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Abstract 
Zero-inflated negative binomial distribution is characterized in this paper through a linear diffe-
rential equation satisfied by its probability generating function. 
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1. Introduction 
Zero-inflated discrete distributions have paved ways for a wide variety of applications, especially count re- 
gression models. Nanjundan [1] has characterized a subfamily of power series distributions whose probability 
generating function (pgf) ( )f s  satisfies the differential equation ( ) ( ) ( )a bs f s cf s′+ = , where ( )f s′  is the 
first derivative of ( )f s . This subfamily includes binomial, Poisson, and negative binomial distributions. Also, 
Nanjundan and Sadiq Pasha [2] have characterized zero-inflated Poisson distribution through a differential 
equation. In the similar way, Nagesh et al. [3] have characterized zero-inflated geometric distribution. Along the 
same lines, zero-inflated negative binomial distribution is characterized in this paper via a differential equation 
satisfied by its pgf.   

A random variable X is said to have a zero-inflated negative binomial distribution, if its probability mass 
function is given by  
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where 0 1ϕ< < , 0 1p< < , 1p q+ = , and 0r > . 
The probability generating function of X is given by  
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Hence the first derivative of ( )f s  is given by  
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2. Characterization 
The following theorem characterizes the zero-inflated negative binomial distribution. 

Theorem 1 Let X be a non-negative integer valued random variable with ( )0 0 1P X< = < . Then X has a 
zero-inflated negative binomial distribution if and only if its pgf ( )f s  satisfies  

( ) ( ) ( )1 ,f s a b cs f s′= + +                                   (3) 

where a, b, c are constants.  
Proof. 1) Suppose that X has zero-inflated negative binomial distribution with the probability mass function 

specified in (1). Then its pgf can be expressed as 
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Hence ( )f s  in (4) satisfies (3) with , 1 ,a b rq c qϕ= = = − .  
2) Suppose that the pgf of X satisfies the linear differential equation in (3). 
Writing the Equation (3) as  

( ) d1 ,
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On integrating both sides w.r.t. x, we get  
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The solution of the differential equation in (3) becomes  

( ) ( )
1

1 .bcf s a k cs= + +                                  (5) 

If either b or c or both are equal to zero, then 1
bc

= ∞  and hence ( )f s  has no meaning. Thus, both b and c  

are non-zero. Since ( )f s  is a pgf, it is a power series of the type 2
0 1 2p p s p s+ + + . When either > 0c  or  

1
bc

 is not a negative integer, the expansion of the factor ( )
1

1 bccs+  on the right hand side of (5) will have  

negative coefficients, which is not permissible because ( )f s  is a pgf. Hence the equation in (5) can be written 
as 

( ) ( )1 ,Nf s a k ds −= + −  

where N is a positive integer. Since ( )1 1f = , ( )( )1 1 Nk a d= − − . 
Therefore  

( ) ( )( ) ( )1 1 1 .N Nf s a a d ds −= + − − −                             (6) 

Hence ( )f s  in (6) satisfies (2) with a ϕ= , ( )1p d= − , q d= , and N r= . 
This completes the proof of the theorem. 

  
Also, it can be noted that when 1N r= = , the negative binomial distribution reduces to geometric distri- 

bution and the Theorem 1 in Section 2 concurs with the characterization result of Nagesh et al. [3]. 
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