough to “kick” the first M-dimensions of the flow within δ of the first M dimensions of any point, in 
particular a finitely stable point, in the deterministic absorbing ball with nonzero probability, i.e. the big kick 
assumption is sufficient for the perturbation to “kick” the flow from anywhere in the absorbing ball into the sta-
bility radius of a finitely stable point. It should be noted, however, that while the probability of realizing such a 
“large” (and most likely physically unrealistic) kick can be extremely small, the big kick assumption does as-
sume that it can occur with positive probability. 

Main Theorem 20. Let the kicks satisfy Condition (15) and let ( )0, ;L H∞∈ ∞f  be time-periodic with pe-
riod T = 1, and that either: 
• there exists at least one finitely-stable point and the big kick assumption holds or 
• there is an asymptotically stable solution. 

Then there is N such that if 0jb >  for 1,2, ,j N=   the following hold: 
1) The system (13) has invariant measure µ . 
2) The invariant measure is unique. 
3) For any 0R >  there is ( ), 0C R f >  such that for any h real-valued Lipschitz function on H 

( ) ( ) ( ), , e for 0, .ck
k L Hh h C R f h k Rβ µ −− ≤ ≥ ∀ ≤u u  

The constant 0c >  is a constant not dependent on h, u, R, or k. 
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3.2. Proof of the Main Theorem 
The main theorem will follow from applying a modified version of Theorem 3.2.5 in [12]. Assume the following 
conditions. 

Condition 21. For any R and r with 0R r> >  there exist ( ),C C R f= , ( )D D f= , ( ), 1a a R r= <  all 
positive and there exists an integer ( )0 0 , 1n n R r= ≥  such that 

{ } ( )0 0 0 0max , , , ,n HH HS a D r D B R n n≤ + + ∈ ∀ ≥u u u                   (19) 

( )0 0 0 0 0 0, , ;HH HS S C B R− ≤ − ∀ ∈u v u v u v                        (20) 

where 2
0k B≤η  for all k. 

Condition 22. For any 0R >  there is a decreasing sequence ( ), 0, 0N NR fγ γ> →  as N →∞  such that 

( )( ) ( ) ( )0 0 0 0, , , ,N N HHH
I P S S R f B Rγ− − ≤ − ∀ ∈u v u v u v                 (21) 

where nP  is the projection onto the first N eigenfunctions je . 

Assume the kicked flow also satisfies: 

Condition 23. For K, the support of the distribution of kη , 

1
: : , 1j j j j

j
K u u b j

∞

=

 
= = ≤ ∀ ≥ 
 

∑u e  

and for any B bounded in H let 

( )
( ) ( )( )

0

1

: ,

: , 1.k k

A B B

A B S A B K k−

=

= + ≥
                            (22) 

Then there exists 0ρ >  such that for any B there is ( )0 , 1k B ρ ≥  such that: 

( ) ( )0 .k Hk k A B B ρ≥ ⇒ ⊂                               (23) 

In addition, assume that the kicked flow satisfies the following type of controllability. 

Condition 24. For any d > 0 and R > 0 there exists integer ( ), 0l l d R= >  and real number ( ) 0x x d= >  
such that 

( ) ( ){ } ( )0 0 0 0, for all , .l l
HH

d x B R− ≤ ≥ ∈u v u w v w                   (24) 

In other words, the kicked flow from two different initial conditions has a positive probability of becoming 
arbitrarily close together in finite time. 

We now formulate a modified version of Theorem 3.2.5 from [12]. 

Theorem 25. If the forced-kicked system (13) satisfies Conditions 21, 22, 23, and 24 and the kicks satisfy 
Condition 15 then there is 1N ≥  such that if 0jb >  for all 1 j N≤ ≤ , there exists an unique invariant meas-
ure, and for any 0R >  there is ( ), 0C R f >  such that for any real-valued Lipschitz function h on H 

( ) ( ) ( ), , e for 0, .ck
k L Hh h C R f h k Rβ µ −− ≤ ≥ ∀ ≤u u  

The constant 0c >  is a constant not dependent on h, u, R, or k. ( L⋅  is the standard Lipschitz norm.) 

While Theorem 25 can be proved using the same approach as in [7], we instead use an approach similar to 
that in [2] [6] [12] to highlight the dependence on the conditions. Though [12] uses external force f = 0 and [6] 
only allows a time-independent force and we are considering time-periodic forces here, there are only two main 
differences in the above conditions and the ones in [12]: the inequalities now depend on the norm of f and the 
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use of Condition 24. Due to these slight differences, a brief sketch of the proof of Theorem 25 based on the ar-
guments found in [2] [17] is given (summarized well in [7], p. 10). The main idea behind the argument is the 
following lemma ([12], Lemma 3.2.6 or [7], Prop. 2.5). 

Recall that a pair of random variables ( )1 2,ζ ζ  defined on a probability space is called a coupling for the 
given measures 1 2,µ µ  if the distribution of jζ  is jµ , 1, 2.j =  

Lemma 3. Under the conditions of Theorem 25, there exists a constant 0d >  such that for any points 
( ), HB R′∈u u  with H d′− ≤u u  the measures ( )1,21, ,β ⋅u  admit a coupling ( )1,2 1,2 1 2, ;ω=V V u u  such that 

1 2 2H

d Cd − ≥ ≤ 
 

V V  

where C > 0 does not depend on , ′u u . 

Since the conditions on the deterministic solution operator are imposed on each fixed time interval and the 
operator is the same for each interval, the kicked-equations have the same form as the time-independent and ze-
ro-force cases. Thus, with the exception that constants now depend on the norm of the deterministic force, the 
proof of Lemma 3, which depends on conditions 20 and 21, is identical to the proof in [12]. 

It should be noted that the choice of N in Theorem 25 comes from the construction of the coupling in Lemma 
3 and the construction only needs that N is sufficiently large. 

Remark 26. In [7] the complication in proving Lemma 3 lies not in the choice of a time-periodic deterministic 
force, but the choice of random perturbation. 

Given Lemma 3, the remainder of the proof proceeds under the following two cases: 
1) If d′− ≤u u  for d small enough, by Lemma 3, there is a positive probability that the random variables 

after one time step are within 
2
d . By iteration there is a positive probability that the random variables will be 

within 
2n
d  after n time steps. 

2) If d′− >u u  instead then, by Condition 24, there exists a finite time l where ( ) ( )l l d′− ≤u u u u . After 
this, Lemma 3 again implies that the distance between the random variables is continually halved with positive 
probability. 

The above argument gives the main idea behind the following lemma ([2], Lemma 3.3): 

Lemma 4. Let 1,2 A∈u , where A is the invariant set, and 1 2d = −u u . Then under the condition of Theorem  
25 for any 1k ≥  the measures ( )

1,2
kµu  admit a coupling ( )1,2 1,2 1 2, , ,k k k k kω ω= ∈ΩU U u u  such that 

1) The maps 1,2
kU  are measurable with respect to ( ) 2

1 2, , k kAω ∈ ×Ωu u . 

2) There exists a constant 0θ >  not depending on 1 2, ,u u  and k such that 

{ } ( )1 2 0 1 2, , , .k k k
rd k r l d Aθ− ≤ ≥ ∀ ≥ + ∈U U u u                       (25) 

3) If 1 2 rd− ≤u u  then 

{ } 1
1 2 1 2 , 1, 0.k k k r

k rd k r− −
+− ≤ ≥ − ≥ ≥U U                          (26) 

Due to Lemma 3 which establishes the existence of a coupling, the proof of this lemma is very similar to the 
one in [2]. The main difference is the use of Condition 24 here instead of Lemma 3.1 in [2] which assumes that 
all solutions converge to 0 since the deterministic forcing is 0 there. The remainder of the proof of Theorem 25 
follows identically to the argument in [17]. 

Having established Theorem 25, it only remains to check that the conditions hold for the kicked Navier- 
Stokes equations. It is straightforward that Condition 21 implies Condition 23. Furthermore, since Conditions 21 
and 22 are well known and analogous to results for the torus these are included in the Appendix for completion. 
Instead only Condition 24 is proved here. 
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3.3. Proof of Condition 24 
In order to establish Condition 24 the following is needed ([1], Lemma 5.4), which establishes that a sequence of 
realizations of kicks can be taken arbitrarily close to any prescribed sequence of vectors in ( )suppD η  with 
positive probability. 

Lemma 5. For any 0ρ >  and any integer 1M ≥ , there is a ( )0 0 , 0p p Mρ= >  such that 

( ) 0,1j j H
j M pρ− < ≤ ≤ ≥x η  

uniformly in 1, , Mx x  in ( )suppD η  where ( )suppD η  is the support of the distribution of the kicks. 

The proof of Condition (24) uses the main idea behind Lemma 3.1 in [2] and is split into the two cases consi-
dered. 

Lemma 6. Suppose that there exists an asymptotically stable solution, then for any d > 0 and R > 0 there 
exists integer ( ), 0l l d R= >  and real number ( ) 0x x d= >  such that 

( ) ( ){ } ( )0 0 0 0, for all , .l l
HH

d x B R− ≤ ≥ ∈u v u w v w  

Proof. First fix all realization of the kicks as the zero realization. Then by assumption there exists a time l 
such that 

( ) ( ) ( )0 0 0 0, , .
2

l l
HH

d B R− ≤ ∀ ∈u w u v w v                         (27) 

By continuity of the flow there is a 0γ >  small enough that if k γ≤η  for 1 k l≤ ≤  then 

( ) ( )0 0 .l l
H

d− ≤u w u v                                (28) 

By Lemma 5 the probability of k γ≤η  is nonzero. Thus 

( ) ( ) ( ){ }0 0 0 0, ,l l
HH

d B R x− ≤ ∀ ∈ ≥u w u v w v                       (29) 

as desired. 
Now recall that the N in Theorem 25 is from the construction of the coupling in Lemma 3. Let N' be the 

maximum of the N from the big kick assumption (and thus ≥ M) and the N generated by Lemma 3. 

Lemma 7. Let 0jb >  for 1 j N ′≤ ≤ . Suppose that there exists a finitely stable point u and assume that the 
big kick assumption holds, then for any d > 0 and R > 0 there exists an integer ( ), 0l l d R= >  and real number 

( ) 0x x d= >  such that 

( ) ( ){ } ( )0 0 0 0, for all , .l l
HH

d x B R− ≤ ≥ ∈u v u w v w  

Proof. Let δ be the radius for the finitely stable point, u, and fix all realizations of the kicks as the zero reali-
zation. By (53) there exists a time l such that 

( ) ( ) ( ), .
4

l
HH

D f B Rδ
≤ + ∀ ∈u w w                            (30) 

By the big kick assumption, there exists a kick ′η  such that 

( )( ) ( ), .
2

l
M M HH

P P B Rδ′− + ≤ ∀ ∈u u w wη                        (31) 

Again fix all realizations as the zero realization. By the assumption of a finitely stable point, there exists a time k 
such that 

( ) ( ) ( )1 , .
4

l k k
HH

d B R+ + − ≤ ∀ ∈u w u u w                          (32) 
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Thus there exists a time 1l k+ +  such that 

( ) ( ) ( )1 1
0 0 0 0, , .

2
l k l k

HH

d B R+ + + +− ≤ ∀ ∈u w u v w v                      (33) 

By continuity, 0γ >  can be chosen such that if j γ≤η  for 1 j l≤ ≤ , γ′ − ≤η ζ  where ζ  is another 
realization of the kick, and j γ≤η  for 1 1l j l k+ < ≤ + +  then 

( ) ( ) ( )1 1
0 0 0 0, , .l k l k

HH
d B R+ + + +− ≤ ∀ ∈u w u v w v                      (34) 

By Lemma 5 there is a positive probability of the kicks satisfying the inequalities. 
This completes the proof of Condition 24 and thus there is uniqueness of invariant measure in H. 

4. Support of the Measure 
Before stating the main result of this section, we recall some definitions and straightforward results about the 
support of a measure. 

Definition 27. The support of a measure µ  on H is the smallest closed subset K in H such that  
( ) 0H Kµ = . A measure is concentrated on a set B if ( ) 1Bµ = . 

To continue we need Lemma 5.5 from [1]. 

Definition 28. For H∈y , let ( )0A =y y . Then the set of attainability from the set y at time n is defined as 
( ) ( )( ) ( )1n n kA S A suppD−= +y y η . The set of attainability from y is defined as 

( ) ( )
0

.i
i

A A
∞

=

=


y y  

The set of attainability for a set of points is the union of the set of attainability for all points in the set. 

Lemma 8. For any 0r >  there is an integer 0k ≥  such that ( )A y  is contained in the r-neighborhood of 
( )kA y , i.e. for any ( )A∈a y  there exists ( )k kA∈a y  such that ( ),k HB r∈a a , where ( ),HB r a  is the ball 

of radius r in H centered at a. 

It is worth noting that the definition of the set of attainability is similar to Condition 23 except that the ball is 
centered at y instead of 0. 

Remark 29. The support of the measure for the Navier-Stokes equations is concentrated on V ([6], Lemma 
5.5.2) and, in general, the support of the measure is contained in a ball centered around the origin of radius the 
square root of 

( )
1

2

0, ;
02

1

1 ,
1 e

L H B λνν λ

∞ ∞

−

 
 +
  −
 

f
                              (35) 

where 2
0k B≤η  for all k ([6], Lemma 5.5.3). 

When there is an asymptotically stable solution the support is contained in a ball of radius 

0

1 e L

B
−−

                                       (36) 

centered at the limiting solution ([6], Lemma 5.2.1), where L is the rate of convergence, i.e. et Lq −=  for 
0 1q< < . 

Support of the Measure 
We next extend the standard definitions of wandering and nonwandering points ([18], page 27) to the case of 
stochastic flow. 
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Definition 30. Let ( ) ( ) { }, .HU B= − p p p  A point H∈p  is nonwandering if for all 0>  and for every 
0T >  there exists t T>  such that 

( ) ( )( ), .H tB S U ≠p p    

Definition 31. A point H∈p  is wandering if there exists 0>  and there exists 0T >  such that for all 
t T>  

( ) ( )( ), .H tB S U =p p    

A point is defined as wandering or nonwandering based on the behavior of nearby points. One consequence of 
this is that for a stationary force an unstable stationary solution is now a wandering point unlike for the determi-
nistic setting. 

The following result was proved in [6], Theorem 5.5.8. 

Theorem 32. Let A be the set of attainability from the the set of nonwandering points. Then any A∈a  is in 
the support of the measure. 

We outline the proof below (which is similar to the steps in [1], p. 320). Note that it is necessary to establish 
that ( )( ), 0HB rµ >a  for any 0r > . 
• By time-invariance, for any 0l > , for any , 0r >  and any H∈v  

( )( ) ( )( ) ( )( ) ( )*, , , , , d .H k H HH
B r B r l B rµ β µ β µ= = ∫a a u a u                    (37) 

Thus, by integrating over a subset of H instead 

( )( ) ( ) ( )( ) ( )
,

, , , , d .
H

H HB
B r l B rµ β µ≥ ∫  v

a u a u                         (38) 

• Thus, it is sufficient to show that for any A∈a  there exists H∈v , 0> , and times t1, t2 such that 

( )( ) ( )1 2 , , , 0, , .H Ht t B r Bβ + > ∀ ∈u a u v                          (39) 

• By the definition of the set of attainability, there is a nonwandering point y such that a is accessible from y. 
Furthermore, since for any ( ),HB∈u v  

( )( ) ( ) ( )( )

( ) ( ) ( )( )

( )
( )( ) ( )( )

1 2 1 2

1 2,

2 1,

, , , , ,d , , ,

, ,d , , ,

inf , , , , , ,
H

H

H HH

HB

H HB

t t B r t t B r

t t B r

t B r t B
δ

δ

β β β

β β

β β δ
∈

+ =

≥

≥

∫
∫ y

w y

u a u w w a

u w w a

w a u y

              (40) 

it is enough that ( ) ( )( )2,inf , , ,
H HB t B rδ β∈w y w a  and ( )( )1, , ,Ht Bβ δu y  are strictly positive, which follows 

from the next two lemmas. 

Lemma 9. Let y be a nonwandering point. For any 0δ >  there is 0> , an integer ( )1 1 0t t δ= ≥ , and a 
constant ( ) 0x x δ= >  such that 

( ) ( ){ }1 , , .t
HH

B xδ− ≤ ∀ ∈ ≥y u w w y   

The proof is very similar to that of Condition 24 and thus only a sketch is given. By the definition of a non-
wandering point, the intersection of any open ball (for example of radius 4δ ) around a nonwandering point, y,  

has a non-empty intersection with the deterministic flow of the set at some time 1t , i.e. if ,
4Hw B δ ∈  

 
y  then  

( ) ( )1 4 ,t
HB δ∈u w y . By continuity, there exists 0>  such that if the initial condition ( ),HB∈ w y  and the 

kicks are small enough then ( ) ( )1 ,t
HB δ∈u w y  (see [6], Lemma 5.5.11 or [1], p. 321-322). 

Lemma 10. Let A be the set of attainability from the set of nonwandering points. For any A∈a  and any 
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0r >  there exists 0δ >  and a nonwandering point y such that for some time t2 and all ( ),HB δ∈v y , 

( )( )2 , , , 0.Ht B rβ >v a  

The proof is nearly a repeat of the argument made in [1], page 322, with modifications for the change in the 
definition of the set of attainability, so only a brief sketch is given. By Lemma 8, there is ( )2,k HB r∈a a  such 
that ka  is attainable by a finite sequence of fixed kicks from the nonwandering point y. By continuity of the 
flow and the properties of the kicks, there is a 0δ >  and 0γ >  such that if ( ),HB δ∈v y  and the kicks vary 
by at most γ  then there is a positive probability that ( ) ( )2 ,t

HB r∈u v a . 
Due to the existence of an asymptotically stable solution when the force is small enough, gives a zonal solu-

tion of the form g(t)curl sin(ϕ), or gives an almost zonal solution, the following holds. 

Corollary 1. If the force 
1) is small enough—see Remark 33; 
2) yields a zonal solution of the form g(t)curl sin(ϕ); 
3) yields an almost zonal solution; 

then the support of the measure is the set of attainability from the unique exponentially stable periodic solution. 

5. Conclusions 
While there is invariant measure for the kicked Navier-Stokes equations with a bounded time-periodic determi-
nistic force, it is only possible to give a clear description of the support of the measure in a few limited situations. 
Furthermore, if there is an asymptotically stable solution then the support can be considered to nearly be the 
unique stable periodic solution since the kicks can be taken arbitrarily small (with the first N dimensions nonze-
ro). Unfortunately, for more general forces the support of the measure is not as clear. For example, it is not as 
clear what nonwandering points may exist. In addition, while the assumption of a finitely stable point is more 
general than the assumption of a globally attracting solution and gives that there is a (at least one) periodic solu-
tion (possibly with the same period as the force), the size requirement on the kick is problematic both for under-
standing the support of the measure and for meteorological considerations. 

It is possible, however, that the kicks may be allowed to be smaller. The big kick assumption is introduced to 
ensure that a kick can, with positive probability, send the flow into the neighborhood of any point in the deter-
ministic absorbing ball. The necessity of the big kick assumption comes from the deterministic setting where a 
Dirac measure at any stationary solution is a time-invariant measure, giving non uniqueness if there are multiple 
stationary solutions. Thus, for example, if there are two stable stationary solutions the kicks must be (at mini-
mum) large enough to send the flow from inside the radius of stability of one into the radius of stability of the 
other. The big kick assumption is sufficient to do this, but a smaller kick may suffice. 

Of course, the results presented in this paper also apply to time-independent and zero forcing deterministic 
forces since they are trivially time-periodic. Furthermore, the majority of the results presented in this paper ap-
ply to the Navier-Stokes equations on the torus. For example, while a zonal and almost zonal solution no longer 
makes sense on the torus, if the force still yields an unique asymptotically stable solution then the support of the 
measure is again straightforward to describe. 
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Appendix 
A.1. Estimates 
We now present estimates that will be needed to establish Conditions 21 and 22 and Lemmas 1 and 2. With the 
exception of Equations (48) and (49) of Lemma 12 and Lemma 13 these estimates are analogous to standard es-
timates on flat-domains with periodic boundary conditions. 

Lemma 11. For V∈u  the Poincare Inequality holds, i.e. 
22 21 2

1V HH
A λ= ≥u u u                                  (41) 

where 1λ  is the first eigenvalue of the Laplacian. In particular, the V-norm is equivalent to the H1-norm on V. 

The proof is identical to the case of flat domains due to the existence of an orthonormal basis. Furthermore, 
1λ  is the first eigenvalue of the scalar Laplacian on the sphere ([9], p. 567). 

Lemma 12. For , , V∈u v w , the trilinear form satisfies 

( ) ( ) ( ), , 0, , , , , ,b b b= = −u v v u v w u w v                            (42) 

( ) 1 1 1, , ,H H Hb k≤u v w u v w                               (43) 

( ) 1 1 1
1 2 1 2 1 2 1 2, , .H H H H Hb k≤u v w u u v w w                          (44) 

If 2H V∈v   then 

( ), , 0,b A =v v v                                     (45) 

( ) 2 1, , ,H H Hb k≤u v w w v u                              (46) 

( ) 1 1 2
1 2 1 2 1 2 1 2, , .H H H H Hb k≤u v w u u v v w                          (47) 

Furthermore, let ( ), , , ,nb curl′ = ×u v w u v w let 2H V∈u   be a zonal vector field of the form g(t)curl 
sin(ϕ) and let 2H V∈v   then 

( ), , 0b A′ =u v v                                    (48) 

( ), , 0b A′ =v u v                                    (49) 

Proof. Since the proof of (42) and (45) are identical to the ones in [9], pp. 566-568, the proofs of (43), (44), 
(46), and (47) follow from applying the Hölder inequality and the Ladyzhenskya inequality after taking exten-
sions ([9], pp. 566-567) and the proof of (49) is identical to the calculation on p. 69 of [19] (which uses Lemma 
4.4 on p. 62 there), we will only prove (48) here (which actually holds for any zonal vector field u). 

It suffices to show that (48) holds for u= curl sin(ϕ). Since the sphere is simply connected, for a diver-
gence-free vector field u, there is a flow function ψ  ([9], pp. 567-568) 

curl , curl ,nψ ψ ψ= − = ×∇ = ∆u n n u n  

where ∆ is the spherical Laplacian for functions. 
For the following calculation, we will need the following information about the spherical Jacobian ([19] p. 

51) 

( ) ( )( ) 1, curl
cosn

a b b aJ a b a b
φ λ φ λ φ
 ∂ ∂ ∂ ∂

= − × ×∇ = − ∂ ∂ ∂ ∂ 
n n  

( ), d 0,
M

J a b M =∫  by Stoke’s Theorem.                               (50) 
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The proof of Equation (48) uses an argument similar to [19], p. 70. Denote the flow functions for u and v as 
ψ  and ψ , respectively. 

( ) ( )

( )

[ ] [ ]( )2 2

curl , curl curl ,curl curl ,

1, , ,
cos

1 1 1d , d 0.
2 cos 2

n n n n n

M M

A

J

M J M

φ λ

φ λ

ψ ψ

ψ ψ ψ ψ ψ ψ
φ

ψ ψ ψ ψ
φ

× = × = ∆ × ∆

= ∆ ∆ = − ∂ ∂ ∆ ∆

= − ∂ ∂ ∆ = − ∆ =∫ ∫

v u v v u v n u

           (51) 

The following lemma will allow for the Coriolis term ( )C u  to vanish from all the estimates. Its proof only 
uses that the Laplacian commutes with differentiability in the longitudinal direction—see [20], p. 635. 

Lemma 13. For smooth vector fields u, the following holds for 0r ≥  

( ) , , 0.r
H

C l A= × =u v n u u                              (52) 

We now turn to the proofs of Conditions 21 and 22 and Lemmas 1 and 2. Since many of the calculations are 
standard, only the main steps are given. Recall that ( )0, ;L H∞∈ ∞f . 

A.2. Proof of Condition 21 
Let 0tS u  be the solution of the 2D Navier-Stokes equations with initial condition 0u  at time t. 

Lemma 14. The following inequalities hold for the deterministic 2D Navier-Stokes equation on the sphere for 
all 0t ≥ : 

( ) ( )1 1

2

0, ;2 2
0 0 2

1

e 1 eL Ht t
t H HS λν νλ

ν λ

∞ ∞− −≤ + −
f

u u                         (53) 

( ) ( )1 1
1 1

2

0, ;2 2
0 0 2

1

e 1 e ,L Ht t
t H HS λν νλ

ν λ

∞ ∞− −≤ + −
f

u u                        (54) 

where 1λ  is the first eigenvalue of the operator −∆ on functions. 

Moreover, for any 1
2

t ≥  

( )
1

1
2 2 2

0 0 1 0, ;e .t
t L HH HS K Cνλ

∞
−

∞
≤ +u u f                           (55) 

Proof. The proof follows the estimates in [9], p. 572. Take the L2 inner product of the Navier-Stokes equation 
with u. By (52) and (42) 

( )

( )

1 1

22 1 2

2 2 2 2

0, ;

2 2 2
1 0, ;

1 ,
2

1 1
2 2 2

1   by (41).

t H H

t H H L H H

t H H L H

Aν

νν
ν

νλ
ν

∞

∞

∞

∞

∂ + =

⇒ ∂ + ≤ +

⇒ ∂ ≤ − +

u u f u

u u f u

u u f

                       (56) 

This gives 

( ) ( )1 12 2 2
0 0 2 0, ;

1

1e 1 e ,t t
t L HH HS λν λν

λν
∞

−
∞

≤ + −u u f                       (57) 

establishing (53). 
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For (54), take the L2 inner product with Au. By (52) and (45) 

( )

( )

( )

1 2

1 2 2

1 1

2 2

2 2 2 2

0, ;

2 2 2
1 0, ;

1 , , ,
2

1 1 by (45)
2 2 2

1 by (41).

t H H

t H H L H H

t H H L H

b Aν

νν
ν

νλ
ν

∞

∞

∞

∞

∂ + + =

⇒ ∂ + ≤ +

⇒ ∂ ≤ − +

u u u u u f u

u u f u

u u f

                   (58) 

Therefore 

( ) ( )1 1
1 1

2 2 2
0 0 2 0, ;

1

1e 1 e ,t t
t L HH HS λν λν

λν
∞

−
∞

≤ + −u u f                      (59) 

establishing (54). 
For (55), note that integrating (56) from 0t  to 0t t+  gives 

( )

( )

0
10 0 0

0
1 00

2 2 2 2
0 0 0 0, ;

22 2
0 0 2 0, ;

d

1d .

t t
t t t L HHtH H

t t
t L HHt H

tS S S

tS S

τ

τ

ν τ
ν

τ
ν ν

∞

∞

+

+ ∞

+

∞

− + ≤

⇒ ≤ +

∫

∫

u u u f

u u f
                   (60) 

(54) implies that for any 1
2

t ≥  and any 0
1
2

t t t− < <  

( )
1 10

2
2 0, ;2

0 0 2
1

.L H
t tH H

S S
ν λ

∞ ∞≤ +
f

u u                             (61) 

Integrating (61) with respect to 0t  from 1
2

t −  to t gives, using (60) and (53) 

( )
( )

( ) ( )
( )

( )

1 10

1

2
2 0, ;2

0 0 0 21 2
1

2
2 0, ;2

01 2 2 20, ;
1

2 2
0 1 0, ;

1 d
2 2

1 1
2 2

e ,

t L H
t tH t H

L H
t L HH

t
L HH

S S t

S

C Cνλ

ν λ

ν ν ν λ

∞

∞

∞

∞

∞

−

∞
− ∞

−
∞

≤ +

≤ + +

≤ +

∫
f

u u

f
u f

u f

                   (62) 

establishing (55). 
Now consider the difference between two solutions = −w u v  

( ) ( ) ( ), , 0.t tS S A B B C
t

ν∂
− = + + + + =

∂
wu v w u v w w                      (63) 

Lemma 15. For any 0R >  and for all 0t ≥  the difference of solutions satisfies 

( )2 2
0 0, , ,t H HS C R f t≤w w                                (64) 

whenever 0 H R≤u  and 0 H R≤v . 

Proof. Taking the L2 inner product with w 

( ) ( )2 2
1

1 , , , , 0.
2 t H H b bν∂ + + + =w w w u w v w w                        (65) 
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By (42) and (44), 

( )1 1 1
2 21 , , .

2 t H H H H Hb kν∂ + ≤ ≤w w w u w w u w                      (66) 

By the Cauchy inequality 

1 1

2
2 2 2 2

t H H H H

kν
ν

∂ + ≤w w w u                              (67) 

and thus by (41) 

1

2
2 2 2

0 1 0 00
exp d .

t
t sH H H

kS t S sνλ
ν

 
≤ − + 

 
∫w u w                        (68) 

By (60) 

( )

2 2
2 2 22

0 1 0 02 3 0, ;exp .t L HH H H

k kS t tνλ
ν ν

∞ ∞

 
≤ − + + 

 
w u f w                    (69) 

Thus the exponential is less than or equal to some constant (depending on R and the norms of f) for any fixed 
0t ≥ . 

Remark 33. By (69) in order to ensure (16) it is sufficient that 

( )

2
1

0, ; .L H k
ν λ

∞ ∞
<f  

If Equation (16) is satisfied, there is a unique globally exponentially stable solution that is periodic with the 
same period as the force. 

A.3. Proof of Condition 22 
Lemma 16. Let = −w u v  and for any 0R >  let 0 H R<u  and 0 H R<v . The following estimate holds 
for all 1t ≥ : 

( )10 0, , .t H HS C R f t≤w w                               (70) 

Proof. Integrating (58) from s to t gives 

( ) ( )2 1 1 1
2 2 2 22 2

0 0 0 00, ; 0, ;d .
t

s t sL H L HH H H Hs

t tS S S Sτν τ
ν ν

∞ ∞∞ ∞
= − + ≤ +∫ u u u f u f           (71) 

Using (55) gives for 1 2 s t< <  

( )( ) ( )( )2
2 2

0 0 0, ; 0, ;d .
t

L H L HH Hs
S C tC Cτν τ ∞ ∞∞ ∞

≤ + +∫ u u f f                  (72) 

Integrating (67) from 1/2 to 1 and by the Mean Value Theorem there is ( )1 2,1s∈  such that 

( )

( )( )

1 1

1

12 2
0 01 2

2 12 2 2
0 0 01 2

2
00, ;

2 d and by (71)

,1 2 d

, by (60) and (64).

s H H

H H H

L H H

S S

kC R S S

C R

τ

τ τ

ν ν τ

τ
ν

∞ ∞

=

≤ +

≤

∫

∫

w w

w w u

f w

                   (73) 

Taking the L2 inner product of (63) with Aw gives 

( ) ( )2 2
1 2

1 , , , , .
2 t H H b A b Aν∂ + ≤ +w w u w w w v w                      (74) 
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By (47) and (46) respectively, the right side of (74) is bounded above by 

1 1 2 2 1 2 2

1 1 2 1 2

1 2 1 2 1 2 1 2

2 2 2 2 2 2 by Cauchy.
2

H H H H H H H H

H H H H H H

k k

K Cν

≤ +

≤ + +

u u w w w w v w

u u w w w v
                 (75) 

Therefore 

( )( )1 2 11
2 2 2 22

1t H H H HH
Kνλ∂ ≤ − + +w u u v w                        (76) 

and 

( ) ( )( )1 1 1 2
2 2 2 2 2

0 0 1 0 0 0exp d .
t

t sH H H H Hs
S S t s k S S Sτ τ τνλ τ≤ × − − + +∫w w u u v                (77) 

By (53) and (72) this is bounded above by 

( )( ) ( ) ( ) ( )( )1 1
2 2 2

0 1 0 0, ;0
exp 1 exp , d .

t
s L HH HS t C R f S C R tCτνλ τ ∞ ∞

≤ − − × + +∫w u f     (78) 

By (60) and (73) this is bounded above by 

( ) ( )( ) ( ) ( ) ( )( )1
2 2

0 1 0, ;, exp 1 exp , L HHC R f t C R f C R tCνλ ∞ ∞
≤ − − × + +w f           (79) 

which establishes (70). 
Let ( ) ( ) ( )( )0 0 0N t N tQ I P S I P S= − = − −w u v . 
Then 

( )
1 1

2 2 22 2
0 0 0

1 1 1

, ,1 1 : ,t NH H H H H
N N N

C R f t
Q Q S γ

λ λ λ+ + +

≤ ≤ ≤ =w w w                (80) 

where the last step is by (70). For any t ≥ 1 a N can be found (depending on t, R, and f) such that the Nγ  is less 
than or equal to any q > 0. Since t = 1 for the kicked equations, N can be chosen only depending on R and f. 

A.4. Proof of Lemma 1 
The proof is analogous to a calculation in [19], pp. 69-70 (done for ( )2 curl sinaν φ= −f ). 

Let ′= +u u u  solve the time-dependent Navier-Stokes equations with forcing f where u' is a perturbation 
and u  is the zonal solution. Let ( ), nB curl′ = ×u v u v  then the perturbation solves 

( ), 0,t A G Bν′ ′ ′ ′ ′∂ + + + =u u u u u                              (81) 

where 

( ) ( ) ( ), , .G C B B′ ′ ′ ′ ′ ′= + +u u u u u u                             (82) 

Dropping the primes for ease of notation and taking the inner product with Au gives 

2 2

1 2

1 , 0.
2 t G Aν∂ + + =u u u u                              (83) 

, 0G A =u u  by (52), (48), and (49). Thus for any 1
2

t ≥  the perturbation satisfies 

( )1
1

222 2 2
101 2

1 0 e 1 2 .
2

t
t t H H

S C νλν −∂ + = ⇒ ≤u u u u                     (84) 

Since ( ) ( ) ( )1 1 11 2 1 2 1 2
H H H

′ ≤ +u u u , (55) gives 
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( ) 1
1

2 2 22
0 0 0 0 0, e .t

t tH H H H HS S C νλ−≤ ≤u u u u u                       (85) 

Thus the solution is asymptotically attracting in H. 

A.5. Proof of Lemma 2 
The proof uses a different approach than the analogous result in [6], Proposition 5.4.1 which gives a much more 
direct argument here. Instead we show that if the solution to the Navier-Stokes equations with a nonzonal force 
is “close enough” to the zonal solution, then it is globally exponentially stable. We then use standard estimates 
to the express the inequalities in terms of the distance from the force f. 

Let u be the unique zonal solution for the Navier-Stokes equations with force f from Lemma 1. Suppose g is 
such that there exists = +v u v  that solves 

( ) ( ), .t A B Cν∂ + + + =v v v v v g                              (86) 

Let ψ  be another solution to (86) and consider = −q vψ  which solves 

( ) ( ) ( ), , 0.t A B B Cν∂ + + − + =q q v v qψ ψ                          (87) 

Let ( ), nB curl′ = ×u v u v  and ( ), , , ,nb curl′ = ×u v w u v w  then rewriting the nonlinear terms gives 

( ) ( ) ( ) ( ) ( ) ( ), , , , , 0.t A B B B B B Cν ′ ′ ′ ′∂ + + + + + + + =q q q q u q q u v q q v q              (88) 

Take the inner product with Aq. By (45) ( ), , 0b A =q q q  and since u is zonal ( ), , 0b A′ =q u q  and  
( ), , 0b A′ =q u q  by (48) and (49). Since ( ), ,b′ u v w  satisfies Equations (46) (47) by the Cauchy inequality 

( ) ( )

( )

1 1 2 2 1 2 2

2 1 1 2 1 2

2 1 1 2

1 2 1 2

2 2 2 2

2 2 4 2

, , , ,

4

.
2

H H H H H H H

H H H H H H

H H H H

b A b A C C

C C

C

ν

ν

′ ′+ ≤ +

≤ + +

≤ + +

v q q q v q v q q q q q v

q v q q q v

q q v v

 

Thus 

( )2 2 4 2
1 1 1 21 .t H H H HCλν  ∂ ≤ − + + q q v v                          (89) 

For any 1
2

t >  integrating (89) on 1 ,
2

t 
  

 gives 

( ) ( ) ( ) ( )( )1 1 1 2

2 2 4 2
1 1 2

1 2 exp d .
t

H H H H
t t Cλν τ τ τ ≤ − + +  ∫q q v v                 (90) 

Since ( ) ( ) ( )2 2 2
1 1 11 2 1 2 1 2

H H H
≤ +q vψ  by (55) 

( ) ( )( )
( ) ( )( )

1

1 2

2
0 0 0, ;

4 2
1 1 2 1 2

, ,

exp d d .

L T HH HH

t t

H H

t C

t Cλν τ τ τ τ

∞≤

 × − + +  ∫ ∫

q v f

v v

ψ
 

Thus if the norms of v  are small enough then the unique solution v is globally exponentially stable in H1 (and 
thus in H). 

It remains to express the norms of v  in terms of the difference of forces. Since = −v v u , consider the 
difference between the Navier-Stokes equations with force f and zonal solution u from Lemma 1 and Equation 
(86) getting 

( ) ( ) ( ), , .t A B B Cν∂ + − + + = −v v u u v v v f g                        (91) 
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Since ( ) ( ) ( ) ( ) ( ), , , , ,B B B B B′ ′− + = + +u u v v u v v u v v  and since u is zonal of the form g(t)curl sin(ϕ), the 
inner product with Av  and Equations (45), (48), and (49) give 

1 2
2 2 2 .t H H HCν∂ + ≤ −v v f g                              (92) 

Integrating from 1 ,
2

t 
  

, using ( ) ( ) ( )1 1 11 2 1 2 1 2
H H H

≤ +v u v , and (55) gives 

( ) ( )2
2 2

0 0 0, ;1 2
, .

t

H L HH HC C t∞ ∞
≤ + −∫ v v u f g                       (93) 

Similarly using (41) and integrating (92) from 1 ,
2

t 
  

 yields 

( ) ( ) ( )
1

1

2 2
0 0 0, ;, e .t

L HH HH
t C Cλν

∞
−

∞
≤ + −v v u f g                     (94) 

Thus by Cauchy’s inequality 

( ) ( )
1

1

4 42
0, ;e .t

L HH
t C Cλν

∞
−

∞
≤ + −v f g                           (95) 

Thus the term in the exponential in (90) is bounded above by 

( ) ( ) ( )( )4 2
0 0 1 0, ; 0, ;, .L H L HH HC Ct λν ∞ ∞∞ ∞

+ − + − + −v u f g f g  

Therefore there is 0δ >  such that if ( )
2

0, ;L H δ∞ ∞
− ≤f g  then the unique solution v is globally exponentially 

stable in H. 
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